

Praise for Ellie Quigley’s Books

“I picked up a copy of JavaScript by Example over the weekend and wanted to thank
you for putting out a book that makes JavaScript easy to understand. I’ve been a devel-
oper for several years now and JS has always been the “monster under the bed,” so to
speak. Your book has answered a lot of questions I’ve had about the inner workings of
JS but was afraid to ask. Now all I need is a book that covers Ajax and Coldfusion.
Thanks again for putting together an outstanding book.”

—Chris Gomez, Web services manager,
Zunch Worldwide, Inc.

“I have been reading your UNIX® Shells by Example book, and I must say, it is brilliant.
Most other books do not cover all the shells, and when you have to constantly work in
an organization that uses tcsh, bash, and korn, it can become very difficult. However,
your book has been indispensable to me in learning the various shells and the differ-
ences between them…so I thought I’d email you, just to let you know what a great job
you have done!”

—Farogh-Ahmed Usmani, B.Sc. (Honors), M.Sc., DIC,
project consultant (Billing Solutions), Comverse

“I have been learning Perl for about two months now; I have a little shell scripting
experience but that is it. I first started with Learning Perl by O’Reilly. Good book but
lacking on the examples. I then went to Programming Perl by Larry Wall, a great book
for intermediate to advanced, didn’t help me much beginning Perl. I then picked up
Perl by Example, Third Edition—this book is a superb, well-written programming book.
I have read many computer books and this definitely ranks in the top two, in my opin-
ion. The examples are excellent. The author shows you the code, the output of each
line, and then explains each line in every example.”

—Dan Patterson, software engineer,
GuideWorks, LLC

“Ellie Quigley has written an outstanding introduction to Perl, which I used to learn
the language from scratch. All one has to do is work through her examples, putz
around with them, and before long, you’re relatively proficient at using the language.
Even though I’ve graduated to using Programming Perl by Wall et al., I still find Quigley’s
book a most useful reference.”

—Casey Machula, support systems analyst,
Northern Arizona University, College of Health and Human Services

“When I look at my bookshelf, I see eleven books on Perl programming. Perl by Exam-
ple, Third Edition, isn’t on the shelf; it sits on my desk, where I use it almost daily. When
I bought my copy I had not programmed in several years and my programming was
mostly in COBOL so I was a rank beginner at Perl. I had at that time purchased several
popular books on Perl but nothing that really put it together for me. I am still no pro,
but my book has many dog-eared pages and each one is a lesson I have learned and will
certainly remember.

“I still think it is the best Perl book on the market for anyone from a beginner to a seasoned
programmer using Perl almost daily.”

—Bill Maples, network design tools and automations analyst,
Fidelity National Information Services

“We are rewriting our intro to OS scripting course and selected your text for the course.
It’s an exceptional book. The last time we considered it was a few years ago (second
edition). The debugging and system administrator chapters at the end nailed it for us.”

—Jim Leone, Ph.D., professor and chair, Information Technology,
Rochester Institute of Technology

“Quigley’s book acknowledges a major usage of PHP. To write some kind of front end user
interface program that hooks to a back end MySQL database. Both are free and open
source, and the combination has proved popular. Especially where the front end involves
making an HTML web page with embedded PHP commands.

“Not every example involves both PHP and MySQL. Though all examples have PHP.
Many demonstrate how to use PHP inside an HTML file. Like writing user-defined
functions, or nesting functions. Or making or using function libraries. The functions
are a key idea in PHP, that take you beyond the elementary syntax. Functions also let
you gainfully use code by other PHP programmers. Important if you are part of a coding
group that has to divide up the programming effort in some manner.”

—Dr. Wes Boudville, CTO,
Metaswarm Inc.

Perl by Example
Fourth Edition

This page intentionally left blank

Perl by Example
Fourth Edition

Ellie Quigley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

The Safari® Enabled icon on the cover of your favorite technology book
means the book is available through Safari Bookshelf. When you buy this
book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily

search thousands of technical books, find code samples, download chapters, and
access technical information whenever and wherever you need it.
To gain 45-day Safari Enabled access to this book:
• Go to http://www.prenhallprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code 42LU-U1FM-5Z3J-58MQ-9Q4I
If you have difficulty registering on Safari Bookshelf or accessing the online edition,
please e-mail customer-service@safaribooksonline.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Quigley, Ellie.

Perl by example / Ellie Quigley. — 4th ed.
p. cm.

Includes index.
ISBN 978-0-13-238182-6 (pbk. : alk. paper) 1. Perl (Computer program language) I. Title.
QA76.73.P22Q53 2007
005.13’3—dc22

2007029600

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-238182-6
ISBN-10: 0-13-238182-6

Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.
Second printing, January 2009

Editor-in-Chief
Mark L. Taub

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Production Editor
Dmitri Korzh,
Techne Group

Copy Editor
Techne Group

Indexer
Larry Sweazy

Proofreader
Evelyn Pyle

Publishing Coordinator
Noreen Regina

Cover Designer
Alan Clements

Composition
Techne Group

http://www.prenhallprofessional.com/safarienabled

vii

Contents

Preface xxvii

1 The Practical Extraction and Report Language 1
1.1 What Is Perl? 1

1.2 What Is an Interpreted Language? 2

1.3 Who Uses Perl? 3

1.3.1 Which Perl? 3
1.3.2 What Is Perl 6? 4

1.4 Where to Get Perl 5

1.4.1 What Version Do I Have? 7

1.5 What Is CPAN? 9

1.6 Perl Documentation 10

1.6.1 Perl Man Pages 10
1.6.2 HTML Documentation 11

1.7 What You Should Know 12

1.8 What’s Next? 12

2 Perl Quick Start 13
2.1 Quick Start, Quick Reference 13

2.1.1 A Note to Programmers 13
2.1.2 A Note to Non-Programmers 13
2.1.3 Perl Syntax and Constructs 14

Regular Expressions 26
Passing Arguments at the Command Line 27
References, Pointers 27
Objects 28
Libraries and Modules 29
Diagnostics 29

viii Contents

2.2 Chapter Summary 29

2.3 What’s Next? 29

3 Perl Scripts 31
3.1 Script Setup 31

3.2 The Script 32

3.2.1 Startup 32
UNIX/Mac OS 32
Windows 32

3.2.2 Finding a Text Editor 34
3.2.3 Naming Perl Scripts 34
3.2.4 Statements, Whitespace, and Linebreaks 34
3.2.5 Comments 35
3.2.6 Perl Statements 35
3.2.7 Using Perl Built-in Functions 36
3.2.8 Executing the Script 36
3.2.9 Sample Script 37
3.2.10 What Kinds of Errors to Expect 38

3.3 Perl at the Command Line 39

3.3.1 The -e Switch 40
3.3.2 The -n Switch 40

Reading from a File 40
Reading from a Pipe 41

3.3.3 The -c Switch 42

3.4 What You Should Know 43

3.5 What’s Next? 43

EXERCISE 3 Getting with It Syntactically 44

4 Getting a Handle on Printing 45
4.1 The Filehandle 45

4.2 Words 45

4.3 The print Function 46

4.3.1 Quotes 47
Breaking the Quoting Rules 48

4.3.2 Literals (Constants) 49
Numeric Literals 49
String Literals 49
Special Literals 51

4.3.3 Printing Literals 51
Printing Numeric Literals 52
Printing String Literals 53
Printing Special Literals 54

4.3.4 The warnings Pragma and the -w Switch 55
4.3.5 The diagnostics Pragma 57
4.3.6 The strict Pragma and Words 58

Contents ix

4.4 The printf Function 59

4.4.1 The sprintf Function 62
4.4.2 Printing without Quotes—The here document 63

Here Documents and CGI 65

4.5 What You Should Know 66

4.6 What’s Next? 66

EXERCISE 4 A String of Perls 67

5 What’s in a Name 69
5.1 About Perl Variables 69

5.1.1 Types 69
5.1.2 Scope and the Package 69
5.1.3 Naming Conventions 70
5.1.4 Assignment Statements 71
5.1.5 Quoting Rules 72

Double Quotes 73
Single Quotes 74
Backquotes 74
Perl’s Alternative Quotes 75

5.2 Scalars, Arrays, and Hashes 77

5.2.1 Scalar Variables 77
Assignment 77
Curly Braces 78
The defined Function 79
The undef Function 80
The $_ Scalar Variable 80

5.2.2 Arrays 80
Assignment 80
Special Scalars and Array Assignment 81
The Range Operator and Array Assignment 82
Accessing Elements 82
Array Slices 84
Multidimensional Arrays—Lists of Lists 86

5.2.3 Hashes 87
Assignment 88
Accessing Elements 89
Hash Slices 90

5.2.4 Complex Data Structures 91
Hashes of Hashes 91
Array of Hashes 92

5.3 Reading from STDIN 94

5.3.1 Assigning Input to a Scalar Variable 94
5.3.2 The chop and chomp Functions 95
5.3.3 The read Function 96
5.3.4 The getc Function 97
5.3.5 Assigning Input to an Array 98
5.3.6 Assigning Input to a Hash 99

x Contents

5.4 Array Functions 100

5.4.1 The chop and chomp Functions (with Lists) 100
5.4.2 The exists Function 101
5.4.3 The delete Function 101
5.4.4 The grep Function 102
5.4.5 The join Function 102
5.4.6 The map Function 103
5.4.7 The pack and unpack Functions 105
5.4.8 The pop Function 107
5.4.9 The push Function 108
5.4.10 The shift Function 108
5.4.11 The splice Function 109
5.4.12 The split Function 110
5.4.13 The sort Function 114

ASCII and Numeric Sort Using Subroutine 115
Using an Inline Function to Sort a Numeric List 116

5.4.14 The reverse Function 116
5.4.15 The unshift Function 117

5.5 Hash (Associative Array) Functions 118

5.5.1 The keys Function 118
5.5.2 The values Function 119
5.5.3 The each Function 119
5.5.4 Sorting a Hash 120

Sort Hash by Keys in Ascending Order 121
Sort Hash by Keys in Reverse Order 121
Sort Hash by Keys Numerically 122
Numerically Sort a Hash by Values in Ascending Order 124
Numerically Sort a Hash by Values in Descending Order 125

5.5.5 The delete Function 126
5.5.6 The exists Function 127

5.6 More Hashes 128

5.6.1 Loading a Hash from a File 128
5.6.2 Special Hashes 129

The %ENV Hash 129
The %SIG Hash 130
The %INC Hash 131

5.6.3 Context 131

5.7 What You Should Know 132

5.8 What’s Next? 133

EXERCISE 5 The Funny Characters 134

6 Where’s the Operator? 137
6.1 About Perl Operators 137

6.2 Mixing Data Types 138

6.3 Precedence and Associativity 139

6.3.1 Assignment Operators 141

Contents xi

6.3.2 Relational Operators 143
Numeric 144
String 145

6.3.3 Equality Operators 146
Numeric 146
String 147

6.3.4 Logical Operators (Short-Circuit Operators) 149
6.3.5 Logical Word Operators 151
6.3.6 Arithmetic Operators 153
6.3.7 Autoincrement and Autodecrement Operators 154
6.3.8 Bitwise Logical Operators 156

A Little Bit about Bits 156
Bitwise Operators 156

6.3.9 Conditional Operators 159
6.3.10 Range Operator 161
6.3.11 Special String Operators and Functions 162
6.3.12 Arithmetic Functions 164

Generating Random Numbers 165

6.4 What You Should Know 168

6.5 What’s Next? 168

EXERCISE 6 Operator, Operator 169

7 If Only, Unconditionally, Forever 171
7.1 Control Structures, Blocks, and Compound Statements 171

7.1.1 Decision Making—Conditional Constructs 172
if and unless Statements 172
The if Construct 172
The if/else Construct 173
The if/elsif/else Construct 174
The unless Construct 175

7.2 Repetition with Loops 177

7.2.1 The while Loop 177
7.2.2 The until Loop 179

The do/while and do/until Loops 181
7.2.3 The for Loop 182
7.2.4 The foreach Loop 184
7.2.5 Loop Control 188

Labels 188
A Labeled Block without a Loop 189
Nested Loops and Labels 191
The continue Block 194

7.2.6 The switch Statement 196
The Switch.pm Module 199

7.3 What You Should Know 200

7.4 What’s Next? 200

EXERCISE 7 What Are Your Conditions? 201

xii Contents

8 Regular Expressions—Pattern Matching 203
8.1 What Is a Regular Expression? 203

8.2 Expression Modifiers and Simple Statements 204

8.2.1 Conditional Modifiers 204
The if Modifier 204

8.2.2 The DATA Filehandle 205
The unless Modifier 207

8.2.3 Looping Modifiers 209
The while Modifier 209
The until Modifier 209
The foreach Modifier 210

8.3 Regular Expression Operators 210

8.3.1 The m Operator and Matching 210
The g Modifier—Global Match 214
The i Modifier—Case Insensitivity 215
Special Scalars for Saving Patterns 215
The x Modifier—The Expressive Modifier 216

8.3.2 The s Operator and Substitution 216
Changing the Substitution Delimiters 219
The g Modifier—Global Substitution 220
The i Modifier—Case Insensitivity 222
The e Modifier—Evaluating an Expression 223

8.3.3 Pattern Binding Operators 226

8.4 What You Should Know 232

8.5 What’s Next? 232

EXERCISE 8 A Match Made in Heaven 234

9 Getting Control—Regular Expression Metacharacters 235
9.1 Regular Expression Metacharacters 235

9.1.1 Metacharacters for Single Characters 238
The Dot Metacharacter 238
The s Modifier—The Dot Metacharacter and the Newline 239
The Character Class 240
The POSIX Character Class 245

9.1.2 Whitespace Metacharacters 247
9.1.3 Metacharacters to Repeat Pattern Matches 250

The Greed Factor 250
Metacharacters that Turn off Greediness 256
Anchoring Metacharacters 258
The m Modifier 261
Alternation 263
Grouping or Clustering 263
Remembering or Capturing 266
Turning Off Capturing 272
Metacharacters that Look Ahead and Behind 273

Contents xiii

9.1.4 The tr or y Function 276
The tr Delete Option 278
The tr Complement Option 279
The tr Squeeze Option 280

9.2 Unicode 281

9.2.1 Perl and Unicode 281

9.3 What You Should Know 283

9.4 What’s Next? 283

EXERCISE 9 And the Search Goes On... 284

10 Getting a Handle on Files 285
10.1 The User-Defined Filehandle 285

10.1.1 Opening Files—The open Function 285
10.1.2 Open for Reading 286

Closing the Filehandle 286
The die Function 287
Reading from the Filehandle 288

10.1.3 Open for Writing 291
10.1.4 Win32 Binary Files 292
10.1.5 Open for Appending 293
10.1.6 The select Function 294
10.1.7 File Locking with flock 295
10.1.8 The seek and tell Functions 296

The seek Function 296
The tell Function 299

10.1.9 Open for Reading and Writing 301
10.1.10 Open for Pipes 302

The Output Filter 303
Sending the Output of a Filter to a File 306
Input Filter 307

10.2 Passing Arguments 310

10.2.1 The ARGV Array 310
10.2.2 ARGV and the Null Filehandle 311
10.2.3 The eof Function 315
10.2.4 The -i Switch—Editing Files in Place 317

10.3 File Testing 319

10.4 What You Should Know 321

10.5 What’s Next? 322

EXERCISE 10 Getting a Handle on Things 323

11 How Do Subroutines Function? 325
11.1 Subroutines/Functions 325

11.1.1 Defining and Calling a Subroutine 326
A Null Parameter List 328

xiv Contents

Forward Reference 328
Scope of Variables 329

11.2 Passing Arguments 330

Call-by-Reference and the @_ Array 330
Call-by-Value with local and my 332
Using the strict Pragma (my and our) 336

11.2.1 Prototypes 338
11.2.2 Return Value 340
11.2.3 Context and Subroutines 342

The wantarray Function and User-Defined Subroutines 343

11.3 Call-by-Reference 344

11.3.1 Symbolic References—Typeglobs 344
Definition 344
Passing by Reference with Aliases 345
Making Aliases Private—local versus my 345
Passing Filehandles by Reference 347
Selective Aliasing and the Backslash Operator 348

11.3.2 Hard References—Pointers 349
Definition 350
Dereferencing the Pointer 350
Pointers as Arguments 352
Passing Pointers to a Subroutine 353

11.3.3 Autoloading 354
11.3.4 BEGIN and END Subroutines (Startup and Finish) 357
11.3.5 The subs Function 358

11.4 What You Should Know 358

11.5 What’s Next? 359

EXERCISE 11 I Can’t Seem to Function without Subroutines 360

12 Modularize It, Package It, and Send It to the Library! 363
12.1 Packages and Modules 363

12.1.1 Before Getting Started 363
12.1.2 An Analogy 363
12.1.3 Definition 364
12.1.4 The Symbol Table 365

12.2 The Standard Perl Library 370

12.2.1 The @INC Array 371
Setting the PERL5LIB Environment Variable 373

12.2.2 Packages and .pl Files 374
The require Function 374
Including Standard Library Routines 374
Using Perl to Include Your Own Library 376

12.2.3 Modules and .pm Files 378
The use Function (Modules and Pragmas) 378

12.2.4 Exporting and Importing 379
The Exporter Module 380

Contents xv

Using perldoc to Get Documentation for a Perl Module 382
Using a Perl 5 Module from the Standard Perl Library 383

12.2.5 How to “use” a Module from the Standard Perl Library 385
12.2.6 Using Perl to Create Your Own Module 388

12.3 Modules from CPAN 390

The Cpan.pm Module 391
12.3.1 Using PPM 393

Creating Extensions and Modules for CPAN with the h2xs Tool 395

12.4 What You Should Know 398

12.5 What’s Next? 398

EXERCISE 12 I Hid All My Perls in a Package 399

13 Does This Job Require a Reference? 401
13.1 What Is a Reference? What Is a Pointer? 401

13.1.1 Symbolic versus Hard References 401
The strict Pragma 403

13.1.2 Hard References, Pointers 403
The Backslash Operator 403
Dereferencing the Pointer 404

13.1.3 References and Anonymous Variables 406
Anonymous Arrays 406
Anonymous Hashes 407

13.1.4 Nested Data Structures 408
Lists of Lists 408
Array of Hashes 410
Hash of Hashes 412
Hash of Hashes with Lists of Values 414

13.1.5 References and Subroutines 414
Anonymous Subroutines 414
Subroutines and Passing by Reference 415

13.1.6 Filehandle References 417
13.1.7 The ref Function 418

13.2 What You Should Know 420

13.3 What’s Next? 420

EXERCISE 13 It’s Not Polite to Point! 421

14 Bless Those Things! (Object-Oriented Perl) 423
14.1 The OOP Paradigm 423

14.1.1 Packages and Modules Revisited 423
14.1.2 Some Object-Oriented Lingo 424

14.2 Classes, Objects, and Methods 425

14.2.1 Real World 425
14.2.2 The Steps 426
14.2.3 Classes and Privacy 426

xvi Contents

14.2.4 Objects 428
The House Class 428

14.2.5 The bless Function 429
14.2.6 Methods 431

Definition 431
Types of Methods 431
Invoking Methods 432

14.2.7 What an Object-Oriented Module Looks Like 433
The Class Constructor Method 434
The Class and Instance Methods 436
Passing Parameters to Constructor Methods 438
Passing Parameters to Instance Methods 440
Named Parameters 442

14.2.8 Polymorphism and Dynamic Binding 445
The :: versus –> Notation 449

14.2.9 Destructors and Garbage Collection 451

14.3 Anonymous Subroutines, Closures, and Privacy 453

14.3.1 What Is a Closure? 453
14.3.2 Closures and Objects 455

User of the Module 458

14.4 Inheritance 460

14.4.1 The @ISA Array and Calling Methods 460
14.4.2 $AUTOLOAD, sub AUTOLOAD, and UNIVERSAL 462
14.4.3 Derived Classes 465
14.4.4 Multiple Inheritance 471
14.4.5 Overriding a Parent Method 471

14.5 Public User Interface—Documenting Classes 474

14.5.1 pod Files 474
14.5.2 pod Commands 476
14.5.3 How to Use the pod Interpreters 477
14.5.4 Translating pod Documentation into Text 477
14.5.5 Translating pod Documentation into HTML 479

14.6 Using Objects from the Perl Library 479

14.6.1 Another Look at the Standard Perl Library 479
14.6.2 An Object-Oriented Module from the Standard Perl Library 481
14.6.3 Using a Module with Objects from the Standard Perl Library 483

14.7 What You Should Know 484

14.8 What’s Next? 485

EXERCISE 14 What’s the Object of This Lesson? 486

15 Those Magic Ties and DBM Stuff 493
15.1 Tying Variables to a Class 493

15.1.1 The tie Function 493
15.1.2 Predefined Methods 494

Contents xvii

15.1.3 Tying a Scalar 494
15.1.4 Tying an Array 497
15.1.5 Tying a Hash 500

15.2 DBM Files 505

15.2.1 Creating and Assigning Data to a DBM File 506
15.2.2 Retrieving Data from a DBM File 508
15.2.3 Deleting Entries from a DBM File 510

15.3 What You Should Know 512

15.4 What’s Next? 512

16 CGI and Perl: The Hyper Dynamic Duo 513
16.1 Static and Dynamic Web Pages 513

16.2 How It all Works 516

16.2.1 Internet Communication between Client and Server 516
The HTTP Server 516
HTTP Status Codes and the Access Log File 517
The URL (Uniform Resource Locator) 519
File URLs and the Server’s Root Directory 521

16.3 Creating a Web Page with HTML 522

Creating Tags 522
A Simple HTML Document 522

16.4 How HTML and CGI Work Together 526

16.4.1 A Simple CGI Script 527
The HTTP Headers 529

16.4.2 Error Log Files 530
Error Logs and STDERR 530

16.5 Getting Information Into and Out of the CGI Script 531

16.5.1 CGI Environment Variables 531
An HTML File with a Link to a CGI Script 534

16.6 CGI and Forms 535

16.6.1 Input Types for Forms 536
16.6.2 Creating an HTML Form 537

A Simple Form with Text Fields, Radio Buttons, Check Boxes, and Pop-up
Menus 537

16.6.3 The GET Method 541
The CGI Script 543

16.6.4 Processing the Encoded Data 544
The Encoded Query String 544
Decoding the Query String with Perl 545
Parsing the Form’s Input with Perl 547
Decoding the Query String 547

16.6.5 Putting It All Together 548
The GET Method 548

16.6.6 The POST Method 551

xviii Contents

16.6.7 Handling E-mail 555
The SMTP Server 555

16.7 The CGI.pm Module 559

16.7.1 Introduction 559
16.7.2 Advantages 560
16.7.3 Two Styles of Programming with CGI.pm 560

The Object-Oriented Style 560
Function-Oriented Style 561

16.7.4 An Important Warning! 562
16.7.5 HTML Form Methods 564

Creating the HTML Form 564
16.7.6 How CGI.pm Works with Forms 572

The start_html Method 572
The start_form Method 572
The submit Method 572
The param Method 572
Checking the Form at the Command Line 576

16.7.7 CGI.pm Form Elements 577
16.7.8 Methods Defined for Generating Form Input Fields 579

The textfield() Method 580
The checkbox() Method 583
The radio_group() and popup_menu() Methods 586
Labels 589
The popup_menu() Method 591
The submit() and reset() Methods 592
Clearing Fields 593

16.7.9 Error Handling 593
The carpout and fatalsToBrowser Methods 593
Changing the Default Message 594

16.7.10 HTTP Header Methods 596
EXERCISE 16 Surfing for Perls 599

17 Perl Meets MySQL—A Perfect Connection 603
17.1 Introduction 603

17.2 What Is a Relational Database? 604

17.2.1 Client/Server Databases 604
17.2.2 Components of a Relational Database 605

The Database Server 606
The Database 606
Tables 607
Records and Fields 607
The Database Schema 610

17.2.3 Talking to the Database with SQL (the Structured Query Language) 610
English-like Grammar 611
Semicolons Terminate SQL Statements 611
Naming Conventions 611
Reserved Words 611

Contents xix

Case Sensitivity 612
The Result Set 612

17.3 Getting Started with MySQL 613

17.3.1 Why MySQL? 613
17.3.2 Installing MySQL 613
17.3.3 Connecting to MySQL 614

Editing Keys at the MySQL Console 615
Setting a Password 615

17.3.4 Graphical User Tools 616
The MySQL Query Browser 616
The MySQL Privilege System 618

17.3.5 Finding the Databases 619
Creating and Dropping a Database 620

17.3.6 Getting Started with Basic Commands 621
Creating a Database with MySQL 622
Selecting a Database with MySQL 623
Creating a Table in the Database 623
Data Types 623
Adding Another Table with a Primary Key 626
Inserting Data into Tables 627
Selecting Data from Tables—The SELECT Command 629
Selecting by Columns 629
Select All Columns 630
The WHERE Clause 630
Sorting Tables 633
Joining Tables 634
Deleting Rows 635
Updating Data in a Table 636
Altering a Table 637
Dropping a Table 638
Dropping a Database 638

17.4 What Is the Perl DBI? 638

17.4.1 Installing the DBI 639
DBI-MySQL with PPM 639
Steps to Install with PPM 640
The PPM GUI 643
Using PPM with Linux 644
Installing DBI Using CPAN 644

17.4.2 The DBI Class Methods 645
17.4.3 How to Use DBI 647
17.4.4 Connecting to and Disconnecting from the Database 648

The connect() Method 648
17.4.5 The disconnect() Method 650
17.4.6 Preparing a Statement Handle and Fetching Results 650

Select, Execute, and Dump the Results 650
Select, Execute, and Fetch a Row as an Array 651
Select, Execute, and Fetch a Row as a Hash 653

17.4.7 Handling Quotes 654

xx Contents

17.4.8 Getting Error Messages 655
Automatic Error Handling 655
Manual Error Handling 655
Binding Columns and Fetching Values 657
The ? Placeholder 659
Binding Parameters and the bind_param() Method 662
Cached Queries 664

17.5 Statements that Don’t Return Anything 666

17.5.1 The do() method 666
Adding Entries 666
Deleting Entries 667
Updating Entries 668

17.6 Transactions 670

Commit and Rollback 671

17.7 Using CGI and the DBI to Select and Display Entries 672

17.8 What’s Left? 678

17.9 What You Should Know 679

17.10What’s Next? 679

EXERCISE 17 Select * from Chapter 680

18 Interfacing with the System 685
18.1 System Calls 685

18.1.1 Directories and Files 687
Backslash Issues 687
The File::Spec Module 687

18.1.2 Directory and File Attributes 689
UNIX 689
Windows 689

18.1.3 Finding Directories and Files 692
18.1.4 Creating a Directory—The mkdir Function 695

UNIX 695
Windows 695

18.1.5 Removing a Directory—The rmdir Function 696
18.1.6 Changing Directories—The chdir Function 697
18.1.7 Accessing a Directory via the Directory Filehandle 698

The opendir Function 698
The readdir Function 698
The closedir Function 699
The telldir Function 700
The rewinddir Function 700
The seekdir Function 700

18.1.8 Permissions and Ownership 701
UNIX 701
Windows 701
The chmod Function (UNIX) 702

Contents xxi

The chmod Function (Windows) 703
The chown Function (UNIX) 704
The umask Function (UNIX) 704

18.1.9 Hard and Soft Links 705
UNIX 705
Windows 706
The link and unlink Functions (UNIX) 706
The symlink and readlink Functions (UNIX) 707

18.1.10 Renaming Files 708
The rename Function (UNIX and Windows) 708

18.1.11 Changing Access and Modification Times 709
The utime Function 709

18.1.12 File Statistics 710
The stat and lstat Functions 710

18.1.13 Low-Level File I/O 712
The read Function (fread) 712
The sysread and syswrite Functions 713
The seek Function 713
The tell Function 714

18.1.14 Packing and Unpacking Data 715

18.2 Processes 721

18.2.1 UNIX Processes 721
18.2.2 Win32 Processes 723
18.2.3 The Environment (UNIX and Windows) 723
18.2.4 Processes and Filehandles 725

Login Information—The getlogin Function 726
Special Process Variables (pid, uid, euid, gid, euid) 727
The Parent Process ID—The getppid Function and the $$ Variable 727
The Process Group ID—The pgrp Function 727

18.2.5 Process Priorities and Niceness 728
The getpriority Function 728
The setpriority Function (nice) 729

18.2.6 Password Information 730
UNIX 730
Windows 730
Getting a Password Entry (UNIX)—The getpwent Function 732
Getting a Password Entry by Username—The getpwnam Function 733
Getting a Password Entry by uid—The getpwuid Function 734

18.2.7 Time and Processes 734
The times function 735
The time Function (UNIX and Windows) 735
The gmtime Function 735
The localtime Function 737

18.2.8 Process Creation UNIX 739
The fork Function 739
The exec Function 741
The wait and waitpid Functions 742
The exit Function 743

xxii Contents

18.2.9 Process Creation Win32 744
The start Command 744
The Win32::Spawn Module 745
The Win32::Process Module 746

18.3 Other Ways to Interface with the Operating System 747

18.3.1 The syscall Function and the h2ph Script 747
18.3.2 Command Substitution—The Backquotes 748
18.3.3 The Shell.pm Module 749
18.3.4 The system Function 750
18.3.5 here documents 752
18.3.6 Globbing (Filename Expansion and Wildcards) 753

The glob Function 754

18.4 Error Handling 755

The Carp.pm Module 755
18.4.1 The die Function 755
18.4.2 The warn Function 757
18.4.3 The eval Function 757

Evaluating Perl Expressions with eval 757
Using eval to Catch Errors in a Program 758
The eval Function and the here document 759

18.5 Signals 760

Catching Signals 760
Sending Signals to Processes—The kill Function 761
The alarm Function 762
The sleep Function 763
Attention, Windows Users! 764

18.6 What You Should Know 764

18.7 What’s Next? 765

19 Report Writing with Pictures 767
19.1 The Template 767

19.1.1 Steps in Defining the Template 767
19.1.2 Changing the Filehandle 770
19.1.3 Top-of-the-Page Formatting 771
19.1.4 The select Function 776
19.1.5 Multiline Fields 778
19.1.6 Filling Fields 779
19.1.7 Dynamic Report Writing 781

19.2 What You Should Know 783

19.3 What’s Next? 783

EXERCISE 19 Pretty as a Picture! 784

20 Send It Over the Net and Sock It to ’Em! 785
20.1 Networking and Perl 785

Contents xxiii

20.2 Client /Server Model 785

20.3 Network Protocols (TCP/IP) 785

20.3.1 Ethernet Protocol (Hardware) 786
20.3.2 Internet Protocol (IP) 786
20.3.3 Transmission Control Protocol (TCP) 786
20.3.4 User Datagram Protocol (UDP) 786

20.4 Network Addressing 787

20.4.1 Ethernet Addresses 787
20.4.2 IP Addresses 787
20.4.3 Port Numbers 787
20.4.4 Perl Protocol Functions 788

The getprotoent Function 788
The getprotobyname Function 789
The getprotobynumber Function 789

20.4.5 Perl’s Server Functions 790
The getservent Function 790
The getservbyname Function 791
The getservbyport Function 791

20.4.6 Perl’s Host Information Functions 792
The gethostent Function 792
The gethostbyaddr Function 793
The gethostbyname Function 794

20.5 Sockets 794

20.5.1 Types of Sockets 795
Stream Sockets 795
Datagram Sockets 795

20.5.2 Socket Domains 795
The UNIX Domain and the AF_UNIX Family 795
The Internet Domain and the AF_INET Family 796
Socket Addresses 796

20.5.3 Creating a Socket 796
20.5.4 Binding an Address to a Socket Name 797

The bind Function 797
20.5.5 Creating a Socket Queue 797

The listen Function 797
20.5.6 Waiting for a Client Request 798

The accept Function 798
20.5.7 Establishing a Socket Connection 798

The connect Function 798
20.5.8 Socket Shutdown 799

The shutdown Function 799

20.6 Client /Server Programs 800

20.6.1 Connection-Oriented Sockets on the Same Machine 800
The Server Program 801
The Client Program 802

20.6.2 Connection-Oriented Sockets on Remote Machines
(Internet Clients and Servers) 804

xxiv Contents

20.7 The Socket.pm Module 808

The Server 809
The Client 811

20.8 What You Should Know 813

A Perl Built-ins, Pragmas, Modules, and the Debugger 815
A.1 Perl Functions 815

A.2 Special Variables 845

A.3 Perl Pragmas 848

A.4 Perl Modules 850

A.5 Command-Line Switches 856

A.6 Debugger 858

A.6.1 Getting Information about the Debugger 858
A.6.2 The Perl Debugger 858
A.6.3 Entering and Exiting the Debugger 859
A.6.4 Debugger Commands 860

B SQL Language Tutorial 863
B.1 What Is SQL? 863

B.1.1 Standarizing SQL 864
B.1.2 Executing SQL Statements 864

The MySQL Query Browser 865
B.1.3 About SQL Commands/Queries 865

English-like Grammar 865
Semicolons Terminate SQL Statements 866
Naming Conventions 867
Reserved Words 867
Case Senstivity 867
The Result Set 868

B.1.4 SQL and the Database 868
The show databases Command 868
The USE Command 869

B.1.5 SQL Database Tables 869
The SHOW and DESCRIBE Commands 870

B.2 SQL Data Manipulation Language (DML) 871

B.2.1 The SELECT Command 871
Select Specified Columns 872
Select All Columns 872
The SELECT DISTINCT Statement 873
Limiting the Number of Lines in the Result Set with LIMIT 874
The WHERE Clause 876
Using Quotes 877
Using the = and <> Operators 877

Contents xxv

What Is NULL? 877
The > and < Operators 879
The AND and OR Operators 880
The LIKE and NOT LIKE Condition 881
Pattern Matching and the % Wildcard 881
The _ Wildcard 883
The BETWEEN Statement 883
Sorting Results with ORDER BY 884

B.2.2 The INSERT Command 885
B.2.3 The UPDATE Command 886
B.2.4 The DELETE Statement 887

B.3 SQL Data Definition Language 888

B.3.1 Creating the Database 888
B.3.2 SQL Data Types 889
B.3.3 Creating a Table 891
B.3.4 Creating a Key 893

Primary Keys 893
Foreign Keys 895

B.3.5 Relations 896
Two Tables with a Common Key 896
Using a Fully Qualified Name and a Dot to Join the Tables 897
Aliases 898

B.3.6 Altering a Table 899
B.3.7 Dropping a Table 901
B.3.8 Dropping a Database 901

B.4 SQL Functions 901

B.4.1 Numeric Functions 902
Using GROUP BY 903

B.4.2 String Functions 905
B.4.3 Date and Time Functions 906

Formatting the Date and Time 907
The MySQL EXTRACT Command 909

B.5 Appendix Summary 910

B.6 What You Should Know 910

EXERCISE B 912

C Perl and Biology 915
C.1 What Is Bioinformatics? 915

C.2 A Little Background on DNA 915

C.3 Some Perl Examples 917

C.4 What Is BioPerl? 919

C.5 Resources 923

xxvi Contents

D Power and Speed: CGI and mod_perl 925
D.1 What Is mod_perl? 925

D.2 The mod_perl Web Site 927

What Is mod_perl? 927

D.3 Installing mod_perl 928

Installing mod_perl for ActiveState with PPM 929
Create the Locations for mod_perl Scripts 930
Is mod_perl Installed? 934
UNIX/Linux Installation 937
mod_perl Documentation 938

D.4 Resources 938

Index 939

xxvii

Preface

You may wonder, why a new edition of Perl by Example? Perl 5 hasn’t really changed that
much; in fact, it’s changed very little at all since the third edition of this book was published.
And since Perl 6 hasn’t been officially released, why not wait? Well, consider this. Let’s say
you bought a new Whirlpool washing machine six years ago. It’s running perfectly. But since
then, the mounds of laundry washed by that machine have come and gone. Now you’re
sporting a new trendy fashion, you have designer sheets and towels, and the detergent brand
you use is hypoallergenic, nontoxic, and biodegradable, not available when you bought the
washer. Even though Perl 5 has changed very little, the computer world has. It is always in
a flux of new innovations, technologies, applications, and fads, and programs are being writ-
ten to accommodate those changes. Whether analyzing data from the GenBank sequence
database, writing applications for an iPhone, creating a personal blog on “myspace,” or
adjusting to the changes in a new Vista version of Windows, some computer program is
involved, and very possibly it is a Perl program. Whatever the case, we like to keep up with
the times. This new edition of Perl by Example was written for just that purpose.

As we speak, I am teaching Perl at the UCSC1 extension in Sunnyvale, California, to
a group of professionals coming from all around the Silicon Valley. I always ask at the
beginning of a class, “So why do you want to learn Perl?” The responses vary from,
“Our company has an auction site on the Web and I’m the webmaster. I need to use Perl
and Apache to process our order information and send it to Oracle,” or “I work in a
genetics research group at Stanford and have to sift through and analyze masses of data,
and I heard that if I learn Perl, I won’t have to depend on programmers to do this,” or
“I’m a UNIX/Linux system administrator and our company has decided that all admin
scripts should be converted to Perl,” or “I just got laid off and heard that it’s an absolute
must to have Perl on my resume.” And I am always amazed at the variety of people who
show up: engineers, scientists, geneticists, meteorologists, managers, salespeople, pro-
grammers, techies, hardware guys, students, stockbrokers, administrators of all kinds,

1. University of California, Santa Cruz.

xxviii Preface

librarians, authors, bankers, artists—you name it. Perl does not exclude anyone. Perl
is for everyone and it runs on everything.

No matter who you are, I think you’ll agree that a picture is worth a thousand words,
and so is a good example. Perl by Example is organized to teach you Perl from scratch
with examples of complete, succinct programs. Each line of a script example is num-
bered, and important lines are highlighted in bold. The output of the program is then
displayed with line numbers corresponding to the script line numbers. Following the
output is a separate explanation for each of the numbered lines. The examples are small
and to the point for the topic at hand. Since the backbone of this book was used as a
student guide to a Perl course, the topics are modularized. Each chapter builds on the
previous one with a minimum of forward referencing and a logical progression from one
topic to the next. There are exercises at the end of the chapters. You will find all of the
examples on the CD at the back of the book. They have been thoroughly tested on a
number of major platforms.

Perl by Example is not just a beginner’s guide but a complete guide to Perl. It covers
many aspects of what Perl can do, from regular expression handling, to formatting
reports, to interprocess communication. It will teach you about Perl and, in the process,
a lot about UNIX and Windows. Since Perl was originally written on and for UNIX sys-
tems, some UNIX knowledge will greatly accelerate your learning curve, but it is not
assumed that you are by any means a guru. Anyone reading, writing, or just maintaining
Perl programs can greatly profit from this text.

Perl has a rich variety of functions for handling strings, arrays, the system interface,
networking, and more. In order to understand how these functions work, background
information concerning the hows, whys, and what-fors is provided before demonstrat-
ing functional sample programs. This eliminates continually wading through manual
pages and other books to understand what is going on, what the arguments mean, and
what the function actually does.

The appendices contain a complete list of functions and definitions, command-line
switches, special variables, popular modules, and the Perl debugger; a bioinformatics
tutorial to introduce BioPerl, and a tutorial covering mod_perl, the fast way to create
server side Perl scripts that replace the need for the Common Gateway Interface.

I have been teaching for the past thirty years and am committed to understanding
how people learn. Having taught Perl now for more than 14 years, all over the world, I
find that many new Perlers get frustrated when trying to teach themselves how to pro-
gram. Most people seem to learn best from succinct little examples and practice. So I
wrote a book to help myself learn and to help my students, and now to help you. As Perl
has grown, so have my books. This latest, fourth, edition includes a new chapter on Perl
and DBI with MySQL, a revised chapter on Perl objects, and new examples and expla-
nations for the rest of the chapters to keep things current and interesting. The appendix
material has been revised to include BioPerl and mod_perl. In this book, you will not
only learn Perl, but also save yourself a great deal of time. At least that’s what my stu-
dents and readers have told me. You be the judge.

Preface xxix

Acknowledgments

I’d like to acknowledge the following people for their contributions to the fourth edition.
Thanks to Dmitri Korzh and Techne Group for their skill in editing, formatting, and

indexing that turned my attempts at using FrameMaker from a rough chunk of raw text
into a real professional, polished book.

I’d like to acknowledge Oleg Orel, a brilliant student from NetApp, who wrote the
initial program to illustrate “closures” in the chapter on objects, and who helped me
with the problems I was having downloading modules from CPAN.

Thank you, Mark Taub, the editor-in-chief to be praised for being very cool in every
step of the process from the signing of the contract to the final book that you have now
in your hand. Mark has a way of making such an arduous task seem possible; he soft
talks impossible deadlines, keeps up a steady pressure, and doesn’t get crazy over missed
deadlines, quietly achieving his goal and always with a subtle sense of humor. Thank
you, Mark, for being the driving force behind this new edition!

Of course, none of this would have been possible without the contributions of the
Perl pioneers—Larry Wall, Randal Schwartz, and Tom Christiansen. Their books are
must reading and include Learning Perl by Randal Schwartz and Programming Perl by
Larry Wall, Tom Christiansen, and Jon Orwant.

And last, but certainly not least, a huge thanks to all the students, worldwide, who
have done all the real troubleshooting and kept the subject alive.

This page intentionally left blank

1

chapter

1
The Practical
Extraction and
Report Language

1.1 What Is Perl?

“Laziness, impatience, and hubris. Great Perl programmers embrace those virtues.”

—Larry Wall

Perl is an all-purpose, open source (free software) interpreted language maintained and
enhanced by a core development team called the Perl Porters. It is used primarily as a script-
ing language and runs on a number of platforms. Although inititally designed for the UNIX
operating system, Perl is renowned for its portability and now comes bundled with most
operating systems, including RedHat Linux, Solaris, FreeBSD, Macintosh, and more. Due to
its versatility, Perl is often referred to as the Swiss Army knife of programming languages.

Larry Wall wrote the Perl language to manage log files and
reports scattered over the network. According to Wikipe-
dia.org, “Perl was originially named “Pearl” after the “Parable
of the Pearl” from the “Gospel of Matthew.” The parable is
brief: A merchant is seeking pearls. He finds one that is so
valuable and beautiful that he is willing to sell everything he
has to purchase it. And in the end he is even wealthier than
he was before. However you interpret this, it has very positive
implications.

Before its official release in 1987 the “a” in “Pearl” was dropped and the language has
since been called “Perl,” later dubbed the Practical Extraction and Report Language, and
by some, it is referred to as the Pathologically Eclectic Rubbish Lister. Perl is really much
more than a practical reporting language or eclectic rubbish lister as you’ll soon see. Perl
makes programming easy, flexible, and fast. Those who use it, love it. And those who
use it range from experienced programmers to novices with little computer background
at all. The number of users continues to grow at a phenomenal rate.1

1. Perl is spelled “Perl” when referring to the language, and “perl” when referring to the interpreter.

2 Chapter 1 • The Practical Extraction and Report Language

Perl’s heritage is UNIX. Perl scripts are functionally similar to UNIX awk, sed, shell
scripts, and C programs. Shell scripts consist primarily of UNIX commands; Perl scripts
do not. Whereas sed and awk are used to edit and report on files, Perl does not require
a file in order to function. Whereas C has none of the pattern matching and wildcard
metacharacters of the shells, sed, and awk, Perl has an extended set of characters. Perl
was originally written to manipulate text in files, extract data from files, and write
reports, but through continued development, it can manipulate processes, perform net-
working tasks, process Web pages, talk to databases, and analyze scientific data. Perl is
truly the Swiss Army knife of programming languages; there is a tool for everyone.

The examples in this book were created on systems running Solaris, Linux, Macin-
tosh UNIX, and Win32.

Perl is often associated with a camel symbol, a trademark
of O’Reilly Media, which published the first book on Perl,
called Programming Perl by Larry Wall and Randal
Schwartz, referred to as “the Camel Book.”

1.2 What Is an Interpreted Language?

To write Perl programs, you need two things: a text editor and a Perl interpreter,
which you can download very quickly from any number of Web sites, including
perl.org, cpan.org, and activestate.com. Unlike with compiled languages, such as C++
and Java, you do not need to first compile your program into machine-readable code
before it can be executed. The Perl interpreter does it all; it handles the compilation,
interpretation, and execution of your program. Advantages of using an interpreted
language like Perl is that it runs on almost every platform, is relatively easy to learn,
and is very fast and flexible.

Languages such as Python, Java, and Perl are interpreted languages that use an inter-
mediate representation, which combines both compilation and interpretation. It com-
piles the user’s code into an internal condensed format called bytecode, or threaded
code, which is then executed by the interpreter. When you run Perl programs, you need
to be aware of two phases: the compilation phase and then the run phase, where you will
see the program results. If you have syntax errors, such as a misspelled keyword or miss-
ing quote, the compiler will send an error. If you pass the compiler phase, you could
have other problems when the program starts running. If you pass both of these phases,
you will probably start working on formatting to make the output look nicer or improv-
ing the program to make it more efficient, etc.

The interpreter also provides a number of command-line switches (options) to con-
trol its behavior. There are switches to check syntax, send warnings, loop through files,
execute statements, turn on the debugger, etc. You will learn about these options
throughout the following chapters.

1.3 Who Uses Perl? 3

1.3 Who Uses Perl?

Because Perl has built-in functions for easy manipulation of processes and files, and
because Perl is portable (i.e., it can run on a number of different platforms), it is espe-
cially popular with system administrators, who often oversee one or more systems of dif-
ferent types. The phenomenal growth of the World Wide Web greatly increased interest
in Perl, which was the most popular language for writing CGI scripts to generate
dynamic Web pages. Even today, with the advent of other languages, such as PHP and
ASP.net, focused on processing Web pages, Perl continues increased popularity with sys-
tem and database administrators, scientists, geneticists, and anyone who has a need to
collect data from files and manipulate it.

Anyone can use Perl, but it is easier to learn if you are already experienced in writing
UNIX shell scripts, Perl, or languages derived from C, such as C++ and Java. For these
people, the migration to Perl will be relatively easy. For those who have little program-
ming experience, the learning curve might be a little steeper, but after learning Perl,
there may be no reason to ever use anything else.

 If you are familiar with UNIX utilities such as awk, grep, sed, and tr, you know that
they don’t share the same syntax; the options and arguments are handled differently, and
the rules change from one utility to the other. If you are a shell programmer, you usually
go through the grueling task of learning a variety of utilities, shell metacharacters, reg-
ular expression metacharacters, quotes, and more quotes, etc. Also, shell programs are
limited and slow. To perform more complex mathematical tasks and to handle interpro-
cess communication and binary data, for example, you may have to turn to a higher-
level language, such as C, C++, or Java. If you know C, you also know that searching for
patterns in files and interfacing with the operating system to process files and execute
commands are not always easy tasks.

Perl integrates the best features of shell programming, C, and the UNIX utilities awk,
grep, sed, and tr. Because it is fast and not limited to chunks of data of a particular size,
many system administrators and database administrators have switched from the tradi-
tional shell scripting to Perl. C++ and Java programmers can enjoy the object-oriented
features added in Perl 5, including the ability to create reusable, extensible modules.
Now Perl can be generated in other languages, and other languages can be embedded in
Perl. There is something for everyone who uses Perl, and for every task “there’s more
than one way to do it” (http://www.oreilly.com/catalog/opensources/book/larry.html).

You don’t have to know everything about Perl to start writing scripts. You don’t even
have to be a programmer. This book will help you get a good jump-start, and you will
quickly see some of its many capabilities and advantages. Then you can decide how far
you want to go with Perl. If nothing else, Perl is fun!

1.3.1 Which Perl?

Perl has been through a number of revisions. There are two major versions of Perl: Perl
4 and Perl 5. The last version of Perl 4 was Perl 4, patchlevel 36 (Perl 4.036), released
in 1992, making it ancient. Perl 5.000 (ancient), introduced in fall 1994, was a complete

http://www.oreilly.com/catalog/opensources/book/larry.html

4 Chapter 1 • The Practical Extraction and Report Language

rewrite of the Perl source code that optimized the language and introduced objects and
many other features. Despite these changes, Perl 5 remains highly compatible with the
previous releases. (Examples in this book have been tested using both versions, and
where there are differences, they are noted.) As of this writing, the current version of
Perl is 5.8.8. Perl 6 is the next generation of another Perl redesign and does not have an
official release date. It will have new features, but the basic language you learn here will
be essentially the same.

1.3.2 What Is Perl 6?

“Perl 5 was my rewrite of Perl. I want Perl 6 to be the community’s rewrite
of Perl and of the community.”

—Larry Wall, State of the Onion speech, TPC4

Perl 6 is essentially Perl 5 with many new features. The basic language syntax, features,
and purpose will be the same. If you know Perl, you will still know Perl. If you learn
Perl from this book, you will be prepared to jump into Perl 6 when it is released. Perl 6
has been described as learning Australian English if you speak American English, rather
than trying to switch from English to Chinese.

To get information about everything happening with Perl 6, go to:
http://www.perl.com/pub/a/2006/01/12/what_is_perl_6.html?page=2

Figure 1.1 Perl 6 development Web page.

http://www.perl.com/pub/a/2006/01/12/what_is_perl_6.html?page=2

1.4 Where to Get Perl 5

And for a sketch of Larry Wall and history of Perl, go to:
http://www.softpanorama.org/People/Wall/index.shtml#Perl_history

1.4 Where to Get Perl

Perl is available from a number of sources. The primary source for Perl distribution is
CPAN, the Comprehensive Perl Archive Network (www.cpan.org).

Figure 1.2 CPAN ports for binary distribution.

http://www.softpanorama.org/People/Wall/index.shtml#Perl_history
www.cpan.org

6 Chapter 1 • The Practical Extraction and Report Language

Go to http://www.cpan.org/ports/ to find out more about what’s available for your plat-
form. If you want to install Perl quickly and easily, ActivePerl is a complete, self-install-
ing distribution of Perl based on the standard Perl sources for Windows, Mac OS X,
Linux, Solaris, AIX, and HP-UX. It is distributed online at the ActiveState site
(www.activestate.com). The complete ActivePerl package contains the binary of the core
Perl distribution and complete online documentation.

Here are some significant Web sites to help you find more information about Perl:

• The official Perl home page, run by O’Reilly Media, Inc.: www.perl.com
• The Perl Directory, run by the Perl Foundation, with the aim of being “the cen-

tral directory of all things Perl”: www.perl.org
• The Comprehensive Perl Archive Network, where you will also find “All Things

Perl”: http://www.cpan.org/
• The site where you will find the essential tools for Perl development:

http://www.activestate.com/

Figure 1.3 The Perl directory with links to resources.

http://www.cpan.org/ports/
www.activestate.com
www.perl.com
www.perl.org
http://www.cpan.org/
http://www.activestate.com/

1.4 Where to Get Perl 7

1.4.1 What Version Do I Have?

To obtain your Perl version, date this binary version was built, patches, and some copy-
right information, type the following line shown in Example 1.1 (the dollar sign is the
shell prompt):

Figure 1.4 The official Perl home page (run by O’Reilly Media).

EXA MPLE 1.1

$ perl -v
1 This is perl, v5.8.8 built for MSWin32-x86-multi-thread

(with 50 registered patches, see perl -V for more detail)

2 Copyright 1987-2006, Larry Wall

3 Binary build 820 [274739] provided by ActiveState
http://www.ActiveState.com
Built Jan 23 2007 15:57:46

8 Chapter 1 • The Practical Extraction and Report Language

4 Perl may be copied only under the terms of either the Artistic
License or the GNU General Public License, which may be found in
the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be
found on this system using "man perl" or "perldoc perl". If you
have access to the Internet, point your browser at
http://www.perl.org/, the Perl Home Page.

This is perl, v5.8.8 built for MSWin32-x86-multi-thread
(with 1 registered patch, see perl -V for more detail)

5 Perl may be copied only under the terms of either the Artistic
License or the GNU General Public License, which may be found in
the Perl 5.0 source kit.
Complete documentation for Perl, including FAQ lists, should be

found on this system using man perl or perldoc perl. If you have
access to the Internet, point your browser to www.perl.com/, the
Perl home page.

6 perl -v
This is perl, v5.8.3 built for sun4-solaris-thread-multi
(with 8 registered patches, see perl -V for more detail)

Copyright 1987-2003, Larry Wall

Binary build 809 provided by ActiveState Corp.
http://www.ActiveState.com
ActiveState is a division of Sophos.
Built Feb 3 2004 00:32:12

Perl may be copied only under the terms of either the Artistic
License or the GNU General Public License, which may be found in
the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be
found on this system using `man perl' or `perldoc perl'. If you
have access to the Internet, point your browser at
http://www.perl.com/, the Perl Home Page.

EXP LANA TION
1 This version of Perl is 5.8.8 from ActiveState for Windows.
2 Larry Wall, the author of Perl, owns the copyright.
3 This build was obtained from ActiveState.
5 Perl may be copied under the terms specified by the Artistic License or GNU. Perl is

distributed under GNU, the Free Software Foundation, meaning that Perl is free.
6 This version of Perl is 5.8.3 for Solaris (UNIX).

EXA MPLE 1.1 (CO NTINUED)

1.5 What Is CPAN? 9

1.5 What Is CPAN?

CPAN, the “gateway to all things Perl,” stands for the Comprehensive Perl Archive Network,
a Web site that houses all the free Perl material you will ever need, including documenta-
tion, FAQs, modules and scripts, binary distributions and source code, and announcements.
CPAN is mirrored all over the world, and you can find the nearest mirror at

www.perl.com/CPAN
www.cpan.org

CPAN is the place you will go to if you want to find modules to help you with your
work. The CPAN search engine will let you find modules under a large number of cate-
gories. Modules are discussed in Chapter 12, “Modularize It, Package It, and Send It to
the Library!”

Figure 1.5 A comprehensive index of Perl modules.

www.perl.com/CPAN
www.cpan.org

10 Chapter 1 • The Practical Extraction and Report Language

1.6 Perl Documentation

1.6.1 Perl Man Pages

The standard Perl distribution comes with complete online documentation called man
pages, which provide help for all the standard utilities. (The name derives from the
UNIX man [manual] pages.) Perl has divided its man pages into categories. If you type
the following at your command-line prompt:

man perl

you will get a list of all the sections by category. So, if you want help on how to use Perl’s
regular expresssions, you would type

man perlre

and if you want help on subroutines, you would type

man perlsub

The Perl categories are listed as follows, with the following sections available only in
the online reference manual:

perlbot Object-oriented tricks and examples
perldebug Debugging
perldiag Diagnostic messages
perldsc Data structures: intro
perlform Formats
perlfunc Built-in functions
perlipc Interprocess communication
perllol Data structures: lists of lists
perlmod Modules
perlobj Objects
perlop Operators and precedence
perlpod Plain old documentation
perlre Regular expressions
perlref References
perlsock Extension for socket support
perlstyle Style guide
perlsub Subroutines
perltie Objects hidden behind simple variables
perltrap Traps for the unwary
perlvar Predefined variables

If you are trying to find out how a particular library module works, you can use the
perldoc command to get the documentation. For example, if you want to know about the
CGI.pm module, type at the command line

perldoc CGI

1.6 Perl Documentation 11

and the documentation for the CGI.pm module will be displayed. If you type

perldoc English

the documentation for the English.pm module will be displayed.
To get documentation on a specific Perl function, type perldoc -f and the name of the

function. For example, to find out about the localtime function, you would execute the
following command at your command-line prompt. (You may have to set your
UNIX/DOS path to execute this program directly.)

perldoc -f localtime
localtime EXPR
localtime
 Converts a time as returned by the time function to a 9-element
 list with the time analyzed for the local time zone. Typically
 used as follows:
 # 0 1 2 3 4 5 6 7 8
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime(time);
<continues>

1.6.2 HTML Documentation

ActivePerl provides execllent documentation (from ActiveState.com) when you down-
load Perl from its site. As shown in Figure 1.6, there are links to everything you need to
know about Perl.

Figure 1.6 HTML Perl documentation from ActiveState.

12 Chapter 1 • The Practical Extraction and Report Language

1.7 What You Should Know

1. Who wrote Perl?

2. What does Perl stand for?

3. What is the meaning of “open source”?

4. What is the current release?

5. What is Perl used for?

6. What is an interpreter?

7. Where can you get Perl?

8. What is ActivePerl?

9. What is CPAN?

10. Where do you get documentation?

11. How would you find documentation for a specific Perl function?

1.8 What’s Next?

In the next chapter, you will learn how to create basic Perl scripts and execute them. You
will learn what goes in a Perl script, about Perl syntax, statements, and comments. You will
learn how to check for syntax errors and how to execute Perl at the command-line with a
number of Perl options.

13

chapter

2
Perl Quick Start

2.1 Quick Start, Quick Reference

2.1.1 A Note to Programmers

If you have had previous programming experience in another language, such as Visual
Basic, C/C++, Java, ASP, or PHP, and you are familiar with basic concepts, such as vari-
ables, loops, conditional statements, and functions, Table 2.1 will give you a quick over-
view of the constructs and syntax of the Perl language.

At the end of each section, you will be given the chapter number that describes the
particular construct and a short, fully functional Perl example designed to illustrate how
that constuct is used.

2.1.2 A Note to Non-Programmers

If you are not familiar with programming, skip this chapter and go to Chapter 5. You
may want to refer to this chapter later for a quick reference.

14 Chapter 2 • Perl Quick Start

2.1.3 Perl Syntax and Constructs

Table 2.1 Perl Syntax and Constructs

The Script File A Perl script is created in a text editor. Normally, there is no special extension required
in the filename, unless specified by the application running the script; e.g., if running
under Apache as a cgi program, the filename may be required to have a .pl or .cgi
extension.

Free Form Perl is a free-form language. Statements must be terminated with a semicolon but can be
anywhere on the line and span multiple lines.

Comments Perl comments are preceded by a # sign. They are ignored by the interpreter. They can be
anywhere on the line and span only one line.

EXAMPLE

print "Hello, world"; # This is a comment
 # And this is a comment

Printing
Output

The print and printf functions are built-in functions used to display output.
The print function arguments consist of a comma-separated list of strings and/or
numbers.
The printf function is similar to the C printf() function and is used for formatting output.
Parentheses are not required around the argument list.
(See Chapter 3.)

print value, value, value;
printf (string format [, mixed args [, mixed ...]]);

EXAMPLE

print "Hello, world\n";
print "Hello,", " world\n";
print ("It's such a perfect day!\n"); # Parens optional;.
print "The the date and time are: ", localtime, "\n";
printf "Hello, world\n";
printf("Meet %s%:Age 5d%:Salary \$10.2f\n", "John", 40, 55000);

(See Chapter 4.)

Data
Types/Variables

Perl supports three basic data types to hold variables: scalars, arrays, and associative
arrays (hashes).
Perl variables don’t have to be declared before being used.
Variable names start with a “funny character,” followed by a letter and any number of
alphanumeric characters, including the underscore. The funny character represents the
data type and context. The characters following the funny symbol are case sensitive.
If a variable name starts with a letter, it may consist of any number of letters (an
underscore counts as a letter) and/or digits. If the variable does not start with a letter, it
must consist of only one character.
(See Chapter 5.)

2.1 Quick Start, Quick Reference 15

Scalar A scalar is a variable that holds a single value, a single string, or a number.
The name of the scalar is preceded by a “$” sign. Scalar context means that one value is
being used.

EXAMPLE

$first_name = "Melanie";
$last_name = "Quigley";
$salary = 125000.00;
print $first_name, $last_name, $salary;

Array An array is an ordered list of scalars; i.e., strings and/or numbers. The elements of the
array are indexed by integers starting at 0. The name of the array is preceeded by an
“@” sign.

@names = ("Jessica", "Michelle", "Linda");
print "@names"; # Prints the array with elements separated by a space
print "$names[0] and $names[2]"; # Prints "Jessica" and "Linda"
print "$names[-1]\n"; # Prints "Linda"
$names[3]="Nicole"; # Assign a new value as the 4th element

Some commonly used built-in functions:
pop removes last element
push adds new elements to the end of the array
shift removes first element
unshift adds new elements to the beginning of the array
splice removes or adds elements from some position in the array
sort sorts the elements of an array

Hash An associative array, called a hash, is an unordered list of key/value pairs, indexed by
strings. The name of the hash is preceded by a “%” symbol. (The % is not evaluated when
enclosed in either single or double quotes.)

EXAMPLE

%employee = (
"Name" => "Jessica Savage",
"Phone" => "(925) 555-1274",
"Position" => "CEO"

);

print "$employee{"Name"}; # Print a value
$employee{"SSN"}="999-333-2345"; # Assign a key/value

Some commonly used built-in functions:
keys retrieves all the keys in a hash
values retrieves all the values in a hash
each retrieves a key/value pair from a hash
delete removes a key/value pair

Continues

Table 2.1 Perl Syntax and Constructs (continued)

16 Chapter 2 • Perl Quick Start

Predefined
Variables

Perl provides a large number of predefined variables. The following is a list of some
common predefined variables:
$_ The default input and pattern-searching space.
$. Current line number for the last filehandle accessed.
$@ The Perl syntax error message from the last eval() operator.
$! Yields the current value of the error message,

used with die.
$0 Contains the name of the program being executed.
$$ The process number of the Perl running this script.
$PERL_VERSION / $^V The revision, version, and subversion of the Perl interpreter.
@ARGV Contains the command-line arguments.
ARGV A special filehandle that iterates over command-line

filenames in @ARGV.
@INC Search path for libarary files.
@_ Within a subroutine the array @_ contains the

parameters passed to that subroutine.
%ENV The hash %ENV contains your current environment.
%SIG The hash %SIG contains signal handlers for signals.

Constants
(Literals)

A constant value, once set, cannot be modified. An example of a constant is PI or the
number of feet in a mile. It doesn’t change. Constants are defined with the constant
pragma as shown here.

EXAMPLE

use constant BUFFER_SIZE => 4096;
use constant PI => 4 * atan2 1, 1;
use constant DEBUGGING => 0;
use contstant ISBN => "0-13-028251-0";
PI=6; # Cannot modify PI; produces an error.

Numbers Perl supports integers (decimal, octal, hexadecimal), floating point numbers, scientific
notation, Booleans, and null.

EXAMPLE

$year = 2006; # integer
$mode = 0775; # octal number in base 8
$product_price = 29.95; # floating point number in base 10
$favorite_color = 0x33CC99; # integer in base 16 (hexadecimal)
$distance_to_moon=3.844e+5; # floating point in scientific notation
$bits = 0b10110110; # binary number

Table 2.1 Perl Syntax and Constructs (continued)

2.1 Quick Start, Quick Reference 17

Strings and
Quotes

A string is a sequence of bytes (characters) enclosed in quotes.
When quoting strings, make sure the quotes are matched; e.g., “string” or ‘string’. Scalar
and array variables ($x, @name) and backslash sequences (\n, \t, \”, etc.) are interpreted
within double quotes; a backslash will escape a quotation mark, a single quote can be
embedded in a set of double quotes, and a double quote can be embedded in a set of single
quotes. A here document is a block of text embedded between user-defined tags, the first tag
preceded by <<.

The following shows three ways to quote a string:
Single quotes: ‘It rains in Spain’;
Double quotes: “It rains in Spain”;
Here document:

print <<END;
It
rains in
Spain

END

EXAMPLE

$question = 'He asked her if she wouldn\'t mind going to Spain';
 # Single quotes
$answer = 'She said: "No, but it rains in Spain."'; # Single quotes
$line = "\tHe said he wouldn't take her to Spain\n";
$temperature = "78";
print "It is currently $temperature degrees";
 # Prints: "It is currently 78 degrees.". Variables are
 # interpreted when enclosed in double quotes, but not
 # single quotes

Alternative
Quotes

Perl provides an alternative form of quoting. The string to be quoted is delimted by a
nonalphanumeric character or characters that can be paired, such as (), { }, [].
The constructs are: qq, q, qw, qx

EXAMPLE

print qq/Hello\n/; # same as: print "Hello\n";
print q/He owes $5.00/, \n"; # same as: print 'He owes $5.00', "\n";
@states=qw(ME MT CA FL); # same as ("ME", "MT", "CA","FL")
$today = qx(date); # same as $today = ‘date‘;

Continues

Table 2.1 Perl Syntax and Constructs (continued)

18 Chapter 2 • Perl Quick Start

Operators Perl offers many types of operators, but for the most part they are the same as C/C++/Java
or PHP operators. Types of operators are (see Chapter 6):

Assignment =, +=, -=, *= , %=, ^=, &=, |=, .=
Numeric equality = =, !=, <=>
String equality eq, ne, cmp
Relational numeric > >= < <=
Relational string gt, ge, lt, le
Range 5 .. 10 # range between 5 and 10, increment by 1
Logical &&, and, ||, or, XOR, xor, !
Autoincrement/decrement ++ --
File -r, -w, -x,-o, -e, -z, -s, -f, -d, -l, etc.
Bitwise ~ & | ^ << >>
String concatenation .
String repetition x
Arithmetic * / - + %
Pattern matching =~, !~

EXAMPLE

print "\nArithmetic Operators\n";
print ((3+2) * (5-3)/2);

print "\nString Operators\n"; # Concatenation
print "\tTommy" . ' ' . "Savage";

print "\nComparison Operators\n";
print 5>=3 , "\n";
print 47==23 , "\n";

print "\nLogical Operators\n";
$a > $b && $b < 100
$answer eq "yes" || $money == 200

print "\nCombined Assignment Operators\n";
$a = 47;
$a += 3; # short for $a = $a + 3
$a++; # autoincrement
print $a; # Prints 51

print "\nPattern Matching Operators\n"
$color = "green";
print if $color =~ /^gr/; # $color matches a pattern
 # starting with 'gr'
$answer = "Yes";
print if $answer !~ /[Yy]/; # $answer matches a pattern
 # containing 'Y' or 'y'

Table 2.1 Perl Syntax and Constructs (continued)

2.1 Quick Start, Quick Reference 19

Conditionals The basic if construct evaluates an expression enclosed in parentheses, and if the condition
evaluates to true, the block following the expression is executed.
(See Chapter 7.)

if statement if (expression){
statements;

}

EXAMPLE

if ($a == $b){ print "$a is equal to $b"; }

if/else statement The if/else block is a two-way decision. If the expression after the if
condition is true, the block of statements is executed; if false, the else
block of statements is executed.

if (expression){
statements;

else{
statements;

}

EXAMPLE

$coin_toss = int (rand(2)) + 1; # Generate a random
 # number between 1 and 2
if($coin_toss == 1) {

print "You tossed HEAD\n";
}
else {

print "You tossed TAIL\n";
}

if/elsif statement The if/elsif/else offers multiway branch; if the expression following
the if is not true, each of the elsif expressions is evaluated until one is
true; otherwise, the optional else statements are executed.

if (expression){
statements;

elsif (expression){
statements;

}
elsif (expression){

statements;
else{

statements;
}

Continues

Table 2.1 Perl Syntax and Constructs (continued)

20 Chapter 2 • Perl Quick Start

EXAMPLE

1 is Monday, 7 Sunday
$day_of_week = int(rand(7)) + 1;
print "Today is: $day_of_week\n";
if ($day_of_week >=1 && $day_of_week <=4) {

print "Business hours are from 9 am to 9 pm\n";
}
elsif ($day_of_week == 5) {

print "Business hours are from 9 am to 6 pm\n";
}
else {

print "We are closed on weekends\n";
}

Conditional
Operator

Like C/C++, Perl also offers a shortform of the if/else syntax, which uses three operands
and two operators (also called the ternary operator). The question mark is followed by a
statement that is executed if the condition being tested is true, and the colon is followed
by a statement that is executed if the condition is false.

(condition) ? statement_if_true : statement_if_false;

EXAMPLE

$coin_toss = int (rand(2)) + 1; # Generate a random number
 # between 1 and 2
print ($coin_toss == 1 ? "You tossed HEAD\n" : "You tossed TAIL\n");

Loops A loop is a way to specify a piece of code that repeats many times. Perl supports several
types of loops: the while loop, do-while loop, for loop, and foreach loop.
(See Chapter 7.)

while/until Loop The while loop:
The while is followed by an expression enclosed in parentheses, and
a block of statements. As long as the expression tests true, the loop
continues to iterate.

while (conditional expression) {
code block A

}

EXAMPLE

$count=0; # Initial value
while ($count < 10){ # Test

print $n;
$count++; # Increment value

}

Table 2.1 Perl Syntax and Constructs (continued)

2.1 Quick Start, Quick Reference 21

The until loop:
The until is followed by an expression enclosed in parentheses, and a
block of statements. As long as the expression tests false, the loop
continues to iterate.

until (conditional expression) {
code block A

}

EXAMPLE

$count=0; # Initial value
until ($count == 10){ # Test

print $n;
$count++; # Increment value

}

do-while Loop The do-while loop:
The do-while loop is similar to the while loop except it checks its
looping expresssion at the end of the loop block rather than at the
beginning, guaranteeing that the loop block is executed at least once.

do {
code block A

} while (expression);

EXAMPLE

$count=0; # Initial value
do {

print "$n ";
$count++; # Increment value
while ($count < 10); # Test

}

for Loop The for loop:
The for loop has three expressions to evaluate, each separated by a
semicolon. The first inititializes a variable and is evaluated only once.
The second tests whether the value is true, and if it is true, the block
is entered; if not, the loop exits. After the block of statements is
executed, control returns to the third expression, which changes the
value of the variable being tested. The second expression is tested
again, etc.

for(initialization; conditional expression; increment/decrement) {
block of code

}

Continues

Table 2.1 Perl Syntax and Constructs (continued)

22 Chapter 2 • Perl Quick Start

EXAMPLE

for($count = 0; $count < 10; $count = $count + 1) {
print "$count\n";

}

foreach Loop The foreach loop:
The foreach is used only to iterate through a list, one item at a time.

foreach $item (@list) {
print $item,“\n”;

}

EXAMPLE

@dessert = ("ice cream", "cake", "pudding", "fruit");

foreach $choice (@dessert){
 # Iterates through each element of the array

echo "Dessert choice is: $choice\n";
}

Loop Control The last statement is used to break out of a loop from within the loop
block. The next statement is used to skip over the remaining
statements within the loop block and start back at the top of the loop.

EXAMPLE

$n=0;
while($n < 10){

print $n;
if ($n == 3){

last; # Break out of loop
}
$n++;

}
print "Out of the loop.
";

EXAMPLE

for($n=0; $n<10; $n++){
if ($n == 3){

next; # Start at top of loop;
skip remaining statements in block

}
echo "\$n = $n
";

}
print "Out of the loop.
";

Table 2.1 Perl Syntax and Constructs (continued)

2.1 Quick Start, Quick Reference 23

Subroutines/
Functions

A function is a block of code that peforms a task and can be invoked from another part
of the program. Data can be passed to the function via arguments. A function may or may
not return a value. Any valid Perl code can make up the definition block of a function.
Variables outside the function are available inside the function. The my function will
make the specified variables local.
(See Chapter 11.)

sub function_name{
block of code

}

EXAMPLE

sub greetings() {
print "Welcome to Perl!
"; # Function definition

}
&greetings; # Function call
greetings(); # Function call

EXAMPLE

$my_year = 2000;

if (is_leap_year($my_year)) { # Call function with an argument
print "$my_year is a leap year\n";

}
else {

print "$my_year is not a leap year";
}

sub is_leap_year { # Function definition

my $year = shift(@_); # Shift off the year from
 # the parameter list, @_

return ((($year % 4 == 0) && ($year % 100 != 0)) ||
($year % 400 == 0)) ? 1 : 0; # What is returned from the function

}

Continues

Table 2.1 Perl Syntax and Constructs (continued)

24 Chapter 2 • Perl Quick Start

Files Perl provides the open function to open files, and pipes for reading, writing, and
appending. The open function takes a user-defined filehandle (normally a few uppercase
characters) as its first argument and a string containing the symbol for read/write/append
followed by the real path to the system file. (See Chapter 10.)

EXAMPLE

To open a file for reading:
open(FH, "<filename"); # Opens "filename" for reading.
 # The < symbol is optional.
open (DB, "/home/ellie/myfile") or die "Can't open file: $!\n";

To open a file for writing:
open(FH, ">filename"); # Opens "filename" for writing.
 # Creates or truncates file.

To open a file for appending:
open(FH, ">>filename"); # Opens "filename" for appending.
 # Creates or appends to file.

To open a file for reading and writing:
open(FH, "+<filename"); # Opens "filename" for read, then write.
open(FH, "+>filename"); # Opens "filename" for write, then read.

To close a file:
close(FH);

To read from a file:
while(<FH>){ print; } # Read one line at a time from file.
@lines = <FH>; # Slurp all lines into an array.
print "@lines\n";

To write to a file:
open(FH, ">file") or die "Can't open file: $!\n";

print FH "This line is written to the file just opened.\n";
print FH "And this line is also written to the file just opened.\n";

EXAMPLE

To Test File Attributes
print "File is readable, writeable, and executable\n" if -r $file and
-w _ and -x _;

Is it readble, writeable, and executable?
print "File was last modified ",-M $file, " days ago.\n";

When was it last modified?
print “File is a directory.\n ” if -d $file; # Is it a directory?

Table 2.1 Perl Syntax and Constructs (continued)

2.1 Quick Start, Quick Reference 25

Pipes Pipes can be used to send the output from system commands as input to Perl and to send
Perl’s output as input to a system command. To create a pipe, also called a filter, the open
system call is used. It takes two arguments: a user-defined handle and the operating
system command, either preceded or appended with the “|” symbol. If the command is
preceded with a “|”, the operating system command reads Perl output. If the command
is appended with the “|” symbol, Perl reads from the pipe; if the command is prepended
with “|”, Perl writes to the pipe.
(See Chapter 10.)

EXAMPLE

Input filter
open(F, " ls |") or die; # Open a pipe to read from
while(<F>){ print ; } # Prints list of UNIX files

Output filer
open(SORT, "| sort") or die; # Open pipe to write to
print SORT "dogs\ncats\nbirds\n"
 # Sorts birds, cats, dogs on separate lines.

Table 2.1 Perl Syntax and Constructs (continued)

26 Chapter 2 • Perl Quick Start

Regular Expressions. A regular expression is set of characters enclosed in forward
slashes. They are to match patterns in text and to refine searches and substitutions. Perl
is best known for its pattern matching. (See Chapter 8.)

Table 2.2 Some Regular Expression Metacharacters

Metacharacter What It Represents

^
$
a.c
[abc]
[^abc]
[0-9]
ab*c
ab+c
ab?c
(ab)+c
(ab) (c)

Matches at the beginning of a line
Matches at the end of a line
Matches an ‘a’, any single character, and a ‘c’
Matches an ‘a’ or ‘b’ or ‘c’
Matches a character that is not an ‘a’ or ‘b’ or ‘c’
Matches one digit between ‘0’ and ‘9’
Matches an ‘a’, followed by zero or more ‘b’s and a ‘c’
Matches an ‘a’, followed by one or more ‘b’s and a ‘c’
Matches an ‘a’, followed by zero or one ‘b’ and a ‘c’
Matches one or more occurrences of ‘ab’ followed by a ‘c’
Captures ‘ab’ and assigns it to $1, captures ‘c’ and assigns it to $2.

EXAMPLE

$_ = "looking for a needle in a haystack";
print if /needle/;

If $_contains needle, the string is printed.

$_ = "looking for a needle in a haystack"; # Using regular expression metacharacters
print if /^[Nn]..dle/;

characters and "dle".

$str = "I am feeling blue, blue, blue..."
$str =~ s/blue/upbeat/; # Substitute first occurrence of "blue" with "upbeat"
print $str;
I am feeling upbeat, blue, blue...

$str="I am feeling BLue, BLUE...";
$str = ~ s/blue/upbeat/ig; # Ignore case, global substitution
print $str;
I am feeling upbeat, upbeat...

$str = "Peace and War";
$str =~ s/(Peace) and (War)/$2, $1/i; # $1 gets ’Peace’, $2 gets’ War’
print $str;
War and Peace.

$str = "He gave me 5 dollars.\n"
s/5/6*7/e; # Rather than string substitution, evaluate replacement side
print $str;
He gave me 42 dollars."

2.1 Quick Start, Quick Reference 27

Passing Arguments at the Command Line. The @ARGV array is used to hold
command-line arguments. If the ARGV filehandle is used, the arguments are treated as
files; otherwise, arugments are strings coming in from the command line to be used in
a script. (See Chapter 10.)

References, Pointers. Perl references are also called pointers. A pointer is a scalar
variable that contains the address of another variable. To create a pointer, the backslash
operator is used. (See Chapter 13.)

EXAMPLE

$ perlscript filea fileb filec

(In Script)
print "@ARGV\n"; # lists arguments: filea fileb filec
while(<ARGV>){ # filehandle ARGV -- arguments treated as files

print; # Print each line of every file listed in @ARGV
}

EXAMPLE

Create variables
$age = 25;
@siblings = qw("Nick", "Chet", "Susan","Dolly");
%home = ("owner" => "Bank of America",

"price" => "negotiable",
"style" => "Saltbox",

);

Create pointer
$pointer1 = \$age; # Create pointer to scalar
$pointer2 = \@siblings; # Create pointer to array
$pointer3 = \%home; # Create pointer to hash
$pointer4 = [qw(red yellow blue green)]; # Create anonymous array
$pointer5 = { "Me" => "Maine", "Mt" => "Montana", "Fl" => "Florida" };
 # Create anonymous hash

Dereference pointer
print $$pointer1; # Dereference pointer to scalar; prints: 25
print @$pointer2; # Dereference pointer to array;
 # prints: Nick Chet Susan Dolly
print %$pointer3; # Dereference pointer to hash;
 # prints: styleSaltboxpricenegotiableownerBank of America
print $pointer2->[1]; # prints "Chet"
print $pointer3->{"style"}; # prints "Saltbox"
print @{$pointer4}; # prints elements of anonymous array

28 Chapter 2 • Perl Quick Start

Objects. Perl supports objects, a special type of variable. A Perl class is a package
containing a collection of variables and functions, called properties and methods. There
is no “class” keyword. The properties (also called attributes) are variables used to
describe the object. Methods are special functions that allow you to create and manip-
ulate the object. Objects are created with the bless function. (See Chapter 14.)

Creating a Class

Instantiating a Class

Perl also supports method inheritance by placing base classes in the @ISA array.

EXAMPLE

package Pet

sub new{ # Constructor
my $class = shift;
my $pet = {

"Name" => undef,
"Owner" => undef,
"Type" => undef,

};
bless($pet, $class);

Returns a pointer to the object

sub set_pet{ # Accessor methods
my $self = shift;
my ($name, $owner, $type)= @_;
$self->{'Name'} = $name;
$self->{'Owner'}= $owner;
$self->{'Type'}= $type;

}
sub get_pet{
my $self = shift;
while(($key,$value)=each($%self)){

print "$key: $value\n";
}

}

EXAMPLE

$cat = Pet->new(); # alternative form is: $cat = new Pet();
Create an object with a constructor method
$cat->set_pet("Sneaky", "Mr. Jones", "Siamese");
Access the object with an instance
$cat->get_pet;

2.2 What’s Next? 29

Libraries and Modules. Library files have a .pl extenson; modules have a .pm
extension. Today, .pm files are more commonly used than .pl files. (See Chapter 12.)

Path to Libraries
@INC array contains list of path to standard Perl libraries.

To include a File
To load an external file, use either require or use.

Diagnostics. To exit a Perl script with the cause of the error, you can use the built-in
die function or the exit function.

You can also use the Perl pragmas:
use warnings; # Provides warning messages; does not abort program
use diagnostics; # Provides detailed warnings; does not abort program
use strict; # Checks for global variable, unquoted words, etc.; aborts program
use Carp; # Like the die function with more information about program’s errors

2.2 Chapter Summary

This chapter was provided for programmers who need a quick peek at what Perl looks
like, its general syntax, and programming constructs. It is an overview. There is a lot
more to Perl as you’ll see as you read through the following chapters.

Later, after you have programmed for awhile, this chapter can also serve as a little
tutorial to refresh your memory without having to search through the index to find what
you are looking for.

2.3 What’s Next?

In Chapter 3, we will discuss Perl script setup; i.e., how to name a script, execute it,
and add comments, statements, and built-in functions. We will also see how to use
Perl command-line switches and how to identify certain types of errors.

require("getopts.pl"); # Loads library file at run time
use CGI; # Loads CGI.pm module at compile time

EXAMPLE

open(FH, "filename") or die "Couldn't open filename: $!\n";
if ($input !~ /^\d+$/){

print STDERR "Bad input. Integer required.\n";
exit(1);

}

This page intentionally left blank

31

chapter

3
Perl Scripts

3.1 Script Setup

A Simple Perl Script

Example 3.1 is an example of a Perl script. In no time, you will be able to write a similar
script. Perl scripts consist of a list of Perl statements and declarations. Statements are
terminated with a semicolon (;). (Since only subroutines and report formats require decla-
rations, they will be discussed when those topics are presented.) Variables can be created

EXA MPLE 3.1

(The Script)
#!/usr/bin/perl
print "What is your name? ";
chomp($name = <STDIN>); # Program waits for user input from keyboard
print "Welcome, $name, are you ready to learn Perl now? ";
chomp($response = <STDIN>);
$response=lc($response); # response is converted to lowercase
if($response eq "yes" or $response eq "y"){
 print "Great! Let's get started learning Perl by example.\n";
}
else{
 print "O.K. Try again later.\n";
}
$now = localtime; # Use a Perl function to get the date and time
print "$name, you ran this script on $now.\n";

(Output)
What is your name? Ellie
Welcome, Ellie, are you ready to learn Perl now? yes
Great! Let's get started learning Perl by example.
Ellie, you ran this script on Wed Apr 4 21:53:21 2007.

32 Chapter 3 • Perl Scripts

anywhere in the script and, if not initialized, automatically get a value of 0 or “null,” depend-
ing on their context. Notice that the variables in this program start with a $. Values such as
numbers, strings of text, or the output of functions can be assigned to variables. Different
types of variables are preceded by different “funny symbols,” as you’ll see in Chapter 4.

Perl executes each statement just once, starting from the first to the last line.

3.2 The Script

3.2.1 Startup

UNIX/Mac OS. If the first line of the script contains the #! symbols (called the
shbang line) followed by the full pathname of the file where your version of the Perl exe-
cutable resides, this tells the kernel what program is interpreting the script. An example
of the startup line might be

#!/usr/bin/perl

It is extremely important that the path to the interpreter is entered correctly after the
shbang (#!). Perl may be installed in different directories on different systems. Most Web
servers will look for this line when invoking CGI scripts written in Perl. Any inconsis-
tency will cause a fatal error. To find the path to the Perl interpreter on your system, type
at your UNIX prompt1:

which perl

If the shbang line is the first line of the script, you can execute the script directly from
the command line by its name. If the shbang is not the first line of the script, the UNIX
shell will try to interpret the program as a shell script, and the shbang line will be inter-
preted as a comment line. (See “Executing the Script” on page 36 for more on how to
execute Perl programs.)

Mac OS is really just a version of UNIX and comes bundled with Perl 5.8. You open
a terminal and use Perl exactly the same way you would use it for Solaris, Linux, *BSD,
HP-UX, AIX OSX, etc.

Windows. Win32 platforms don’t provide the shbang syntax or anything like it.2 For
Windows XP and Windows NT 4.03 you can associate a Perl script with extensions such
as .pl or .plx and then run your script directly from the command line. At the command-
line prompt or from the system control panel, you can set the PATHEXT environment

1. Another way to find the interpreter would be: find / -name ‘*perl*’ -print;

2. Although Win32 platforms don’t ordinarily require the shbang line, the Apache Web server does, so you
will need the shbang line if you are writing CGI scripts that will be executed by Apache.

3. File association does not work on Windows 95 unless the program is started from the Explorer window.

3.2 The Script 33

variable to the name of the extension that will be associated with Perl scripts. At the
command line, to set the environment variable, type

SET PATHEXT=.pl;%PATHEXT%

At the control panel, to make the association permanent, do the following:

1. Go to the Start menu.
2. Select Settings or just select Control Panel.
3. Select Control Panel.
4. In the control panel, click on the System icon.
5. Click on Advanced.
6. Click on Environment Variables.
7. Click on New.
8. Type PATHEXT in the Variable Name box.
9. In the Variable Value box, type the extension you want, followed by a semico-

lon and %PATHEXT%.
10. OK the setting.

From now on when you create a Perl script, append its name with the extension you
have chosen, such as myscript.pl or myscript.plx. Then the script can be executed directly
at the command line by just typing the script name without the extension, e.g.,
myscript.pt. (See “Executing the Script” on page 36 for more on script execution.)

Figure 3.1 Setting the PATHEXT environment variable.

34 Chapter 3 • Perl Scripts

3.2.2 Finding a Text Editor

Since you will be using a text editor to write Perl scripts, you can use any of the editors
provided by your operating system or download more sophisticated editors specifically
designed for Perl, including third-party editors and Integrated Development Environ-
ments (IDEs). Table 3.1 lists some of the editors available.

3.2.3 Naming Perl Scripts

The only naming convention for a Perl script is that it follow the naming conventions
for files on your operating system (upper-/lowercase letters, numbers, etc.). If, for exam-
ple, you are using Linux, filenames are case sensitive, and since there are a great number
of system commands, you may want to add an extension to your Perl script names to
make sure the names are unique. You are not required to add an extension to the file-
name unless you are creating libraries or modules, writing CGI scripts if the server
requires a specific extension, or have set up Windows to expect an extension on certain
types of files. By adding a unique extension to the name, you can prevent clashes with
other programs that might have the same name. For example, UNIX provides a com-
mand called “test”. If you name a script “test”, which version will be executed? If you’re
not sure, you can add a .plx or .perl extension to the end of the Perl script name to give
it its own identity.

And of course, give your scripts sensible names that indicate the purpose of the script
rather than names like “foo”, “foobar”, or “testing”.

3.2.4 Statements, Whitespace, and Linebreaks

Perl is called a free-form language, meaning you can place statements anywhere on the
line and even cross over lines. Whitespace refers to spaces, tabs, and newlines. The new-
line is represented as “\n” and must be enclosed in double quotes. Whitespace is used to
delimit words. Any number of blank spaces are allowed between symbols and words.
Whitespace enclosed in single or double quotes is preserved; otherwise, it is ignored.
The following expressions are the same:

Table 3.1 Types of Editors

BBEdit, JEdit Macintosh

Wordpad, Notepad, UltraEdit, vim, PerlEdit, JEdit, TextPad Windows

pico, vi, emacs, PerlEdit, JEdit Linux/UNIX

Komodo Linux, Mac OS, Windows

OptiPerl, PerlExpress Windows

Affus Mac OS X

3.2 The Script 35

5+4*2 is the same as 5 + 4 * 2;

And both of the following Perl statements are correct even though the output will show
that the whitespace is preserved when quoted.

 print "This is a Perl statement.";

 print "This
 is
 also
 a Perl
 statement.";

Even though you have a lot of freedom when writing Perl scripts, it is better to put state-
ments on their own line and to provide indentation when using blocks of statements
(we’ll discuss this in Chapter 5). Of course, annotating your program with comments,
so that you and others will understand what is going on, is vitally important. See the
next section for more on comments.

3.2.5 Comments

You may write a very clever Perl script today and in two weeks have no idea what your
script was trying to do. If you pass the script on to someone else, the confusion magni-
fies. Comments are plain text that allow you to insert documentation in your Perl script
with no effect on the execution of the program. They are used to help you and other pro-
grammers maintain and debug scripts. Perl comments are preceded by a # mark. They
extend across the line, but do not continue onto the next line.

Perl does not understand the C language comments /* and */ or C++ comments //.

3.2.6 Perl Statements

Perl executable statements make up most of the Perl script. As in C, the statement is an
expression, or series of expressions, terminated with a semicolon. Perl statements can

EXA MPLE 3.2

1 # This is a comment
2 print "hello"; # And this is a comment

EXP LANA TION
1 Comments, as in UNIX shell, sed, and awk scripts, are lines preceded with the

pound sign (#) and can continue to the end of the line.

2 Comments can be anywhere on the line. Here the comment follows a valid Perl
print statement.

36 Chapter 3 • Perl Scripts

be simple or compound, and a variety of operators, modifiers, expressions, and func-
tions make up a statement, as shown in the following example.

print "Hello, to you!\n";
$now = localtime();
print "Today is $now.\n";
$result = 5 * 4 / 2;
print "Good-bye.\n";

3.2.7 Using Perl Built-in Functions

A big part of any programming language is the set of functions built into the language
or packaged in special libraries (see Apendix A.1). Perl comes with many useful func-
tions, independent program code that performs some task. When you call a Perl built-
in function, you just type its name, or optionally you can type its name followed by a set
of parentheses. All function names must be typed in lowercase. Many functions require
arguments, messages that you send to the function. For example, the print function
won’t display anything if you don’t pass it an argument, the string of text you want to
print on the screen. If the function requires arguments, then place the arguments, sepa-
rated by commas, right after the function name. The function usually returns something
after it has performed its particular task. In the script shown at the beginning of this
chapter, we called two built-in Perl functions, print and localtime. The print function
took a string as its argument and displayed the string of text on the screen. The localtime
function, on the other hand, didn’t require an argument but returned the current date
and time. Both of the following statements are valid ways to call a function with an argu-
ment. The argument is “Hello, there.\n”

print("Hello, there.\n");
print "Hello, there.\n";

3.2.8 Executing the Script

A Perl script can be executed at the command line directly by its name when the #!
startup line is included in the script file and the script has execute permission (see
Example 3.3) or, if using Windows, filename association has been set as discussed in
“Startup” on page 32. If the #! is not the first line of the script, you can execute a script
by passing the script as an argument to the Perl interpreter.
Perl will then compile and run your script using its own internal form. If you have syn-
tax errors, Perl will let you know. You can check to see if your script has compiled suc-
cessfully by using the -c switch as follows:

$ perl -c scriptname

To execute a script at either the UNIX or MS-DOS prompt, type

$ perl scriptname

3.2 The Script 37

3.2.9 Sample Script

The following example illustrates the five parts of a Perl script:

1. The startup line (UNIX)
2. Comments
3. The executable statements in the body of the script
4. Checking Perl syntax
5. The execution of the script (UNIX, Windows)

EXA MPLE 3.3

$ cat first.perl (UNIX display contents)
1 #!/usr/bin/perl
2 # My first Perl script

3 print "Hello to you and yours!\n";

4 $ perl -c first.perl # The $ is the shell prompt
first.perl syntax OK

5 $ chmod +x first.perl (UNIX)

6 $ first.perl or ./first.perl
7 Hello to you and yours!

EXP LANA TION
1 The startup line tells the shell where Perl is located.

2 A comment describes information the programmer wants to convey about the
script.

3 An executable statement includes the print function.

4 The -c switch is used to check for syntax errors. Hopefully, everything is “OK.”

5 The chmod command turns on execute permission.

6 The script is executed (as long as your UNIX path includes the “.” directory). If
you get “Command not found” (or a similar message), precede the script name
with a dot and a forward slash.

7 The string Hello to you and yours! is printed on the screen.

EXA MPLE 3.4

$ type first.perl (MS-DOS display contents)
1 # No startup line; This is a comment.
2 # My first Perl script
3 print "Hello to you and yours!\n";

38 Chapter 3 • Perl Scripts

3.2.10 What Kinds of Errors to Expect

Expect to make errors and maybe lots of them. You may try many times before you actu-
ally get a program to run perfectly. Knowing your error messages is like knowing the
quirks of your boss, mate, or even yourself. Some programmers make the same error
over and over again. Don’t worry. In time, you will learn what most of these messages
mean and how to prevent them.

When you execute a Perl script, it takes just one step on your part, but internally the
Perl interpreter takes two steps. First, it compiles the entire program into bytecode, an
internal representation of the program. After that, Perl’s bytecode engine runs the byte-
code line by line. If you have compiler errors, such as a missing semicolon at the end of
the line, misspelled keyword, or mismatched quotes, you will get what is called a syntax
error. These types of errors are picked up by using the -c switch and are usually easy to
find once you have become acquainted with them.

4 $ perl first.perl (Both UNIX and Windows)
5 Hello to you and yours!

EXP LANA TION
1 The startup line with #! is absent. It is not necessary when using Windows. If us-

ing ActiveState, you create a batch file with a utility called pl2bat.

2 This is a descriptive line; a comment explains that the startup line is missing.

3 An executable statement includes the print function.

4 At the command line, the Perl program takes the script name as an argument and
executes the script. The script’s output is printed. You can execute a Perl script
this way with any operating system.

EXA MPLE 3.5

(The Script)
 print "Hello, world";
1 print "How are you doing?
2 print "Have you found any problems in this script?";

(Output)
Bareword found where operator expected at errors.plx line 3, near
"print "Have"
 (Might be a runaway multi-line "" string starting on line 2)
 (Do you need to predeclare print?)
syntax error at errors.plx line 3, near "print "Have you "
Search pattern not terminated at errors.plx line 3.

EXA MPLE 3.4 (CO NTINUED)

3.3 Perl at the Command Line 39

After the program passes the compile phase (i.e., you don’t get any syntax errors or com-
plaints from the compiler), then you may get what are called runtime, or logical, errors.
These errors are harder to find and are probably caused by not anticipating problems
that might occur when the program starts running. Or it’s possible that the program has
faulty logic in the way it was designed. Runtime errors may be caused if a file or database
you’re trying to open doesn’t exist, a user enters bad input, you get into an infinite loop, or
you try to illegally divide by zero.Whatever the case, these problems, called “bugs,” are
harder to find. Perl comes with a debugger that is helpful in determining what caused these
logical errors by letting you step through your program line by line. (See “Debugger” on
page 858.)

3.3 Perl at the Command Line

Although most of your work with Perl will be done in scripts, Perl can also be executed
at the command line for simple tasks, such as testing a function, a print statement, or
simply testing Perl syntax. Perl has a number of command-line switches, also called
command-line options, to control or modify its behavior. The switches discussed next
are not a complete list (see Appendix A) but will demonstrate a little about Perl syntax
at the command line.

When working at the command line, you will see a shell prompt. The shell is called
a “command interpreter.” UNIX shells such as Korn and Bourne display a default $
prompt, and C shell displays a % prompt. The UNIX, Linux (bash and tcsh), Mac OS
shells are quite similar in how they parse the command line. By default, if you are using
Windows XP or Vista, the MS-DOS shell is called command.com, and if you are using
Windows NT, the command shell is a console application residing in cmd.exe. It too dis-
plays a $ prompt.4 The Win32 shell has its own way of parsing the command line. Since
most of your Perl programming will be done in script files, you will seldom need to
worry about the shell’s interaction, but when a script interfaces with the operating sys-
tem, problems will occur unless you are aware of what commands you have and how the
shell executes them on your behalf.

EXP LANA TION
1 This line should have a closing double quote and a terminating semicolon.

2 This Perl statement is correct, but Perl is still looking for the closing quote on the
previous line and is confused by the word “print” on this line because this line is
still part of the last line. Why? Because the previous line is missing a double quote
and was not terminated with a semicolon. Whenever you see the word “runaway”
in the error message, it usually means a quote that has “run away”; i.e., missing.
If you see “Bareword,” it means that a word has no quotes surrounding it.

4. It is possible that your command-line prompt has been customized to contain the current directory, his-
tory number, drive number, etc.

40 Chapter 3 • Perl Scripts

3.3.1 The -e Switch

The -e switch allows Perl to execute Perl statements at the command line instead of from a
script. This is a good way to test simple Perl statements before putting them into a script file.

3.3.2 The -n Switch

If you need to print the contents of a file or search for a line that contains a particular pat-
tern, the -n switch is used to implicitly loop through the file one line at a time. Like sed and
awk, Perl uses powerful pattern-matching techniques for finding patterns in text. Only
specified lines from the file are printed when Perl is invoked with the -n switch.

Reading from a File. The -n switch allows you to loop through a file whose name is
provided at the command line. The Perl statements are enclosed in quotes, and the file
or files are listed at the end of the command line.

EXA MPLE 3.6

1 $ perl -e 'print "hello dolly\n";' # UNIX/Linux
hello dolly

2 $ perl -e "print qq/hello dolly\n/;" # Windows and UNIX/Linux
hello dolly

EXP LANA TION
1 Perl prints the string hello dolly to the screen followed by a newline \n. The dollar

sign ($) is the UNIX shell prompt. The single quotes surrounding the Perl state-
ment protect it from the UNIX shell when it scans and interprets the command
line. This will fail to execute on a Windows system.

2 At the MS-DOS prompt, Perl statements must be enclosed in double quotes. The
qq construct surrounding hello dolly is another way Perl represents double quotes.
For example, qq/hello/ is the same as “hello”. An error is displayed if you type the
following at the MS-DOS prompt:

$ perl -e 'print "hello dolly\n";'

Can't find string terminator "" anywhere before EOF at -e line 1.

Note: UNIX systems can use this format as well.

EXA MPLE 3.7

(The Text File)
1 $ more emp.first

Igor Chevsky:6/23/83:W:59870:25:35500:2005.50
Nancy Conrad:6/18/88:SE:23556:5:15000:2500
Jon DeLoar:3/28/85:SW:39673:13:22500:12345.75
Archie Main:7/25/90:SW:39673:21:34500:34500.50
Betty Bumble:11/3/89:NE:04530:17:18200:1200.75

3.3 Perl at the Command Line 41

Reading from a Pipe. Since Perl is just another program, the output of commands
can be piped to Perl, and Perl output can be piped to other commands. Perl will use what
comes from the pipe as input, rather than a file. The -n switch is needed so Perl can read
the input coming in from the pipe.

2 $ perl -ne 'print;' emp.first # Windows: use double quotes
Igor Chevsky:6/23/83:W:59870:25:35500:2005.50
Nancy Conrad:6/18/88:SE:23556:5:15000:2500
Jon DeLoar:3/28/85:SW:39673:13:22500:12345.75
Archie Main:7/25/90:SW:39673:21:34500:34500.50
Betty Bumble:11/3/89:NE:04530:17:18200:1200.75

3 $ perl -ne 'print if /^Igor/;' emp.first
Igor Chevsky:6/23/83:W:59870:25:35500:2005.50

EXP LANA TION
1 The text file emp.first is printed to the screen. Perl will use this filename as a com-

mand-line argument in line 2.

2 Perl prints all the lines in the file emp.first by implicitly looping through the file
one line at a time. (Windows users should enclose the statement in double quotes
instead of single quotes.)

3 Perl uses regular expression metacharacters to specify what patterns will be
matched. The pattern Igor is placed within forward slashes and preceded by a car-
et (^). The caret is called a “beginning of line anchor.” Perl prints only lines be-
ginning with the pattern Igor. (Windows users should enclose the statement in
double quotes instead of single quotes.)

EXA MPLE 3.8

(UNIX)
1 $ date | perl -ne 'print "Today is $_";'
2 Today is Mon Mar 12 20:01:58 PDT 2007

(Windows)
3 $ date /T | perl -ne "print qq/Today is $_/;"
4 Today is Tue 04/24/2007

EXP LANA TION
1 The output of the UNIX date command is piped to Perl and stored in the $_ vari-

able. The quoted string Today is and the contents of the $_ variable will be printed
to the screen followed by a newline.

EXA MPLE (CONTI NUED) 3.7 (CONTINU ED)

42 Chapter 3 • Perl Scripts

Perl can take its input from a file and send its output to a file using standard I/O redirection.

3.3.3 The -c Switch

As we demonstrated earlier in this chapter, the -c switch is used to check the Perl syntax
without actually executing the Perl commands. If the syntax is correct, Perl will tell you
so. It is a good idea to always check scripts with the -c switch. This is especially impor-
tant with CGI scripts written in Perl, because error messages that are normally sent to
the terminal screen are sent to a log file instead. (See also the -w switch in Chapter 4.)

2 The output illustrates that today’s date was stored in the $_ variable.
3 The Windows date command takes /T as an option that produces today’s date.

That ouput is piped to Perl and stored in the $_ variable. The double quotes are
required around the print statement.

EXA MPLE 3.9

1 $ perl -ne 'print;' < emp.first
Igor Chevsky:6/23/83:W:59870:25:35500:2005.50
Nancy Conrad:6/18/88:SE:23556:5:15000:2500
Jon DeLoar:3/28/85:SW:39673:13:22500:12345.75
Archie Main:7/25/90:SW:39673:21:34500:34500.50
Betty Bumble:11/3/89:NE:04530:17:18200:1200.75

2 $ perl -ne 'print' emp.first > emp.temp

EXP LANA TION
1 Perl’s input is taken from a file called emp.first. The output is sent to the screen. For

Windows users, enclose the statement in double quotes instead of single quotes.

2 Perl’s input is taken from a file called emp.first, and its output is sent to the file
emp.temp. For Windows users, enclose the statement in double quotes instead of
single quotes.

EXA MPLE 3.10

1 print "hello’; Search pattern not terminated at line 1.
 Can't find string terminator '"' anywhere before EOF at test.plx
2 print "hello";

test.plx syntax OK

EXA MPLE 3.8 (CO NTINUED)

3.4 What’s Next? 43

3.4 What You Should Know

1. How do you set up a script?

2. How are statements terminated?

3. What is whitespace?

4. What is meant by free form?

5. What is a built-in function?

6. What is the #! line in UNIX?

7. How do you make the script executable?

8. Why use comments?

9. How do you execute a Perl script if not using the shbang line.

10. What comand-line option lets you check Perl syntax?

11. What is the -e switch for?

3.5 What’s Next?

If you can’t print what your program is supposed to do, it’s like trying to read the mind
of a person who can’t speak. In the next chapter, we discuss Perl functions to print out-
put to the screen (stdout) and how to format the output. You will learn how Perl views
words, whitespace, literals, backslash sequences, numbers, and strings. You will learn
how to use single, double, and backquotes and their alternative form. We will discuss
here documents and how to use them in CGI scripts. You will also learn how to use warn-
ings and diagnostics to help debug your scripts.

EXP LANA TION
1 The string hello starts with a double quote but ends with a single quote. The

quotes should be matched; i.e., the first double quote should be matched at the
end of the string with another double quote but instead ends with a single quote.
With the -c switch, Perl will complain if it finds syntax errors while compiling.

2 After correcting the previous problem, Perl lets you know that the syntax is correct.

44 Chapter 3 • Perl Scripts

1. At the command-line prompt, write a Perl statement that will print

Hello world!!
Welcome to Perl programming.

2. Execute another Perl command that will print the contents of the datebook file.
(The file is found on the accompanying CD.)

3. Execute a Perl command that will display the version of the Perl distribution
you are currently using.

4. Copy the program sample in Example 3.1 into your editor, save it, check the
syntax, and execute it.

EXERCISE 3
Getting with I t Syntact ically

45

chapter

4
Getting a Handle
on Printing

4.1 The Filehandle

By convention, whenever your program starts execution, the parent process (normally
a shell program) opens three predefined streams called stdin, stdout, and stderr. All three
of these streams are connected to your terminal by default.

stdin is the place where input comes from, the terminal keyboard; stdout is where out-
put normally goes, the screen; and stderr is where errors from your program are printed,
also the screen.

Perl inherits stdin, stdout, and stderr from the shell. Perl does not access these streams
directly but gives them names called filehandles. Perl accesses the streams via the file-
handle. The filehandle for stdin is called STDIN; the filehandle for stdout is called STD-
OUT; and the filehandle for stderr is called STDERR. Later, we’ll see how you can create
your own filehandles, but for now we’ll stick with the predefined ones.

The print and printf functions by default send their output to the STDOUT filehandle,
your screen.

4.2 Words

When printing a list of words to STDOUT, it is helpful to understand how Perl views a
word. Any unquoted word must start with an alphanumeric character. It can consist of
other alphanumeric characters and an underscore. Perl words are case sensitive. If a
word is unquoted, it could conflict with words used to identify filehandles, labels, and
other reserved words. If you see the error “Bareword,” it means that the word has not
been surrounded by quotes. If the word has no special meaning to Perl, it will be treated
as if surrounded by single quotes.

46 Chapter 4 • Getting a Handle on Printing

4.3 The print Function

The print function prints a string or a list of comma-separated words to the Perl file-
handle STDOUT. If successful, the print function returns 1; if not, it returns 0.

The string literal \n adds a newline to the end of the string. It can be embedded in the
string or treated as a separate string. To interpret backslashes, Perl requires that escape
sequences like \n be enclosed in double quotes.

EXA MPLE 4.1

(The Script)
1 print "Hello", "world", "\n";
2 print "Hello world\n";

(Output)
1 Helloworld
2 Hello world

EXP LANA TION
1 Each string passed to the print function is enclosed in double quotes and separat-

ed by a comma. To print whitespace, the whitespace must be enclosed within the
quotes. The \n escape sequence must be enclosed in double quotes for it to be in-
terpreted as a newline character.

2 The entire string is enclosed in double quotes and printed to standard output.

EXA MPLE 4.2

(The Script)
1 print Hello, world, "\n";

(Output)
1 No comma allowed after filehandle at ./perl.st line 1

EXP LANA TION
1 If the strings are not quoted, the filehandle STDOUT must be specified, or the

print function will treat the first word it encounters as a filehandle (i.e., the word
Hello would be treated as a filehandle). The comma is not allowed after a filehan-
dle; it is used only to separate strings that are to be printed.

4.3 The print Function 47

4.3.1 Quotes

Quoting rules affect almost everything you do in Perl, especially when printing a string
of words. Strings are normally delimited by a matched pair of either double or single
quotes. When a string is enclosed in single quotes, all characters are treated as literals.
When a string is enclosed in double quotes, however, almost all characters are treated
as literals with the exception of those characters that are used for variable substitution
and special escape sequences. We will look at the special escape sequences in this chap-
ter and discuss quoting and variables in Chapter 5, “What’s in a Name.”

Perl uses some characters for special purposes, such as the dollar sign ($) and the (@)
sign. If these special characters are to be treated as literal characters, they may be pre-
ceded by a backslash (\) or enclosed within single quotes (‘ ’). The backslash is used to
quote a single character rather than a string of characters.

EXA MPLE 4.3

(The Script)
1 print STDOUT Hello, world, "\n";

(Output)
1 Helloworld

EXP LANA TION
1 The filehandle STDOUT must be specified if strings are not quoted. The \n must

be double quoted if it is to be interpreted. It is not a good practice to use unquoted
text in this way. Unquoted words are called “Barewords.”
Note: There is no comma after STDOUT.

EXA MPLE 4.4

(The Script)
1 $name="Ellie";
2 print "Hello, $name.\n";# $name and \n evaluated
3 print 'Hello, $name.\n';# String is literal; newline not

interpreted

4 print "I don't care!\n";# \n is interpreted in double quotes
5 print 'I don\'t care!', "\n";# Backslash protects single quote

in string “don\’t”

(Output)
2 Hello, Ellie.
3,4 Hello, $name.\nI don't care!
5 I don't care!

48 Chapter 4 • Getting a Handle on Printing

It is so common to make mistakes with quoting that we will introduce here the most
common error messages you will receive resulting from mismatched quotes and bare
words.

Think of quotes as being the “clothes” for Perl strings. If you take them off, you may
get a “Bareword” message such as:

Bareword “there” not allowed while “strict subs” in use at try.pl line 3. Execution of pro-
gram.pl aborted due to compilation errors.

Also think of quotes as being mates. A double quote is mated with a matching double
quote, and a single quote with a matching single quote. If you don’t match the quotes,
if one is missing, the missing quote has “run away.” Where did the mate go? You may
receive an error like this:

(Might be a runaway multi-line “” string starting on line 3)

Breaking the Quoting Rules

EXA MPLE 4.5

(The Script)
#!/usr/bin/perl
Program to illustrate printing literals

1 print "Hello, "I can't go there"; # Unmatched quotes
2 print "Good-bye";

(Output)
Bareword found where operator expected at qtest.plx line 2, near
""Hello, "I"
 (Missing operator before I?)
Bareword found where operator expected at qtest.plx line 3, near
"print "Good"
 (Might be a runaway multi-line "" string starting on line 2)
 (Do you need to predeclare print?)
String found where operator expected at qtest.plx line 3, at end of line
 (Missing semicolon on previous line?)
syntax error at qtest.plx line 2, near ""Hello, "I can't "
Can't find string terminator '"' anywhere before EOF at qtest.plx line 3

EXP LANA TION
1 The string “Hello starts with an opening double quote but is missing the ending

quote. This cascades into a barrage of troubles. Perl assumes the double quote pre-
ceding the word “I” is the mate for the first quote in “Hello.” That leaves the rest
of the string “I can’t go there” exposed as a bare string. The double quote at the
end of the line will be mated with the double quote on the next line. Not good.

2 The word “Good_bye” is considered a bareword because Perl can’t find an open-
ing quote. The double quote at the end of “there” on line 1 has been matched with
the double quote at the beginning of “Good-bye,” leaving “Good-bye” exposed
and bare, with an unmatched quote at the end of the string. Ugh!

4.3 The print Function 49

4.3.2 Literals (Constants)

When assigning literal values1 to variables or printing literals, the literals can be repre-
sented numerically as integers in decimal, octal, or hexadecimal or as floats in floating
point or scientific notation.

Strings enclosed in double quotes may contain string literals, such as \n for the new-
line character, \t for a tab character, or \e for an escape character. String literals are alpha-
numeric (and only alphanumeric) characters preceded by a backslash. They may be
represented in decimal, octal, or hexadecimal or as control characters.

Perl also supports special literals for representing the current script name, the line
number of the current script, and the logical end of the current script.

Since you will be using literals with the print and printf functions, let’s see what
these literals look like. (For more on defining constants, see the “constant” pragma in
Appendix A.)

Numeric Literals. Literal numbers can be represented as positive or negative inte-
gers in decimal, octal, or hexadecimal (see Table 4.1). Floats can be represented in
floating point notation or scientific notation. Octal numbers contain a leading 0
(zero), hex numbers a leading 0x (zero and x), and numbers represented in scientific
notation contain a trailing E followed by a negative or positive number representing
the exponent.

String Literals. Like shell strings, Perl strings are normally delimited by either single
or double quotes. Strings containing string literals, also called escape sequences, are
delimited by double quotes for backslash interpretation (see Table 4.2).

1. Literals may also be called constants, but the Perl experts prefer the term “literal,” so in deference to
them, we’ll use the term “literal.”

Table 4.1 Numeric Literals

Example Description

12345 Integer

0b1101 Binary

0x456fff Hex

0777 Octal

23.45 Float

.234E–2 Scientific notation

50 Chapter 4 • Getting a Handle on Printing

Table 4.2 String Literals

Escape Sequences Descriptions (ASCII Name)

\t Tab

\n Newline

\r Carriage return

\f Form feed

\b Backspace

\a Alarm/bell

\e Escape

\033 Octal character

\xff Hexadecimal character

\c[Control character

\l Next character is converted to lowercase

\u Next character is converted to uppercase

\L Next characters are converted to lowercase until \E is found

\U Next characters are converted to uppercase until \E is found

\Q Backslash all following nonalphanumeric characters until \E is
found

\E Ends upper- or lowercase conversion started with \L or \U

\\ Backslash

EXAMPLE 4.6

print "This string contains \t\t two tabs and a newline.\n" # Double quotes
(Output)
This string containstabs and a newline.

print ‘This string contains\t\t two tabs and a newline.\n; #Single quotes
(Output)
This string contains\t\t two tabs and a newline.\n

4.3 The print Function 51

Special Literals. Perl’s special literals _ _LINE_ _ and _ _FILE_ _ are used as separate
words and will not be interpreted if enclosed in quotes, single or double. They represent
the current line number of your script and the name of the script, respectively. These
special literals are equivalent to the predefined special macros used in the C language.

The _ _END_ _ special literal is used in scripts to represent the logical end of the file.
Any trailing text following the _ _END_ _ literal will be ignored, just as if it had been
commented. The control sequences for end of input in UNIX is <Ctrl>-d (\004), and
<Ctrl>-z (\032) in MS-DOS; both are synonyms for _ _END_ _.

The _ _DATA_ _ special literal is used as a filehandle to allow you to process textual
data from within the script instead of from an external file.

Note: There are two underscores on either side of the special literals (see Table 4.3).

4.3.3 Printing Literals

Now that you know what the literals look like, let’s see how they are used with the print
function.

EXA MPLE 4.7

print "The script is called", _ _FILE_ _, "and we are on line number ",
_ _LINE_ _,"\n";
(Output)
The script is called ./testing.plx and we are on line number 2

Table 4.3 Special Literals

Literal Description

_ _LINE_ _ Represents the current line number

_ _FILE_ _ Represents the current filename

_ _END_ _ Represents the logical end of the script; trailing garbage is
ignored

_ _DATA_ _ Represents a special filehandle

_ _PACKAGE_ _ Represents the current package; default package is main

52 Chapter 4 • Getting a Handle on Printing

Printing Numeric Literals

EXA MPLE 4.8

(The Script)
#!/usr/bin/perl
Program to illustrate printing literals

1 print "The price is $100.\n";
2 print "The price is \$100.\n";
3 print "The price is \$",100, ".\n";
4 print "The binary number is converted to: ",0b10001,".\n";
5 print "The octal number is converted to: ",0777,".\n";
6 print "The hexadecimal number is converted to: ",0xAbcF,".\n";
7 print "The unformatted number is ", 14.56, ".\n";
8 $now = localtime(); # A Perl function
9 $name = "Ellie"; # A string is assigned to a Perl variable
10 print "Today is $now, $name.";
11 print ‘Today is $now, $name.’;

(Output)
1 The price is .
2 The price is $100.
3 The price is $100.
4 The binary number is converted to: 17.
5 The octal number is converted to: 511.
6 The hexadecimal number is converted to: 43983.
7 The unformatted number is 14.56.
10 Today is Sat Mar 24 15:46:08 2007, Ellie.
11 Today is $now, $name.

EXP LANA TION
1 The string The price is $100 is enclosed in double quotes. The dollar sign is a spe-

cial Perl character. It is used to reference scalar variables (see Chapter 5, “What’s
in a Name”), not money. Therefore, since there is no variable called $100, nothing
prints. Since single quotes protect all characters from interpretation, they would
have sufficed here, or the dollar sign could have been preceded with a backslash.
But when surrounded by single quotes, the \n will be treated as a literal string rath-
er than a newline character.

2 The backslash quotes the dollar sign, so it is treated as a literal.
3 To be treated as a numeric literal, rather than a string, the number 100 is a single

word. The dollar sign must be escaped even if it is not followed by a variable
name. The \n must be enclosed within double quotes if it is to be interpreted as a
special string literal.

4 The number is represented as a binary number because of the leading 0b (zero and
b). The decimal value is printed.

4.3 The print Function 53

Printing String Literals

5 The number is represented as an octal value because of the leading 0 (zero). The
decimal value is printed.

6 The number is represented as a hexadecimal number because of the leading 0x
(zero and x). The decimal value is printed.

7 The number, represented as 14.56, is printed as is. The print function does not for-
mat output.

8 Perl has a large set of functions. You have already learned about the print function.
The localtime() function is another. (The parentheses are optional.) This func-
tions returns the current date and time. We are assigning the result to a Perl vari-
able called $now. You will learn all about variables in the next chapter.

9 The variable $name is assigned the string “Ellie”.
10 When the string is enclosed in double quotes, the print function will display the

value of the variables $now and $name.
11 When the string is enclosed in single quotes, the print function prints all charac-

ters literally.

EXA MPLE 4.9

(The Script)
#!/usr/bin/perl

1 print "***\tIn double quotes\t***\n"; # Backslash interpretation
2 print '%%%\t\tIn single quotes\t\t%%%\n'; # All characters are

 # printed as literals
3 print "\n";

(Output)
1 *** In double quotes ***
2 %%%\t\tIn single quotes\t\t%%%\n
3

EXP LANA TION
1 When a string is enclosed in double quotes, backslash interpretation is per-

formed. The \t is a string literal and produces a tab; the \n produces a newline.
2 When enclosed within single quotes, the special string literals \t and \n are not in-

terpreted. They will be printed as is.
3 The newline \n must be enclosed in double quotes to be interpreted. A “\n” pro-

duces a newline.

EXP LANA TION (CONTI NU ED)

54 Chapter 4 • Getting a Handle on Printing

Printing Special Literals

EXA MPLE 4.10

(The Script)
#!/usr/bin/perl

1 print "\a\t\tThe \Unumber\E \LIS\E ",0777,".\n";

(Output)
1 (BEEP) The NUMBER is 511.

EXP LANA TION
1 The \a produces an alarm or beep sound, followed by \ t \ t (two tabs). \U causes

the string to be printed in uppercase until \E is reached or the line terminates. The
string number is printed in uppercase until the \E is reached. The string is is to be
printed in lowercase, until the \E is reached, and the decimal value for octal 0777
is printed, followed by a period and a newline character.

EXA MPLE 4.11

(The Script)
#!/usr/bin/perl
Program, named literals.perl, written to test special literals

1 print "We are on line number ", _ _LINE_ _, ".\n";
2 print "The name of this file is ",_ _FILE_ _,".\n";
3 _ _END_ _

And this stuff is just a bunch of chitter–chatter that is to be
 ignored by Perl.

The _ _END_ _ literal is like Ctrl–d or \004.a

(Output)
1 We are on line number 3.
2 The name of this file is literals.perl.

a. See the -x switch in Appendix A for discarding leading garbage.

EXP LANA TION
1 The special literal _ _LINE_ _ cannot be enclosed in quotes if it is to be interpret-

ed. It holds the current line number of the Perl script.
2 The name of this script is literals.perl. The special literal _ _FILE_ _ holds the

name of the current Perl script.
3 The special literal _ _END_ _ represents the logical end of the script. It tells Perl

to ignore any characters that follow it.

4.3 The print Function 55

4.3.4 The warnings Pragma and the -w Switch

The -w switch is used to warn you about the possibility of using future reserved words
and a number of other problems that may cause problems in the program. (Often, these
warnings are rather cryptic and hard to understand if you are new to programming.)
Larry Wall says in the Perl 5 man pages, “Whenever you get mysterious behavior, try the
-w switch! Whenever you don’t get mysterious behavior, try the -w switch anyway.”

You can use the -w switch either as a command-line option to Perl, as

perl -w <scriptname>

or after the shbang line in the Perl script, such as

#!/usr/bin/perl -w

A pragma is a special Perl module that hints to the compiler about how a block of
statements should be compiled. You can use this type of module to help control the way
your program behaves. Starting with Perl version 5.6.0, warnings.pm was added to the
standard Perl library; similar to the -w switch, it is a pragma that allows you to control
the types of warnings printed.

EXA MPLE 4.12

(The Script)
#!/usr/bin/perl
Program, named literals.perl2,
written to test special literal _ _DATA_ _

1 print <DATA>;
2 _ _DATA_ _

This line will be printed.
And so will this one.

(Output)
This line will be printed.
And so will this one.

EXP LANA TION
1 The print function will display whatever text is found under the special lit-

eral _ _DATA_ _. Because the special literal _ _DATA_ _ is enclosed in angle brack-
ets, it is treated as a filehandle opened for reading. The print function will display
lines as they are read by <DATA>.

2 This is the data that is used by the <DATA> filehandle. (You could use _ _END_ _
instead of _ _DATA_ _ to get the same results.)

56 Chapter 4 • Getting a Handle on Printing

In your programs, add the following line under the #! line or, if not using the #! line,
at the top of the script:

use warnings;

This enables all possible warnings. To turn off warnings, simply add as a line in your
script

no warnings;

This disables all possible warnings for the rest of the script.

EXA MPLE 4.13

(The Script)
#!/usr/bin/perl
Scriptname: warnme

1 print STDOUT Ellie, what\'s up?;

(Output) (At the Command Line)
$ perl -w warnme
 Unquoted string "what" may clash with future reserved word at warnme line 3.
 Backslash found where operator expected at warnme line 3, near "what\"
 Syntax error at warnme line 3, near "what\"
 Can't find string terminator "'" anywhere before EOF at warnme line 3.

EXP LANA TION
1 Among many other messages, the -w switch (see Appendix A) prints warnings

about ambiguous identifiers, such as variables that have been used only once, im-
proper conversion of strings and numbers, etc. Since the string Ellie is not quoted,
Perl could mistake it for a reserved word or an undefined filehandle. The rest of
the error message results from having an unmatched quote in the string.

EXA MPLE 4.14

(The Script)
#!/usr/bin/perl
Scriptname: warnme

1 use warnings;
2 print STDOUT Ellie, what\'s up?;

(Output)
Unquoted string "what" may clash with future reserved word at warnme line 3.
Backslash found where operator expected at warnme line 3, near "what\"
Syntax error at warnme line 3, near "what\"
Can't find string terminator "'" anywhere before EOF at warnme line 3.

4.3 The print Function 57

4.3.5 The diagnostics Pragma

This special pragma enhances the warning messages to a more verbose explanation of
what went wrong in your program. Like the warnings pragma, it affects the compilation
phase of your program, but unlike the warnings pragma, it attempts to give you an
explanation that doesn’t assume you are an experienced programmer.

EXP LANA TION
In Perl versions 5.6 and later, the warnings pragma is used instead of the -w switch.
The use function allows you to use modules located in the standard Perl library. The
warnings pragma sends warnings about ambiguous identifiers. Since the string Ellie is
not quoted, Perl could mistake it for a reserved word or an undefined filehandle. The
compiler complains because the string is not terminated with a closing quote.

EXA MPLE 4.15

(The Script)
use diagnostics;
print "Hello there'; # Unmatched quote
print "We are on line number ", _ _LINE_ _,"\n";

(The output)
Bareword found where operator expected at test.plx line 3, near "$now
= "Ellie"
 (Might be a runaway multi-line "" string starting on line 2) (#1)
 (S syntax) The Perl lexer knows whether to expect a term or an
operator.
 If it sees what it knows to be a term when it was expecting to see
 an operator, it gives you this warning. Usually it indicates that
 an operator or delimiter was omitted, such as a semicolon.

 (Missing operator before Ellie?)
String found where operator expected at test.plx line 3, at end of
line (#1)
 (Missing semicolon on previous line?)

syntax error at test.plx line 3, near "$now = "Ellie"
Can't find string terminator '"' anywhere before EOF at test.plx line
3 (#2)
 (F) Probably means you had a syntax error. Common reasons
include:

 A keyword is misspelled.
 A semicolon is missing.
 A comma is missing.
 An opening or closing parenthesis is missing.
print "hello there';
print "We are on line number ", _ _LINE_ _,"\n";

58 Chapter 4 • Getting a Handle on Printing

4.3.6 The strict Pragma and Words

Another pragma we will mention now is the strict pragma. If your program disobeys the
restrictions placed on it, it won’t compile. If there is a chance that you might have used
“bare,” i.e., unquoted, words2 as in Example 4.15, the strict pragma will catch you and
your program will abort. The strict pragma can be controlled by giving it various argu-
ments. (See Appendix A for complete list.)

EXP LANA TION
In Perl versions 5.6 and later, the diagnostics pragma is used instead of the -w switch
or the warnings pragma. This special Perl module sends detailed messages about the
problems that occurred in the script. Since the string Hello there does not contain
matched quotes, the diagnostics pragma issues a list of all the potential causes for the
failed program. The compiler expects the string to be terminated with another dou-
ble quote.

2. Putting quotes around a word is like putting clothes on the word—take off the quotes, and the word is “bare.”

EXA MPLE 4.16

(The Script)
#!/usr/bin/perl
Program: stricts.test
Script to demonstrate the strict pragma

1 use strict "subs";
2 $name = Ellie; # Unquoted word Ellie
3 print "Hi $name.\n";

(Output)
$ stricts.test

Bareword "Ellie" not allowed while "strict subs" in use at
./stricts.test line 5.
 Execution of stricts.test aborted due to compilation errors.

EXP LANA TION
1 The use function allows you to use modules located in the standard Perl library.

When the strict pragma takes subs as an argument, it will catch any barewords
found in the program while it is being internally compiled. If a bareword is found,
the program will be aborted with an error message.

4.4 The printf Function 59

4.4 The printf Function

The printf function prints a formatted string to the selected filehandle, the default being
STDOUT. It is like the printf function used in the C and awk languages. The return value
is 1 if printf is successful and 0 if it fails.

The printf function consists of a quoted control string that may include format spec-
ifications. The quoted string is followed by a comma and a list of comma-separated argu-
ments, which are simply expressions. The format specifiers are preceded by a % sign. For
each % sign and format specifier, there must be a corresponding argument. (See Tables
4.4 and 4.5.)

Placing the quoted string and expressions within parentheses is optional.

EXA MPLE 4.17

printf("The name is %s and the number is %d\n", "John", 50);

EXP LANA TION
1 The string to be printed is enclosed in double quotes. The first format specifier is

%s. It has a corresponding argument, John, positioned directly to the right of the
comma after the closing quote in the control string. The s following the percent
sign is called a conversion character. The s means string conversion will take
place at this spot. In this case John will replace the %s when the string is printed.

2 The %d format specifies that the decimal (integer) value 50 will be printed in its
place within the string.

Table 4.4 Format Specifiers

Conversion Definition

%b Unsigned binary integer

%c Character

%d, i Decimal number

%e Floating point number in scientific notation

%E Floating point number in scientific notation using capital E

%f, %F Floating point number

%g Floating point number using either e or f conversion, whichever takes the least space

%G Floating point number using either e or f conversion, whichever takes the least space

%ld, %D Long decimal number

Continues

60 Chapter 4 • Getting a Handle on Printing

Flag modifiers are used after the % to further define the printing; for example, %-20s
represents a 20-character left-justified field.

When an argument is printed, the field holds the value that will be printed, and the
width of the field is the number of characters the field should contain. The width of a
field is specified by a percent sign and a number representing the maximum field width,
followed by the conversion character; for example, %20s is a right-justified 20-character
string; %-25s is a left-justified 25-character string; and %10.2f is a right-justified 10-character

%lu, %U Long unsigned decimal number

%lo, %O Long octal number

%p Pointer (hexadecimal)

%s String

%u Unsigned decimal number

%x Hexadecimal number

%X Hexadecimal number using capital X

%lx Long hexidecimal number

%% Print a literal percent sign

Table 4.5 Flag Modifiers

Conversion Definition

%- Left-justification modifier

%# Integers in octal format are displayed with a leading 0; integers in
hexadecimal form are displayed with a leading 0x

%+ For conversions using d, e, f, and g, integers are displayed with a numeric
sign, + or -

%0 The displayed value is padded with zeros instead of whitespace

%number Maximum field width; for example, if number is 6, as in %6d, maximum
field width is six digits

%.number Precision of a floating point number; for example, %.2f specifies a
precision of two digits to the right of the decimal point, and %8.2
represents a maximum field width of eight, where one of the characters
is a decimal point followed by two digits after the decimal point

Table 4.4 Format Specifiers (continued)

Conversion Definition

4.4 The printf Function 61

floating point number, where the decimal point counts as one of the characters and the
precision is two places to the right of the decimal point. If the argument exceeds the
maximum field width, printf will not truncate the number, but your formatting may not
look nice. If the number to the right of the decimal point is truncated, it will be rounded
up; for example, if the formatting instruction is %.2f, the corresponding argument,
56.555555, would be printed as 56.6.

EXA MPLE 4.18

(The Script)
#!/usr/bin/perl

1 printf "Hello to you and yours %s!\n","Sam McGoo!";
2 printf("%-15s%-20s\n", "Jack", "Sprat");
3 printf "The number in decimal is %d\n", 45;
4 printf "The formatted number is |%10d|\n", 100;
5 printf "The number printed with leading zeros is |%010d|\n", 5;

6 printf "Left-justified the number is |%-10d|\n", 100;
7 printf "The number in octal is %o\n",15;
8 printf "The number in hexadecimal is %x\n", 15;
9 printf "The formatted floating point number is |%8.2f|\n",

 14.3456;
10 printf "The floating point number is |%8f|\n", 15;
11 printf "The character is %c\n", 65;

(Output)
1 Hello to you and yours Sam McGoo!
2 Jack Sprat
3 The number in decimal is 45
4 The formatted number is | 100|
5 The number printed with leading zeros is |0000000005|.
6 Left-justified the number is |100 |
7 The number in octal is 17
8 The number in hexadecimal is f
9 The formatted floating point number is | 14.35|
10 The floating point number is |15.000000|
11 The character is A

EXP LANA TION
1 The quoted string contains the %s format conversion specifier. The string Sam Magoo

is converted to a string and replaces the %s in the printed output.
2 The string Jack has a field width of 15 characters and is left-justified. The string

Sprat has a field width of 20 characters and is also left-justified. Parentheses are
optional.

3 The number 45 is printed in decimal format.
4 The number 100 has a field width of 10 and is right-justified.

62 Chapter 4 • Getting a Handle on Printing

4.4.1 The sprintf Function

The sprintf function is just like the printf function, except it allows you to assign the for-
matted string to a variable. sprintf and printf use the same conversion tables (Tables 4.4
and 4.5). Variables are discussed in Chapter 5, “What’s in a Name.”

5 The number 5 has a field width of 10, is right-justified, and is preceded by leading
zeros rather than whitespace. If the modifier 0 is placed before the number repre-
senting the field width, the number printed will be padded with leading zeros if it
takes up less space than it needs.

6 The number 100 has a field width of 10 and is left-justified.
7 The number 15 is printed in octal.
8 The number 15 is printed in hexadecimal.
9 The number 14.3456 is given a field width of eight characters. One of them is the

decimal point; the fractional part is given a precision of two decimal places. The
number is then rounded up.

10 The number 15 is given a field width of eight characters, right-justified. The de-
fault precision is six decimal places to the right of the decimal point.

11 The number 65 is converted to the ASCII character A and printed.

EXA MPLE 4.19

(The Script)
1 $string = sprintf("The name is: %10s\nThe number is: %8.2f\n",
 "Ellie", 33);
2 print "$string";

(Output)
2 The name is: Ellie

The number is: 33.00

EXP LANA TION
1 The sprintf function follows the same rules as printf for conversion of characters,

strings, and numbers. The only real difference is that sprintf allows you to store
the formatted output in a variable. In this example, the formatted output is stored
in the scalar variable $string. The \n inserted in the string causes the remaining
portion of the string to be printed on the next line. Scalar variables are discussed
in Chapter 5, “What’s in a Name.” Parentheses are optional.

2 The value of the variable is printed showing the formatted output produced by
sprintf.

EXP LANA TION (CONTI NU ED)

4.4 The printf Function 63

4.4.2 Printing without Quotes—The here document

The Perl here document is derived from the UNIX shell here document. It allows you to
quote a whole block of text enclosed between words called user-defined terminators.
From the first terminator to the last terminator, the text is quoted, or you could say
“from here to here” the text is quoted. The here document is a line-oriented form of quot-
ing, requiring the << operator followed by an initial terminating word and a semicolon.
There can be no spaces after the << unless the terminator itself is quoted. If the termi-
nating word is not quoted or double quoted, variable expansion is performed. If the ter-
minating word is singly quoted, variable expansion is not performed. Each line of text
is inserted between the first and last terminating word. The final terminating word must
be on a line by itself, with no surrounding whitespace.

Perl, unlike the shell, does not perform command substitution (backquotes) in the
text of a here document. Perl, on the other hand, does allow you to execute commands
in the here document if the terminator is enclosed in backquotes. (Not a good idea.)

Here documents are used extensively in CGI scripts for enclosing large chunks of
HTML tags for printing.

EXA MPLE 4.20

(The Script)
1 $price=1000; # A variable is assigned a value.
2 print <<EOF;
3 The consumer commented, "As I look over my budget, I'd say
4 the price of $price is right. I'll give you \$500 to start."\n
5 EOF

6 print <<'FINIS';
The consumer commented, "As I look over my budget, I'd say

7 the price of $price is too much.\n I'll settle for $500."
8 FINIS

9 print << x 4;
Here's to a new day.
Cheers!

10
print "\nLet's execute some commands.\n";
If terminator is in backquotes, will execute OS commands

11 print <<`END`;
echo Today is
date
END

(Output)
3 The consumer commented, "As I look over my budget, I'd say

the price of 1000 is right. I'll give you $500 to start."

64 Chapter 4 • Getting a Handle on Printing

6 The consumer commented, "As I look over my budget, I'd say
the price of $price is too much. \n I'll settle for $500."

9 Here's to a new day.
Cheers!
Here's to a new day.
Cheers!
Here's to a new day.
Cheers!
Here's to a new day.
Cheers!

11 Let's execute some commands.
Today is
Fri Oct 27 12:48:36 PDT 2007

EXP LANA TION
1 A scalar variable, $price, is assigned the value 1000.
2 Start of here document. EOF is the terminator. The block is treated as if in double

quotes. If there is any space preceding the terminator, then enclose the terminator
in double quotes, such as “EOF”.

3 All text in the body of the here document is quoted as though the whole block of
text were surrounded by double quotes.

4 The dollar sign has a special meaning when enclosed in double quotes. Since the
text in this here document is treated as if in double quotes, the variable has special
meaning here as well. The $ is used to indicate that a scalar variable is being used.
The value of the variable will be interpreted. If a backslash precedes the dollar
sign, it will be treated as a literal. If special backslash sequences are used, such as
\n, they will be interpreted.

5 End of here document marked by matching terminator, EOF. There can be no space
surrounding the terminator.

6 By surrounding the terminator, FINIS, with single quotes, the text that follows
will be treated literally, turning off the meaning of any special characters, such as
the dollar sign or backslash sequences.

7 Text is treated as if in single quotes.
8 Closing terminator marks the end of the here document.
9 The value x 4 says that the text within the here document will be printed four times.

The x operator is called the repetition operator. There must be a blank line at the
end of the block of text, so that the here document is terminated.

10 The blank line is required here to end the here document.
11 The terminator is enclosed in backquotes. The shell will execute the commands

between `END` and END. This example includes UNIX commands. If you are us-
ing another operating system, such as Windows or Mac OS, the commands must
be compatible with that operating system.

EXA MPLE 4.20 (CONTI NUED)

4.4 The printf Function 65

Here Documents and CGI. The following program is called a CGI (Common
Gateway Interface) program, a simple Perl program executed by a Web server rather
than by the shell. It is just like any other Perl script with two exceptions:

1. There is a line called the MIME line (e.g., Content-type: text/html) that describes
what kind of content will be sent back to the browser.

2. The document consists of text embedded with HTML tags, the language used
by browsers to render text in different colors, fonts faces, types, etc. Many CGI
programmers take advantage of the here document to avoid using the print func-
tion for every line of the program.

CGI programs are stored in a special directory called cgi-bin, which is normally found
under the Web server’s root directory. See Chapter 16, “CGI and Perl: The Hyper
Dynamic Duo,” for a complete discussion of CGI.

To execute the following script, you will start up your Web browser and type in the
Location box: http://servername/cgi-bin/scriptname.3 See Figure 4.1.

3. You must supply the correct server name for your system and the correct filename. Some CGI files must
have a .cgi or .pl extension.

EXA MPLE 4.21

#!/bin/perl
The HTML tags are embedded in the here document to avoid using
multiple print statements

1 print <<EOF; # here document in a CGI script
2 Content-type: text/html
3
4 <HTML><HEAD><TITLE>Town Crier</TITLE></HEAD>

<H1><CENTER>Hear ye, hear ye, Sir Richard cometh!!</CENTER></H1>
</HTML>

5 EOF

EXP LANA TION
1 The here document starts here. The terminating word is EOF. The print function

will receive everything from EOF to EOF.
2 This line tells the browser that the type of content that is being sent is text mixed

with HTML tags. This line must be followed by a blank line.
4 The body of the document consists of text and HTML tags.
5 The word EOF marks the end of the here document.

66 Chapter 4 • Getting a Handle on Printing

4.5 What You Should Know

1. How do you define stdin, stdout, and stderr?

2. What is meant by the term “filehandle”?

3. How do you represent a number in octal? Hexadecimal? Binary?

4. What is the main difference between the print and printf functions?

5. How do double and single quotes differ in the way they treat a string?

6. What are “literals”?

7. What is the use of _ _END_ _?

8. What are backslash sequences?

9. What is the purpose of the sprintf function?

10. What is a pragma?

11. How can you check to make sure your syntax is ok?

12. What is a here document? How is it useful in CGI programs?

4.6 What’s Next?

In the next chapter, you will learn about Perl variables and the meaning of the “funny
symbols.” You will be able to create and access scalars, arrays, and hashes understand
context and namespaces. You will also learn how to get input from a user and why we
need to “chomp.” A number of array and hash functions will be introduced.

Figure 4.1 The Web browser in Example 4.21.

4.6 What’s Next? 67

1. Use the print function to output the following string:

“Ouch,” cried Mrs. O’Neil, “You musn’t do that Mr. O’Neil!”

2. Use the printf function to print the number $34.6666666
as $34.67.

3. Write a Perl script called literals.plx that will print the following:

$ perl literals
Today is Mon Mar 12 12:58:04 PDT 2007 (Use localtime())
The name of this PERL SCRIPT is literals.
Hello. The number we will examine is 125.5.
The NUMBER in decimal is 125.
The following number is taking up 20 spaces and is right justified.
| 125|
 The number in hex is 7d
 The number in octal is 175
The number in scientific notation is 1.255000e+02
The unformatted number is 125.500000
The formatted number is 125.50
My boss just said, "Can't you loan me $12.50 for my lunch?"
I flatly said, "No way!"
Good-bye (Makes a beep sound)

Note: The words PERL SCRIPT and NUMBER are capitalized by using string
literal escape sequences.

What command-line option would you use to check the syntax of your script?

4. Add to your literals script a here document to print:

Life is good with Perl.
I have just completed my second exercise!

5. How would you turn on warnings in the script? How would you turn on diag-
nostics?

EXERCISE 4
A Str ing of Perls

Exercise 4: A String of Perls

This page intentionally left blank

69

chapter

5
What’s in a Name

5.1 About Perl Variables

Before starting this chapter, a note to you, the reader. Each line of code in an example is
numbered. The output and explanations are also numbered to match the number in the
code. These numbers are provided to help you understand important lines of each pro-
gram. When copying examples into your text editor, don’t include these numbers, or
you will generate many unwanted errors! With that said, let’s proceed.

5.1.1 Types

Variables are fundamental to all programming languages. They are data items whose val-
ues may change throughout the run of the program, whereas literals or constants remain
fixed. They can be placed anywhere in the program and do not have to be declared as in
other higher languages, where you must specify the data type that will be stored there.
You can assign strings, numbers, or a combination of these to Perl variables. For exam-
ple, you may store a number in a variable and then later change your mind and store a
string there. Perl doesn’t care.

Perl variables are of three types: scalar, array, and associative array (more commonly
called hashes). A scalar variable contains a single value (e.g., one string or one number),
an array variable contains an ordered list of values indexed by a positive number, and a
hash contains an unordered set of key/value pairs indexed by a string (the key) that is
associated with a corresponding value. (See “Scalars, Arrays, and Hashes” on page 77.)

5.1.2 Scope and the Package

The scope of a variable determines where it is visible in the program. In Perl scripts, the
variable is visible to the entire script (i.e., global in scope) and can be changed anywhere
within the script.

70 Chapter 5 • What’s in a Name

The Perl sample programs you have seen in the previous chapters are compiled inter-
nally into what is called a package, which provides a namespace for variables. Almost
all variables are global within that package. A global variable is known to the whole
package and, if changed anywhere within the package, the change will permanently
affect the variable. The default package is called main, similar to the main() function in
the C language. Such variables in C would be classified as static. At this point, you don’t
have to worry about naming the main package or the way in which it is handled during
the compilation process. The only purpose in mentioning packages now is to let you
know that the scope of variables in the main package, your script, is global. Later, when
we talk about the our, local, and my functions in packages, you will see that it is possible
to change the scope and namespace of a variable.

5.1.3 Naming Conventions

Unlike C or Java, Perl variables don’t have to be declared before being used. They spring
to life just by the mere mention of them. Variables have their own namespace in Perl.
They are identified by the “funny characters” that precede them. Scalar variables are pre-
ceded by a $ sign, array variables are preceded by an @ sign, and hash variables are pre-
ceded by a % sign. Since the “funny characters” indicate what type of variable you are
using, you can use the same name for a scalar, array, or hash and not worry about a nam-
ing conflict. For example, $name, @name, and %name are all different variables; the first
is a scalar, the second is an array, and the last is a hash.1

Since reserved words and filehandles are not preceded by a special character, variable
names will not conflict with reserved words or filehandles. Variables are case sensitive.
The variables named $Num, $num, and $NUM are all different.

If a variable starts with a letter, it may consist of any number of letters (an underscore
counts as a letter) and/or digits. If the variable does not start with a letter, it must consist of

Figure 5.1 Namespaces for scalars, lists, and hashes in package main.

1. Using the same name is allowed but not recommended; it makes reading too confusing.

$department @department
$department[0]

%department
$department{'Ed'}

 Package main

array
namespace

scalar
namespace

hash
namespace

