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Praise for Effective C++, Third Edition

“Scott Meyers’ book, Effective C++, Third Edition, is distilled programming experience — 
experience that you would otherwise have to learn the hard way. This book is a great 
resource that I recommend to everybody who writes C++ professionally.”

— Peter Dulimov, ME, Engineer, Ranges and Assessing Unit, NAVSYSCOM, 
Australia

“The third edition is still the best book on how to put all of the pieces of C++ together 
in an efficient, cohesive manner. If you claim to be a C++ programmer, you must read 
this book.”

— Eric Nagler, Consultant, Instructor, and author of Learning C++

“The first edition of this book ranks among the small (very small) number of books 
that I credit with significantly elevating my skills as a ‘professional’ software devel-
oper. Like the others, it was practical and easy to read, but loaded with important 
advice. Effective C++, Third Edition, continues that tradition. C++ is a very powerful 
programming language. If C gives you enough rope to hang yourself, C++ is a hard-
ware store with lots of helpful people ready to tie knots for you. Mastering the points 
discussed in this book will definitely increase your ability to effectively use C++ and 
reduce your stress level.”

— Jack W. Reeves, Chief Executive Officer, Bleading Edge Software Technologies

“Every new developer joining my team has one assignment — to read this book.”
— Michael Lanzetta, Senior Software Engineer

“I read the first edition of Effective C++ about nine years ago, and it immediately 
became my favorite book on C++. In my opinion, Effective C++, Third Edition, remains 
a mustread today for anyone who wishes to program effectively in C++. We would live 
in a better world if C++ programmers had to read this book before writing their first 
line of professional C++ code.”

— Danny Rabbani, Software Development Engineer

“I encountered the first edition of Scott Meyers’ Effective C++ as a struggling program-
mer in the trenches, trying to get better at what I was doing. What a lifesaver! I found 
Meyers’ advice was practical, useful, and effective, fulfilling the promise of the title 
100 percent. The third edition brings the practical realities of using C++ in serious 
development projects right up to date, adding chapters on the language’s very latest 
issues and features. I was delighted to still find myself learning something interesting 
and new from the latest edition of a book I already thought I knew well.”

— Michael Topic, Technical Program Manager

“From Scott Meyers, the guru of C++, this is the definitive guide for anyone who 
wants to use C++ safely and effectively, or is transitioning from any other OO lan-
guage to C++. This book has valuable information presented in a clear, concise, 
entertaining, and insightful manner.”

— Siddhartha Karan Singh, Software Developer



“This should be the second book on C++ that any developer should read, after a gen-
eral introductory text. It goes beyond the how and what of C++ to address the why 
and wherefore. It helped me go from knowing the syntax to understanding the philos-
ophy of C++ programming.”

— Timothy Knox, Software Developer

“This is a fantastic update of a classic C++ text. Meyers covers a lot of new ground in this 
volume, and every serious C++ programmer should have a copy of this new edition.”

— Jeffrey Somers, Game Programmer

“Effective C++, Third Edition, covers the things you should be doing when writing code 
and does a terrific job of explaining why those things are important. Think of it as 
best practices for writing C++.”

— Jeff Scherpelz, Software Development Engineer

“As C++ embraces change, Scott Meyers’ Effective C++, Third Edition, soars to remain 
in perfect lock-step with the language. There are many fine introductory books on 
C++, but exactly one second book stands head and shoulders above the rest, and 
you’re holding it. With Scott guiding the way, prepare to do some soaring of your own!”

— Leor Zolman, C++ Trainer and Pundit, BD Software

“This book is a must-have for both C++ veterans and newbies. After you have finished 
reading it, it will not collect dust on your bookshelf — you will refer to it all the time.”

— Sam Lee, Software Developer

“Reading this book transforms ordinary C++ programmers into expert C++ program-
mers, step-by-step, using 55 easy-to-read items, each describing one technique or tip.”

— Jeffrey D. Oldham, Ph.D., Software Engineer, Google

“Scott Meyers’ Effective C++ books have long been required reading for new and expe-
rienced C++ programmers alike. This new edition, incorporating almost a decade’s 
worth of C++ language development, is his most content-packed book yet. He does 
not merely describe the problems inherent in the language, but instead he provides 
unambiguous and easy-to-follow advice on how to avoid the pitfalls and write ‘effec-
tive C++.’ I expect every C++ programmer to have read it.”

— Philipp K. Janert, Ph.D., Software Development Manager

“Each previous edition of Effective C++ has been the must-have book for developers 
who have used C++ for a few months or a few years, long enough to stumble into 
the traps latent in this rich language. In this third edition, Scott Meyers extensively 
refreshes his sound advice for the modern world of new language and library features 
and the programming styles that have evolved to use them. Scott’s engaging writing 
style makes it easy to assimilate his guidelines on your way to becoming an effective 
C++ developer.”

— David Smallberg, Instructor, DevelopMentor; Lecturer, Computer Science, UCLA

“Effective C++ has been completely updated for twenty-first-century C++ practice and 
can continue to claim to be the first second book for all C++ practitioners.” 

— Matthew Wilson, Ph.D., author of Imperfect C++
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I wrote the original edition of Effective C++ in 1991. When the time
came for a second edition in 1997, I updated the material in important
ways, but, because I didn’t want to confuse readers familiar with the
first edition, I did my best to retain the existing structure: 48 of the
original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening
things up by replacing carpets, paint, and light fixtures. 

For the third edition, I tore the place down to the studs. (There were
times I wished I’d gone all the way to the foundation.) The world of
C++ has undergone enormous change since 1991, and the goal of this
book — to identify the most important C++ programming guidelines in
a small, readable package — was no longer served by the Items I’d es-
tablished nearly 15 years earlier. In 1991, it was reasonable to as-
sume that C++ programmers came from a C background. Now,
programmers moving to C++ are just as likely to come from Java or
C#. In 1991, inheritance and object-oriented programming were new
to most programmers. Now they’re well-established concepts, and ex-
ceptions, templates, and generic programming are the areas where
people need more guidance. In 1991, nobody had heard of design pat-
terns. Now it’s hard to discuss software systems without referring to
them. In 1991, work had just begun on a formal standard for C++.
Now that standard is eight years old, and work has begun on the next
version.

To address these changes, I wiped the slate as clean as I could and
asked myself, “What are the most important pieces of advice for prac-
ticing C++ programmers in 2005?” The result is the set of Items in this
new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are
woven throughout the text, because they affect almost everything in
C++. The book also includes new material on programming in the
presence of exceptions, on applying design patterns, and on using the

Preface



xii Preface Effective C++

new TR1 library facilities. (TR1 is described in Item 54.) It acknowl-
edges that techniques and approaches that work well in single-
threaded systems may not be appropriate in multithreaded systems.
Well over half the material in the book is new. However, most of the
fundamental information in the second edition continues to be impor-
tant, so I found a way to retain it in one form or another. (You’ll find a
mapping between the second and third edition Items in Appendix B.)

I’ve worked hard to make this book as good as I can, but I have no il-
lusions that it’s perfect. If you feel that some of the Items in this book
are inappropriate as general advice; that there is a better way to ac-
complish a task examined in the book; or that one or more of the tech-
nical discussions is unclear, incomplete, or misleading, please tell me.
If you find an error of any kind — technical, grammatical, typographi-
cal, whatever — please tell me that, too. I’ll gladly add to the acknowl-
edgments in later printings the name of the first person to bring each
problem to my attention. 

Even with the number of Items expanded to 55, the set of guidelines
in this book is far from exhaustive. But coming up with good rules —
ones that apply to almost all applications almost all the time — is
harder than it might seem. If you have suggestions for additional
guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, includ-
ing bug fixes, clarifications, and technical updates. The list is avail-
able at the Effective C++ Errata web page, http://aristeia.com/BookErrata/
ec++3e-errata.html. If you’d like to be notified when I update the list, I
encourage you to join my mailing list. I use it to make announcements
likely to interest people who follow my professional work. For details,
consult http://aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://aristeia.com/ APRIL 2005

http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/BookErrata/ec++3e-errata.html
http://aristeia.com/MailingList/
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Effective C++ has existed for fifteen years, and I started learning C++
about three years before I wrote the book. The “Effective C++ project”
has thus been under development for nearly two decades. During that
time, I have benefited from the insights, suggestions, corrections, and,
occasionally, dumbfounded stares of hundreds (thousands?) of peo-
ple. Each has helped improve Effective C++. I am grateful to them all. 

I’ve given up trying to keep track of where I learned what, but one gen-
eral source of information has helped me as long as I can remember:
the Usenet C++ newsgroups, especially comp.lang.c++.moderated and
comp.std.c++. Many of the Items in this book — perhaps most — have
benefited from the vetting of technical ideas at which the participants
in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked
with me to come up with an initial set of candidate Items. In Item 11,
the idea of implementing operator= via copy-and-swap came from Herb
Sutter’s writings on the topic, e.g., Item 13 of his Exceptional C++ (Ad-
dison-Wesley, 2000). RAII (see Item 13) is from Bjarne Stroustrup’s
The C++ Programming Language (Addison-Wesley, 2000). The idea be-
hind Item 17 came from the “Best Practices” section of the Boost
shared_ptr web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-
Practices and was refined by Item 21 of Herb Sutter’s More Exceptional
C++ (Addison-Wesley, 2002). Item 29 was strongly influenced by Herb
Sutter’s extensive writings on the topic, e.g., Items 8-19 of Exceptional
C++, Items 17–23 of More Exceptional C++, and Items 11–13 of Excep-
tional C++ Style (Addison-Wesley, 2005); David Abrahams helped me
better understand the three exception safety guarantees. The NVI id-
iom in Item 35 is from Herb Sutter’s column, “Virtuality,” in the Sep-
tember 2001 C/C++ Users Journal. In that same Item, the Template
Method and Strategy design patterns are from Design Patterns (Addi-
son-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. The idea of using the NVI idiom in Item 37 came

Acknowledgments
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Learning the fundamentals of a programming language is one thing;
learning how to design and implement effective programs in that lan-
guage is something else entirely. This is especially true of C++, a lan-
guage boasting an uncommon range of power and expressiveness.
Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judi-
ciously chosen and carefully crafted set of classes, functions, and
templates can make application programming easy, intuitive, efficient,
and nearly error-free. It isn’t unduly difficult to write effective C++
programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inex-
tensible, inefficient, and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I
assume you already know C++ as a language and that you have some
experience in its use. What I provide here is a guide to using the lan-
guage so that your software is comprehensible, maintainable, porta-
ble, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design
strategies, and the nuts and bolts of specific language features. The
design discussions concentrate on how to choose between different
approaches to accomplishing something in C++. How do you choose
between inheritance and templates? Between public and private in-
heritance? Between private inheritance and composition? Between
member and non-member functions? Between pass-by-value and
pass-by-reference? It’s important to make these decisions correctly at
the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is
often difficult, time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just
right can be tricky. What’s the proper return type for assignment op-
erators? When should a destructor be virtual? How should operator
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new behave when it can’t find enough memory? It’s crucial to sweat
details like these, because failure to do so almost always leads to un-
expected, possibly mystifying program behavior. This book will help
you avoid that.

This is not a comprehensive reference for C++. Rather, it’s a collection
of 55 specific suggestions (I call them Items) for how you can improve
your programs and designs. Each Item stands more or less on its own,
but most also contain references to other Items. One way to read the
book, then, is to start with an Item of interest, then follow its refer-
ences to see where they lead you. 

The book isn’t an introduction to C++, either. In Chapter 2, for exam-
ple, I’m eager to tell you all about the proper implementations of con-
structors, destructors, and assignment operators, but I assume you
already know or can go elsewhere to find out what these functions do
and how they are declared. A number of C++ books contain informa-
tion such as that.

The purpose of this book is to highlight those aspects of C++ program-
ming that are often overlooked. Other books describe the different
parts of the language. This book tells you how to combine those parts
so you end up with effective programs. Other books tell you how to get
your programs to compile. This book tells you how to avoid problems
that compilers won’t tell you about.

At the same time, this book limits itself to standard C++. Only fea-
tures in the official language standard have been used here. Portabil-
ity is a key concern in this book, so if you’re looking for platform-
dependent hacks and kludges, this is not the place to find them.

Another thing you won’t find in this book is the C++ Gospel, the One
True Path to perfect C++ software. Each of the Items in this book pro-
vides guidance on how to develop better designs, how to avoid com-
mon problems, or how to achieve greater efficiency, but none of the
Items is universally applicable. Software design and implementation is
a complex task, one colored by the constraints of the hardware, the
operating system, and the application, so the best I can do is provide
guidelines for creating better programs. 

If you follow all the guidelines all the time, you are unlikely to fall into
the most common traps surrounding C++, but guidelines, by their na-
ture, have exceptions. That’s why each Item has an explanation. The
explanations are the most important part of the book. Only by under-
standing the rationale behind an Item can you determine whether it
applies to the software you are developing and to the unique con-
straints under which you toil. 
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The best use of this book is to gain insight into how C++ behaves, why
it behaves that way, and how to use its behavior to your advantage.
Blind application of the Items in this book is clearly inappropriate, but
at the same time, you probably shouldn’t violate any of the guidelines
without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should under-
stand. The following terms are important enough that it is worth mak-
ing sure we agree on what they mean.

A declaration tells compilers about the name and type of something,
but it omits certain details. These are declarations:

extern int x; // object declaration

std::size_t numDigits(int number); // function declaration

class Widget; // class declaration

template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of
built-in type. Some people reserve the name “object” for variables of
user-defined type, but I’m not one of them. Also note that the function
numDigits’ return type is std::size_t, i.e., the type size_t in namespace
std. That namespace is where virtually everything in C++’s standard li-
brary is located. However, because C’s standard library (the one from
C89, to be precise) can also be used in C++, symbols inherited from C
(such as size_t) may exist at global scope, inside std, or both, depend-
ing on which headers have been #included. In this book, I assume that
C++ headers have been #included, and that’s why I refer to std::size_t
instead of just size_t. When referring to components of the standard li-
brary in prose, I typically omit references to std, relying on you to rec-
ognize that things like size_t, vector, and cout are in std. In example
code, I always include std, because real code won’t compile without it. 

size_t, by the way, is just a typedef for some unsigned type that C++
uses when counting things (e.g., the number of characters in a char*-
based string, the number of elements in an STL container, etc.). It’s
also the type taken by the operator[] functions in vector, deque, and
string, a convention we’ll follow when defining our own operator[] func-
tions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter
and return types. A function’s signature is the same as its type. In the
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case of numDigits, the signature is std::size_t (int), i.e., “function taking
an int and returning a std::size_t.” The official C++ definition of “signa-
ture” excludes the function’s return type, but in this book, it’s more
useful to have the return type be considered part of the signature.

A definition provides compilers with the details a declaration omits.
For an object, the definition is where compilers set aside memory for
the object. For a function or a function template, the definition pro-
vides the code body. For a class or a class template, the definition lists
the members of the class or template:

int x; // object definition

std::size_t numDigits(int number) // function definition.
{ // (This function returns

std::size_t digitsSoFar = 1; // the number of digits
// in its parameter.)

while ((number /= 10) != 0) ++digitsSoFar;

return digitsSoFar;
}

class Widget { // class definition
public:

Widget();
~Widget();
...

};

template<typename T> // template definition
class GraphNode {
public:

GraphNode();
~GraphNode();
...

};

Initialization is the process of giving an object its first value. For ob-
jects generated from structs and classes, initialization is performed by
constructors. A default constructor is one that can be called without
any arguments. Such a constructor either has no parameters or has a
default value for every parameter:

class A {
public:

A(); // default constructor
};

class B {
public:

explicit B(int x = 0, bool b = true); // default constructor; see below
}; // for info on “explicit”
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class C {
public:

explicit C(int x); // not a default constructor
};

The constructors for classes B and C are declared explicit here. That
prevents them from being used to perform implicit type conversions,
though they may still be used for explicit type conversions:

void doSomething(B bObject); // a function taking an object of
// type B

B bObj1; // an object of type B

doSomething(bObj1); // fine, passes a B to doSomething

B bObj2(28); // fine, creates a B from the int 28
// (the bool defaults to true)

doSomething(28); // error! doSomething takes a B,
// not an int, and there is no 
// implicit conversion from int to B

doSomething(B(28)); // fine, uses the B constructor to
// explicitly convert (i.e., cast) the
// int to a B for this call. (See 
// Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit
ones, because they prevent compilers from performing unexpected
(often unintended) type conversions. Unless I have a good reason for
allowing a constructor to be used for implicit type conversions, I
declare it explicit. I encourage you to follow the same policy.

Please note how I’ve highlighted the cast in the example above.
Throughout this book, I use such highlighting to call your attention to
material that is particularly noteworthy. (I also highlight chapter
numbers, but that’s just because I think it looks nice.)

The copy constructor is used to initialize an object with a different
object of the same type, and the copy assignment operator is used
to copy the value from one object to another of the same type:

class Widget {
public:

Widget(); // default constructor
Widget(const Widget& rhs); // copy constructor
Widget& operator=(const Widget& rhs); // copy assignment operator
...

};

Widget w1; // invoke default constructor

Widget w2(w1); // invoke copy constructor

w1 = w2; // invoke copy
// assignment operator
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Read carefully when you see what appears to be an assignment, be-
cause the “=” syntax can also be used to call the copy constructor:

Widget w3 = w2; // invoke copy constructor! 

Fortunately, copy construction is easy to distinguish from copy as-
signment. If a new object is being defined (such as w3 in the statement
above), a constructor has to be called; it can’t be an assignment. If no
new object is being defined (such as in the “w1 = w2” statement above),
no constructor can be involved, so it’s an assignment.

The copy constructor is a particularly important function, because it
defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

...

Widget aWidget;

if (hasAcceptableQuality(aWidget)) ...

The parameter w is passed to hasAcceptableQuality by value, so in the
call above, aWidget is copied into w. The copying is done by Widget’s
copy constructor. Pass-by-value means “call the copy constructor.”
(However, it’s generally a bad idea to pass user-defined types by value.
Pass-by-reference-to-const is typically a better choice. For details, see
Item 20.)

The STL is the Standard Template Library, the part of C++’s standard
library devoted to containers (e.g., vector, list, set, map, etc.), iterators
(e.g., vector<int>::iterator, set<string>::iterator, etc.), algorithms (e.g.,
for_each, find, sort, etc.), and related functionality. Much of that related
functionality has to do with function objects: objects that act like
functions. Such objects come from classes that overload operator(), the
function call operator. If you’re unfamiliar with the STL, you’ll want to
have a decent reference available as you read this book, because the
STL is too useful for me not to take advantage of it. Once you’ve used
it a little, you’ll feel the same way.

Programmers coming to C++ from languages like Java or C# may be
surprised at the notion of undefined behavior. For a variety of rea-
sons, the behavior of some constructs in C++ is literally not defined:
you can’t reliably predict what will happen at runtime. Here are two
examples of code with undefined behavior:

int *p = 0; // p is a null pointer

std::cout << *p; // dereferencing a null pointer
// yields undefined behavior
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char name[] = "Darla"; // name is an array of size 6 (don’t
// forget the trailing null!)

char c = name[10]; // referring to an invalid array index
// yields undefined behavior

To emphasize that the results of undefined behavior are not predict-
able and may be very unpleasant, experienced C++ programmers of-
ten say that programs with undefined behavior can erase your hard
drive. It’s true: a program with undefined behavior could erase your
hard drive. But it’s not probable. More likely is that the program will
behave erratically, sometimes running normally, other times crash-
ing, still other times producing incorrect results. Effective C++ pro-
grammers do their best to steer clear of undefined behavior. In this
book, I point out a number of places where you need to be on the look-
out for it. 

Another term that may confuse programmers coming to C++ from an-
other language is interface. Java and the .NET languages offer Inter-
faces as a language element, but there is no such thing in C++,
though Item 31 discusses how to approximate them. When I use the
term “interface,” I’m generally talking about a function’s signature,
about the accessible elements of a class (e.g., a class’s “public inter-
face,” “protected interface,” or “private interface”), or about the ex-
pressions that must be valid for a template’s type parameter (see
Item 41). That is, I’m talking about interfaces as a fairly general de-
sign idea.

A client is someone or something that uses the code (typically the in-
terfaces) you write. A function’s clients, for example, are its users: the
parts of the code that call the function (or take its address) as well as
the humans who write and maintain such code. The clients of a class
or a template are the parts of the software that use the class or tem-
plate, as well as the programmers who write and maintain that code.
When discussing clients, I typically focus on programmers, because
programmers can be confused, misled, or annoyed by bad interfaces.
The code they write can’t be.

You may not be used to thinking about clients, but I’ll spend a good
deal of time trying to convince you to make their lives as easy as you
can. After all, you are a client of the software other people develop.
Wouldn’t you want those people to make things easy for you? Besides,
at some point you’ll almost certainly find yourself in the position of be-
ing your own client (i.e., using code you wrote), and at that point,
you’ll be glad you kept client concerns in mind when developing your
interfaces.
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In this book, I often gloss over the distinction between functions and
function templates and between classes and class templates. That’s
because what’s true about one is often true about the other. In situa-
tions where this is not the case, I distinguish among classes, func-
tions, and the templates that give rise to classes and functions. 

When referring to constructors and destructors in code comments, I
sometimes use the abbreviations ctor and dtor.

Naming Conventions

I have tried to select meaningful names for objects, classes, functions,
templates, etc., but the meanings behind some of my names may not
be immediately apparent. Two of my favorite parameter names, for
example, are lhs and rhs. They stand for “left-hand side” and “right-
hand side,” respectively. I often use them as parameter names for
functions implementing binary operators, e.g., operator== and opera-
tor*. For example, if a and b are objects representing rational numbers,
and if Rational objects can be multiplied via a non-member operator*
function (as Item 24 explains is likely to be the case), the expression

a * b

is equivalent to the function call 

operator*(a, b)

In Item 24, I declare operator* like this:

const Rational operator*(const Rational& lhs, const Rational& rhs);

As you can see, the left-hand operand, a, is known as lhs inside the
function, and the right-hand operand, b, is known as rhs.

For member functions, the left-hand argument is represented by the
this pointer, so sometimes I use the parameter name rhs by itself. You
may have noticed this in the declarations for some Widget member
functions on page 5. Which reminds me. I often use the Widget class
in examples. “Widget” doesn’t mean anything. It’s just a name I some-
times use when I need an example class name. It has nothing to do
with widgets in GUI toolkits.

I often name pointers following the rule that a pointer to an object of
type T is called pt, “pointer to T.” Here are some examples:

Widget *pw; // pw = ptr to Widget

class Airplane;
Airplane *pa; // pa = ptr to Airplane
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class GameCharacter;
GameCharacter *pgc; // pgc = ptr to GameCharacter

I use a similar convention for references: rw might be a reference to a
Widget and ra a reference to an Airplane.

I occasionally use the name mf when I’m talking about member func-
tions.

Threading Considerations

As a language, C++ has no notion of threads — no notion of concur-
rency of any kind, in fact. Ditto for C++’s standard library. As far as
C++ is concerned, multithreaded programs don’t exist. 

And yet they do. My focus in this book is on standard, portable C++,
but I can’t ignore the fact that thread safety is an issue many pro-
grammers confront. My approach to dealing with this chasm between
standard C++ and reality is to point out places where the C++ con-
structs I examine are likely to cause problems in a threaded environ-
ment. That doesn’t make this a book on multithreaded programming
with C++. Far from it. Rather, it makes it a book on C++ programming
that, while largely limiting itself to single-threaded considerations, ac-
knowledges the existence of multithreading and tries to point out
places where thread-aware programmers need to take particular care
in evaluating the advice I offer. 

If you’re unfamiliar with multithreading or have no need to worry
about it, you can ignore my threading-related remarks. If you are pro-
gramming a threaded application or library, however, remember that
my comments are little more than a starting point for the issues you’ll
need to address when using C++.

TR1 and Boost

You’ll find references to TR1 and Boost throughout this book. Each
has an Item that describes it in some detail (Item 54 for TR1, Item 55
for Boost), but, unfortunately, these Items are at the end of the book.
(They’re there because it works better that way. Really. I tried them in
a number of other places.) If you like, you can turn to those Items and
read them now, but if you’d prefer to start the book at the beginning
instead of the end, the following executive summary will tide you over:

■ TR1 (“Technical Report 1”) is a specification for new functionality
being added to C++’s standard library. This functionality takes the
form of new class and function templates for things like hash ta-
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bles, reference-counting smart pointers, regular expressions, and
more. All TR1 components are in the namespace tr1 that’s nested
inside the namespace std. 

■ Boost is an organization and a web site (http://boost.org) offering
portable, peer-reviewed, open source C++ libraries. Most TR1
functionality is based on work done at Boost, and until compiler
vendors include TR1 in their C++ library distributions, the Boost
web site is likely to remain the first stop for developers looking for
TR1 implementations. Boost offers more than is available in TR1,
however, so it’s worth knowing about in any case.

http://boost.org


Accustoming Yourself to C++Regardless of your programming background, C++ is likely to take a
little getting used to. It’s a powerful language with an enormous range
of features, but before you can harness that power and make effective
use of those features, you have to accustom yourself to C++’s way of
doing things. This entire book is about how to do that, but some
things are more fundamental than others, and this chapter is about
some of the most fundamental things of all. 

Item 1: View C++ as a federation of languages.

In the beginning, C++ was just C with some object-oriented features
tacked on. Even C++’s original name, “C with Classes,” reflected this
simple heritage.

As the language matured, it grew bolder and more adventurous,
adopting ideas, features, and programming strategies different from
those of C with Classes. Exceptions required different approaches to
structuring functions (see Item 29). Templates gave rise to new ways
of thinking about design (see Item 41), and the STL defined an
approach to extensibility unlike any most people had ever seen. 

Today’s C++ is a multiparadigm programming language, one support-
ing a combination of procedural, object-oriented, functional, generic,
and metaprogramming features. This power and flexibility make C++
a tool without equal, but can also cause some confusion. All the
“proper usage” rules seem to have exceptions. How are we to make
sense of such a language? 

The easiest way is to view C++ not as a single language but as a feder-
ation of related languages. Within a particular sublanguage, the rules
tend to be simple, straightforward, and easy to remember. When you
move from one sublanguage to another, however, the rules may

Chapter 1: Accustoming Yourself to C++

Accustoming
Yourself to C++
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change. To make sense of C++, you have to recognize its primary sub-
languages. Fortunately, there are only four:

■ C. Way down deep, C++ is still based on C. Blocks, statements, the
preprocessor, built-in data types, arrays, pointers, etc., all come
from C. In many cases, C++ offers approaches to problems that
are superior to their C counterparts (e.g., see Items 2 (alternatives
to the preprocessor) and 13 (using objects to manage resources)),
but when you find yourself working with the C part of C++, the
rules for effective programming reflect C’s more limited scope: no
templates, no exceptions, no overloading, etc.

■ Object-Oriented C++. This part of C++ is what C with Classes was
all about: classes (including constructors and destructors), encap-
sulation, inheritance, polymorphism, virtual functions (dynamic
binding), etc. This is the part of C++ to which the classic rules for
object-oriented design most directly apply.

■ Template C++. This is the generic programming part of C++, the
one that most programmers have the least experience with. Tem-
plate considerations pervade C++, and it’s not uncommon for rules
of good programming to include special template-only clauses
(e.g., see Item 46 on facilitating type conversions in calls to tem-
plate functions). In fact, templates are so powerful, they give rise
to a completely new programming paradigm, template metapro-
gramming (TMP). Item 48 provides an overview of TMP, but unless
you’re a hard-core template junkie, you need not worry about it.
The rules for TMP rarely interact with mainstream C++ program-
ming.

■ The STL. The STL is a template library, of course, but it’s a very
special template library. Its conventions regarding containers, iter-
ators, algorithms, and function objects mesh beautifully, but tem-
plates and libraries can be built around other ideas, too. The STL
has particular ways of doing things, and when you’re working with
the STL, you need to be sure to follow its conventions. 

Keep these four sublanguages in mind, and don’t be surprised when
you encounter situations where effective programming requires that
you change strategy when you switch from one sublanguage to
another. For example, pass-by-value is generally more efficient than
pass-by-reference for built-in (i.e., C-like) types, but when you move
from the C part of C++ to Object-Oriented C++, the existence of user-
defined constructors and destructors means that pass-by-reference-
to-const is usually better. This is especially the case when working in
Template C++, because there, you don’t even know the type of object
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you’re dealing with. When you cross into the STL, however, you know
that iterators and function objects are modeled on pointers in C, so for
iterators and function objects in the STL, the old C pass-by-value rule
applies again. (For all the details on choosing among parameter-pass-
ing options, see Item 20.)

C++, then, isn’t a unified language with a single set of rules; it’s a fed-
eration of four sublanguages, each with its own conventions. Keep
these sublanguages in mind, and you’ll find that C++ is a lot easier to
understand.

Things to Remember

✦ Rules for effective C++ programming vary, depending on the part of
C++ you are using.

Item 2: Prefer consts, enums, and inlines to #defines.

This Item might better be called “prefer the compiler to the preproces-
sor,” because #define may be treated as if it’s not part of the language
per se. That’s one of its problems. When you do something like this,

#define ASPECT_RATIO 1.653

the symbolic name ASPECT_RATIO may never be seen by compilers; it
may be removed by the preprocessor before the source code ever gets
to a compiler. As a result, the name ASPECT_RATIO may not get entered
into the symbol table. This can be confusing if you get an error during
compilation involving the use of the constant, because the error mes-
sage may refer to 1.653, not ASPECT_RATIO. If ASPECT_RATIO were
defined in a header file you didn’t write, you’d have no idea where that
1.653 came from, and you’d waste time tracking it down. This problem
can also crop up in a symbolic debugger, because, again, the name
you’re programming with may not be in the symbol table.

The solution is to replace the macro with a constant:

const double AspectRatio = 1.653; // uppercase names are usually for
// macros, hence the name change

As a language constant, AspectRatio is definitely seen by compilers and
is certainly entered into their symbol tables. In addition, in the case of
a floating point constant (such as in this example), use of the constant
may yield smaller code than using a #define. That’s because the pre-
processor’s blind substitution of the macro name ASPECT_RATIO with
1.653 could result in multiple copies of 1.653 in your object code,
while the use of the constant AspectRatio should never result in more
than one copy.
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When replacing #defines with constants, two special cases are worth
mentioning. The first is defining constant pointers. Because constant
definitions are typically put in header files (where many different
source files will include them), it’s important that the pointer be
declared const, usually in addition to what the pointer points to. To
define a constant char*-based string in a header file, for example, you
have to write const twice:

const char * const authorName = "Scott Meyers";

For a complete discussion of the meanings and uses of const, espe-
cially in conjunction with pointers, see Item 3. However, it’s worth
reminding you here that string objects are generally preferable to their
char*-based progenitors, so authorName is often better defined this
way:

const std::string authorName("Scott Meyers"); 

The second special case concerns class-specific constants. To limit
the scope of a constant to a class, you must make it a member, and to
ensure there’s at most one copy of the constant, you must make it a
static member:

class GamePlayer {
private:

static const int NumTurns = 5; // constant declaration
int scores[NumTurns]; // use of constant
...

};

What you see above is a declaration for NumTurns, not a definition.
Usually, C++ requires that you provide a definition for anything you
use, but class-specific constants that are static and of integral type
(e.g., integers, chars, bools) are an exception. As long as you don’t take
their address, you can declare them and use them without providing a
definition. If you do take the address of a class constant, or if your
compiler incorrectly insists on a definition even if you don’t take the
address, you provide a separate definition like this:

const int GamePlayer::NumTurns; // definition of NumTurns; see 
// below for why no value is given

You put this in an implementation file, not a header file. Because the
initial value of class constants is provided where the constant is
declared (e.g., NumTurns is initialized to 5 when it is declared), no ini-
tial value is permitted at the point of definition.

Note, by the way, that there’s no way to create a class-specific con-
stant using a #define, because #defines don’t respect scope. Once a
macro is defined, it’s in force for the rest of the compilation (unless it’s
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#undefed somewhere along the line). Which means that not only can’t
#defines be used for class-specific constants, they also can’t be used to
provide any kind of encapsulation, i.e., there is no such thing as a
“private” #define. Of course, const data members can be encapsulated;
NumTurns is.

Older compilers may not accept the syntax above, because it used to
be illegal to provide an initial value for a static class member at its
point of declaration. Furthermore, in-class initialization is allowed
only for integral types and only for constants. In cases where the
above syntax can’t be used, you put the initial value at the point of
definition:

class CostEstimate {
private:

static const double FudgeFactor; // declaration of static class 
... // constant; goes in header file

};

const double // definition of static class
CostEstimate::FudgeFactor = 1.35; // constant; goes in impl. file

This is all you need almost all the time. The only exception is when
you need the value of a class constant during compilation of the class,
such as in the declaration of the array GamePlayer::scores above (where
compilers insist on knowing the size of the array during compilation).
Then the accepted way to compensate for compilers that (incorrectly)
forbid the in-class specification of initial values for static integral class
constants is to use what is affectionately (and non-pejoratively) known
as “the enum hack.” This technique takes advantage of the fact that
the values of an enumerated type can be used where ints are expected,
so GamePlayer could just as well be defined like this:

class GamePlayer {
private:

enum { NumTurns = 5 }; // “the enum hack” — makes 
// NumTurns a symbolic name for 5

int scores[NumTurns]; // fine

...

};

The enum hack is worth knowing about for several reasons. First, the
enum hack behaves in some ways more like a #define than a const
does, and sometimes that’s what you want. For example, it’s legal to
take the address of a const, but it’s not legal to take the address of an
enum, and it’s typically not legal to take the address of a #define,
either. If you don’t want to let people get a pointer or reference to one
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of your integral constants, an enum is a good way to enforce that con-
straint. (For more on enforcing design constraints through coding
decisions, consult Item 18.) Also, though good compilers won’t set
aside storage for const objects of integral types (unless you create a
pointer or reference to the object), sloppy compilers may, and you may
not be willing to set aside memory for such objects. Like #defines,
enums never result in that kind of unnecessary memory allocation.

A second reason to know about the enum hack is purely pragmatic.
Lots of code employs it, so you need to recognize it when you see it. In
fact, the enum hack is a fundamental technique of template metapro-
gramming (see Item 48).

Getting back to the preprocessor, another common (mis)use of the
#define directive is using it to implement macros that look like func-
tions but that don’t incur the overhead of a function call. Here’s a
macro that calls some function f with the greater of the macro’s argu-
ments:

// call f with the maximum of a and b
#define CALL_WITH_MAX(a, b) f((a) > (b) ? (a) : (b))

Macros like this have so many drawbacks, just thinking about them is
painful.

Whenever you write this kind of macro, you have to remember to
parenthesize all the arguments in the macro body. Otherwise you can
run into trouble when somebody calls the macro with an expression.
But even if you get that right, look at the weird things that can happen:

int a = 5, b = 0;

CALL_WITH_MAX(++a, b); // a is incremented twice
CALL_WITH_MAX(++a, b+10); // a is incremented once

Here, the number of times that a is incremented before calling f
depends on what it is being compared with!

Fortunately, you don’t need to put up with this nonsense. You can get
all the efficiency of a macro plus all the predictable behavior and type
safety of a regular function by using a template for an inline function
(see Item 30):

template<typename T> // because we don’t
inline void callWithMax(const T& a, const T& b) // know what T is, we
{ // pass by reference-to-

f(a > b ? a : b); // const — see Item 20
}

This template generates a whole family of functions, each of which
takes two objects of the same type and calls f with the greater of the
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two objects. There’s no need to parenthesize parameters inside the
function body, no need to worry about evaluating parameters multiple
times, etc. Furthermore, because callWithMax is a real function, it
obeys scope and access rules. For example, it makes perfect sense to
talk about an inline function that is private to a class. In general,
there’s just no way to do that with a macro.

Given the availability of consts, enums, and inlines, your need for the
preprocessor (especially #define) is reduced, but it’s not eliminated.
#include remains essential, and #ifdef/#ifndef continue to play impor-
tant roles in controlling compilation. It’s not yet time to retire the pre-
processor, but you should definitely give it long and frequent
vacations.

Things to Remember

✦ For simple constants, prefer const objects or enums to #defines.

✦ For function-like macros, prefer inline functions to #defines.

Item 3: Use const whenever possible.

The wonderful thing about const is that it allows you to specify a
semantic constraint — a particular object should not be modified —
and compilers will enforce that constraint. It allows you to communi-
cate to both compilers and other programmers that a value should
remain invariant. Whenever that is true, you should be sure to say so,
because that way you enlist your compilers’ aid in making sure the
constraint isn’t violated. 

The const keyword is remarkably versatile. Outside of classes, you can
use it for constants at global or namespace scope (see Item 2), as well
as for objects declared static at file, function, or block scope. Inside
classes, you can use it for both static and non-static data members.
For pointers, you can specify whether the pointer itself is const, the
data it points to is const, both, or neither:

char greeting[] = "Hello"; 

char *p = greeting; // non-const pointer, 
// non-const data

const char *p = greeting; // non-const pointer,
// const data

char * const p = greeting; // const pointer,
// non-const data

const char * const p = greeting; // const pointer,
// const data
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This syntax isn’t as capricious as it may seem. If the word const
appears to the left of the asterisk, what’s pointed to is constant; if the
word const appears to the right of the asterisk, the pointer itself is con-
stant; if const appears on both sides, both are constant.† 

When what’s pointed to is constant, some programmers list const
before the type. Others list it after the type but before the asterisk.
There is no difference in meaning, so the following functions take the
same parameter type:

void f1(const Widget *pw); // f1 takes a pointer to a
// constant Widget object

void f2(Widget const *pw); // so does f2

Because both forms exist in real code, you should accustom yourself
to both of them.

STL iterators are modeled on pointers, so an iterator acts much like a
T* pointer. Declaring an iterator const is like declaring a pointer const
(i.e., declaring a T* const pointer): the iterator isn’t allowed to point to
something different, but the thing it points to may be modified. If you
want an iterator that points to something that can’t be modified (i.e.,
the STL analogue of a const T* pointer), you want a const_iterator:

std::vector<int> vec;
...

const std::vector<int>::iterator iter = // iter acts like a T* const
vec.begin();

*iter = 10; // OK, changes what iter points to
++iter; // error! iter is const

std::vector<int>::const_iterator cIter = //cIter acts like a const T*
vec.begin();

*cIter = 10; // error! *cIter is const
++cIter; // fine, changes cIter

Some of the most powerful uses of const stem from its application to
function declarations. Within a function declaration, const can refer to
the function’s return value, to individual parameters, and, for member
functions, to the function as a whole. 

Having a function return a constant value often makes it possible to
reduce the incidence of client errors without giving up safety or effi-
ciency. For example, consider the declaration of the operator* function
for rational numbers that is explored in Item 24:

class Rational { ... };

const Rational operator*(const Rational& lhs, const Rational& rhs);

† Some people find it helpful to read pointer declarations right to left, e.g., to read const
char * const p as “p is a constant pointer to constant chars.”
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Many programmers squint when they first see this. Why should the
result of operator* be a const object? Because if it weren’t, clients
would be able to commit atrocities like this:

Rational a, b, c;

...

(a * b) = c; // invoke operator= on the 
// result of a*b!

I don’t know why any programmer would want to make an assignment
to the product of two numbers, but I do know that many programmers
have tried to do it without wanting to. All it takes is a simple typo (and
a type that can be implicitly converted to bool):

if (a * b = c) ... // oops, meant to do a comparison!

Such code would be flat-out illegal if a and b were of a built-in type.
One of the hallmarks of good user-defined types is that they avoid gra-
tuitous incompatibilities with the built-ins (see also Item 18), and
allowing assignments to the product of two numbers seems pretty gra-
tuitous to me. Declaring operator*’s return value const prevents it, and
that’s why it’s The Right Thing To Do. 

There’s nothing particularly new about const parameters — they act
just like local const objects, and you should use both whenever you
can. Unless you need to be able to modify a parameter or local object,
be sure to declare it const. It costs you only the effort to type six char-
acters, and it can save you from annoying errors such as the “I meant
to type ‘==’ but I accidently typed ‘=’” mistake we just saw.

const Member Functions

The purpose of const on member functions is to identify which mem-
ber functions may be invoked on const objects. Such member func-
tions are important for two reasons. First, they make the interface of a
class easier to understand. It’s important to know which functions
may modify an object and which may not. Second, they make it possi-
ble to work with const objects. That’s a critical aspect of writing effi-
cient code, because, as Item 20 explains, one of the fundamental ways
to improve a C++ program’s performance is to pass objects by refer-
ence-to-const. That technique is viable only if there are const member
functions with which to manipulate the resulting const-qualified
objects.

Many people overlook the fact that member functions differing only in
their constness can be overloaded, but this is an important feature of
C++. Consider a class for representing a block of text:
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class TextBlock {
public:

...

const char& operator[](std::size_t position) const // operator[] for
{ return text[position]; } // const objects

char& operator[](std::size_t position)  // operator[] for
{ return text[position]; } // non-const objects

private:
 std::string text;

};

TextBlock’s operator[]s can be used like this:

TextBlock tb("Hello");
std::cout << tb[0]; // calls non-const

// TextBlock::operator[]
const TextBlock ctb("World");
std::cout << ctb[0]; // calls const TextBlock::operator[]

Incidentally, const objects most often arise in real programs as a result
of being passed by pointer- or reference-to-const. The example of ctb
above is artificial. This is more realistic:

void print(const TextBlock& ctb) // in this function, ctb is const
{

std::cout << ctb[0]; // calls const TextBlock::operator[]
...

}

By overloading operator[] and giving the different versions different
return types, you can have const and non-const TextBlocks handled dif-
ferently:

std::cout << tb[0]; // fine — reading a 
// non-const TextBlock 

tb[0] = ’x’; // fine — writing a 
// non-const TextBlock

std::cout << ctb[0]; // fine — reading a 
// const TextBlock 

ctb[0] = ’x’; // error! — writing a 
// const TextBlock 

Note that the error here has only to do with the return type of the
operator[] that is called; the calls to operator[] themselves are all fine.
The error arises out of an attempt to make an assignment to a const
char&, because that’s the return type from the const version of
operator[].
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Also note that the return type of the non-const operator[] is a reference
to a char — a char itself would not do. If operator[] did return a simple
char, statements like this wouldn’t compile:

tb[0] = ’x’;

That’s because it’s never legal to modify the return value of a function
that returns a built-in type. Even if it were legal, the fact that C++
returns objects by value (see Item 20) would mean that a copy of
tb.text[0] would be modified, not tb.text[0] itself, and that’s not the
behavior you want. 

Let’s take a brief time-out for philosophy. What does it mean for a
member function to be const? There are two prevailing notions: bitwise
constness (also known as physical constness) and logical constness.

The bitwise const camp believes that a member function is const if and
only if it doesn’t modify any of the object’s data members (excluding
those that are static), i.e., if it doesn’t modify any of the bits inside the
object. The nice thing about bitwise constness is that it’s easy to
detect violations: compilers just look for assignments to data mem-
bers. In fact, bitwise constness is C++’s definition of constness, and a
const member function isn’t allowed to modify any of the non-static
data members of the object on which it is invoked.

Unfortunately, many member functions that don’t act very const pass
the bitwise test. In particular, a member function that modifies what a
pointer points to frequently doesn’t act const. But if only the pointer is
in the object, the function is bitwise const, and compilers won’t com-
plain. That can lead to counterintuitive behavior. For example, sup-
pose we have a TextBlock-like class that stores its data as a char*
instead of a string, because it needs to communicate through a C API
that doesn’t understand string objects.

class CTextBlock {
public:

...

char& operator[](std::size_t position) const // inappropriate (but bitwise
{ return pText[position]; } // const) declaration of

// operator[]
private:

char *pText;
};

This class (inappropriately) declares operator[] as a const member
function, even though that function returns a reference to the object’s
internal data (a topic treated in depth in Item 28). Set that aside and
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note that operator[]’s implementation doesn’t modify pText in any way.
As a result, compilers will happily generate code for operator[]; it is,
after all, bitwise const, and that’s all compilers check for. But look
what it allows to happen:

const CTextBlock cctb("Hello"); // declare constant object

char *pc = &cctb[0]; // call the const operator[] to get a
// pointer to cctb’s data 

*pc = ’J’; // cctb now has the value “Jello”

Surely there is something wrong when you create a constant object
with a particular value and you invoke only const member functions
on it, yet you still change its value! 

This leads to the notion of logical constness. Adherents to this philos-
ophy — and you should be among them — argue that a const member
function might modify some of the bits in the object on which it’s
invoked, but only in ways that clients cannot detect. For example,
your CTextBlock class might want to cache the length of the textblock
whenever it’s requested:

class CTextBlock {
public:

...

std::size_t length() const;

private:
char *pText;
std::size_t textLength; // last calculated length of textblock
bool lengthIsValid; // whether length is currently valid

};

std::size_t CTextBlock::length() const
{

if (!lengthIsValid) {
textLength = std::strlen(pText); // error! can’t assign to textLength
lengthIsValid = true; // and lengthIsValid in a const 

} // member function

return textLength;
}

This implementation of length is certainly not bitwise const — both tex-
tLength and lengthIsValid may be modified — yet it seems as though it
should be valid for const CTextBlock objects. Compilers disagree. They
insist on bitwise constness. What to do?

The solution is simple: take advantage of C++’s const-related wiggle
room known as mutable. mutable frees non-static data members from
the constraints of bitwise constness:
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class CTextBlock {
public:

...

std::size_t length() const;

private:
char *pText;

mutable std::size_t textLength; // these data members may
mutable bool lengthIsValid; // always be modified, even in 

}; // const member functions

std::size_t CTextBlock::length() const
{

if (!lengthIsValid) {
textLength = std::strlen(pText); // now fine
lengthIsValid = true; // also fine

}

return textLength;
}

Avoiding Duplication in const and Non-const Member Functions

mutable is a nice solution to the bitwise-constness-is-not-what-I-had-
in-mind problem, but it doesn’t solve all const-related difficulties. For
example, suppose that operator[] in TextBlock (and CTextBlock) not only
returned a reference to the appropriate character, it also performed
bounds checking, logged access information, maybe even did data
integrity validation. Putting all this in both the const and the non-const
operator[] functions (and not fretting that we now have implicitly inline
functions of nontrivial length — see Item 30) yields this kind of mon-
strosity:

class TextBlock {
public:

...

const char& operator[](std::size_t position) const
{

... // do bounds checking

... // log access data

... // verify data integrity
return text[position];

}

char& operator[](std::size_t position)  
{

... // do bounds checking

... // log access data

... // verify data integrity
return text[position];

}

private:
 std::string text;

};
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Ouch! Can you say code duplication, along with its attendant compi-
lation time, maintenance, and code-bloat headaches? Sure, it’s possi-
ble to move all the code for bounds checking, etc. into a separate
member function (private, naturally) that both versions of operator[]
call, but you’ve still got the duplicated calls to that function and
you’ve still got the duplicated return statement code. 

What you really want to do is implement operator[] functionality once
and use it twice. That is, you want to have one version of operator[]
call the other one. And that brings us to casting away constness.

As a general rule, casting is such a bad idea, I’ve devoted an entire
Item to telling you not to do it (Item 27), but code duplication is no
picnic, either. In this case, the const version of operator[] does exactly
what the non-const version does, it just has a const-qualified return
type. Casting away the const on the return value is safe, in this case,
because whoever called the non-const operator[] must have had a non-
const object in the first place. Otherwise they couldn’t have called a
non-const function. So having the non-const operator[] call the const
version is a safe way to avoid code duplication, even though it requires
a cast. Here’s the code, but it may be clearer after you read the expla-
nation that follows:

class TextBlock {
public:

...

const char& operator[](std::size_t position) const // same as before
{

...

...

...
return text[position];

}

char& operator[](std::size_t position)  // now just calls const op[]
{

return
const_cast<char&>( // cast away const on

// op[]’s return type;
static_cast<const TextBlock&>(*this) // add const to *this’s type;

[position] // call const version of op[]
);

}

...

};
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As you can see, the code has two casts, not one. We want the non-
const operator[] to call the const one, but if, inside the non-const
operator[], we just call operator[], we’ll recursively call ourselves. That’s
only entertaining the first million or so times. To avoid infinite recur-
sion, we have to specify that we want to call the const operator[], but
there’s no direct way to do that. Instead, we cast *this from its native
type of TextBlock& to const TextBlock&. Yes, we use a cast to add const!
So we have two casts: one to add const to *this (so that our call to
operator[] will call the const version), the second to remove the const
from the const operator[]’s return value. 

The cast that adds const is just forcing a safe conversion (from a non-
const object to a const one), so we use a static_cast for that. The one
that removes const can be accomplished only via a const_cast, so we
don’t really have a choice there. (Technically, we do. A C-style cast
would also work, but, as I explain in Item 27, such casts are rarely the
right choice. If you’re unfamiliar with static_cast or const_cast, Item 27
contains an overview.) 

On top of everything else, we’re calling an operator in this example, so
the syntax is a little strange. The result may not win any beauty con-
tests, but it has the desired effect of avoiding code duplication by
implementing the non-const version of operator[] in terms of the const
version. Whether achieving that goal is worth the ungainly syntax is
something only you can determine, but the technique of implementing
a non-const member function in terms of its const twin is definitely
worth knowing.

Even more worth knowing is that trying to do things the other way
around — avoiding duplication by having the const version call the
non-const version — is not something you want to do. Remember, a
const member function promises never to change the logical state of
its object, but a non-const member function makes no such promise.
If you were to call a non-const function from a const one, you’d run the
risk that the object you’d promised not to modify would be changed.
That’s why having a const member function call a non-const one is
wrong: the object could be changed. In fact, to get the code to compile,
you’d have to use a const_cast to get rid of the const on *this, a clear
sign of trouble. The reverse calling sequence — the one we used above
— is safe: the non-const member function can do whatever it wants
with an object, so calling a const member function imposes no risk.
That’s why a static_cast works on *this in that case: there’s no const-
related danger.

As I noted at the beginning of this Item, const is a wonderful thing. On
pointers and iterators; on the objects referred to by pointers, iterators,
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and references; on function parameters and return types; on local
variables; and on member functions, const is a powerful ally. Use it
whenever you can. You’ll be glad you did.

Things to Remember

✦ Declaring something const helps compilers detect usage errors. const
can be applied to objects at any scope, to function parameters and
return types, and to member functions as a whole.

✦ Compilers enforce bitwise constness, but you should program using
logical constness.

✦ When const and non-const member functions have essentially identi-
cal implementations, code duplication can be avoided by having the
non-const version call the const version.

Item 4: Make sure that objects are initialized before 
they’re used.

C++ can seem rather fickle about initializing the values of objects. For
example, if you say this,

int x;

in some contexts, x is guaranteed to be initialized (to zero), but in oth-
ers, it’s not. If you say this,

class Point {
int x, y;

};

...

Point p;

p’s data members are sometimes guaranteed to be initialized (to zero),
but sometimes they’re not. If you’re coming from a language where
uninitialized objects can’t exist, pay attention, because this is impor-
tant.

Reading uninitialized values yields undefined behavior. On some plat-
forms, the mere act of reading an uninitialized value can halt your
program. More typically, the result of the read will be semi-random
bits, which will then pollute the object you read the bits into, eventu-
ally leading to inscrutable program behavior and a lot of unpleasant
debugging. 

Now, there are rules that describe when object initialization is guaran-
teed to take place and when it isn’t. Unfortunately, the rules are com-
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plicated — too complicated to be worth memorizing, in my opinion. In
general, if you’re in the C part of C++ (see Item 1) and initialization
would probably incur a runtime cost, it’s not guaranteed to take
place. If you cross into the non-C parts of C++, things sometimes
change. This explains why an array (from the C part of C++) isn’t nec-
essarily guaranteed to have its contents initialized, but a vector (from
the STL part of C++) is.

The best way to deal with this seemingly indeterminate state of affairs
is to always initialize your objects before you use them. For non-
member objects of built-in types, you’ll need to do this manually. For
example:

int x = 0; // manual initialization of an int

const char * text = "A C-style string"; // manual initialization of a
// pointer (see also Item 3)

double d; // “initialization” by reading from
std::cin >> d; // an input stream

For almost everything else, the responsibility for initialization falls on
constructors. The rule there is simple: make sure that all constructors
initialize everything in the object.

The rule is easy to follow, but it’s important not to confuse assignment
with initialization. Consider a constructor for a class representing
entries in an address book:

class PhoneNumber { ... };

class ABEntry { // ABEntry = “Address Book Entry”
public:

ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones);

private:
std::string theName;
std::string theAddress;
std::list<PhoneNumber> thePhones;
int numTimesConsulted;

};

ABEntry::ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones)

{
theName = name; // these are all assignments,
theAddress = address; // not initializations
thePhones = phones;
numTimesConsulted = 0;

}
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This will yield ABEntry objects with the values you expect, but it’s still
not the best approach. The rules of C++ stipulate that data members
of an object are initialized before the body of a constructor is entered.
Inside the ABEntry constructor, theName, theAddress, and thePhones
aren’t being initialized, they’re being assigned. Initialization took place
earlier — when their default constructors were automatically called
prior to entering the body of the ABEntry constructor. This isn’t true for
numTimesConsulted, because it’s a built-in type. For it, there’s no guar-
antee it was initialized at all prior to its assignment.

A better way to write the ABEntry constructor is to use the member ini-
tialization list instead of assignments:

ABEntry::ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones)

: theName(name),
theAddress(address), // these are now all initializations
thePhones(phones),
numTimesConsulted(0)

{} // the ctor body is now empty

This constructor yields the same end result as the one above, but it
will often be more efficient. The assignment-based version first called
default constructors to initialize theName, theAddress, and thePhones,
then promptly assigned new values on top of the default-constructed
ones. All the work performed in those default constructions was
therefore wasted. The member initialization list approach avoids that
problem, because the arguments in the initialization list are used as
constructor arguments for the various data members. In this case,
theName is copy-constructed from name, theAddress is copy-con-
structed from address, and thePhones is copy-constructed from phones.
For most types, a single call to a copy constructor is more efficient —
sometimes much more efficient — than a call to the default construc-
tor followed by a call to the copy assignment operator. 

For objects of built-in type like numTimesConsulted, there is no differ-
ence in cost between initialization and assignment, but for consis-
tency, it’s often best to initialize everything via member initialization.
Similarly, you can use the member initialization list even when you
want to default-construct a data member; just specify nothing as an
initialization argument. For example, if ABEntry had a constructor tak-
ing no parameters, it could be implemented like this:

ABEntry::ABEntry()
: theName(), // call theName’s default ctor;

theAddress(), // do the same for theAddress;
thePhones(), // and for thePhones;
numTimesConsulted(0) // but explicitly initialize

{} // numTimesConsulted to zero
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Because compilers will automatically call default constructors for data
members of user-defined types when those data members have no ini-
tializers on the member initialization list, some programmers consider
the above approach overkill. That’s understandable, but having a pol-
icy of always listing every data member on the initialization list avoids
having to remember which data members may go uninitialized if they
are omitted. Because numTimesConsulted is of a built-in type, for
example, leaving it off a member initialization list could open the door
to undefined behavior.

Sometimes the initialization list must be used, even for built-in types.
For example, data members that are const or are references must be
initialized; they can’t be assigned (see also Item 5). To avoid having to
memorize when data members must be initialized in the member ini-
tialization list and when it’s optional, the easiest choice is to always
use the initialization list. It’s sometimes required, and it’s often more
efficient than assignments.

Many classes have multiple constructors, and each constructor has
its own member initialization list. If there are many data members
and/or base classes, the existence of multiple initialization lists intro-
duces undesirable repetition (in the lists) and boredom (in the pro-
grammers). In such cases, it’s not unreasonable to omit entries in the
lists for data members where assignment works as well as true initial-
ization, moving the assignments to a single (typically private) function
that all the constructors call. This approach can be especially helpful
if the true initial values for the data members are to be read from a file
or looked up in a database. In general, however, true member initial-
ization (via an initialization list) is preferable to pseudo-initialization
via assignment.

One aspect of C++ that isn’t fickle is the order in which an object’s
data is initialized. This order is always the same: base classes are ini-
tialized before derived classes (see also Item 12), and within a class,
data members are initialized in the order in which they are declared.
In ABEntry, for example, theName will always be initialized first, theAd-
dress second, thePhones third, and numTimesConsulted last. This is true
even if they are listed in a different order on the member initialization
list (something that’s unfortunately legal). To avoid reader confusion,
as well as the possibility of some truly obscure behavioral bugs,
always list members in the initialization list in the same order as
they’re declared in the class. 

Once you’ve taken care of explicitly initializing non-member objects of
built-in types and you’ve ensured that your constructors initialize
their base classes and data members using the member initialization
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list, there’s only one more thing to worry about. That thing is — take a
deep breath — the order of initialization of non-local static objects
defined in different translation units. 

Let’s pick that phrase apart bit by bit.

A static object is one that exists from the time it’s constructed until the
end of the program. Stack and heap-based objects are thus excluded.
Included are global objects, objects defined at namespace scope,
objects declared static inside classes, objects declared static inside
functions, and objects declared static at file scope. Static objects inside
functions are known as local static objects (because they’re local to a
function), and the other kinds of static objects are known as non-local
static objects. Static objects are destroyed when the program exits,
i.e., their destructors are called when main finishes executing.

A translation unit is the source code giving rise to a single object file.
It’s basically a single source file, plus all of its #include files.

The problem we’re concerned with, then, involves at least two sepa-
rately compiled source files, each of which contains at least one non-
local static object (i.e., an object that’s global, at namespace scope, or
static in a class or at file scope). And the actual problem is this: if ini-
tialization of a non-local static object in one translation unit uses a
non-local static object in a different translation unit, the object it uses
could be uninitialized, because the relative order of initialization of non-
local static objects defined in different translation units is undefined. 

An example will help. Suppose you have a FileSystem class that makes
files on the Internet look like they’re local. Since your class makes the
world look like a single file system, you might create a special object at
global or namespace scope representing the single file system:

class FileSystem { // from your library’s header file
public:

...
std::size_t numDisks() const; // one of many member functions
...

}; 

extern FileSystem tfs; // declare object for clients to use
// (“tfs” = “the file system” ); definition
// is in some .cpp file in your library

A FileSystem object is decidedly non-trivial, so use of the tfs object
before it has been constructed would be disastrous.

Now suppose some client creates a class for directories in a file sys-
tem. Naturally, their class uses the tfs object:
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class Directory { // created by library client
public:

 Directory( params );
...

};

Directory::Directory( params )
{

...
std::size_t disks = tfs.numDisks(); // use the tfs object
...

}

Further suppose this client decides to create a single Directory object
for temporary files:

Directory tempDir( params ); // directory for temporary files

Now the importance of initialization order becomes apparent: unless
tfs is initialized before tempDir, tempDir’s constructor will attempt to
use tfs before it’s been initialized. But tfs and tempDir were created by
different people at different times in different source files — they’re
non-local static objects defined in different translation units. How can
you be sure that tfs will be initialized before tempDir?

You can’t. Again, the relative order of initialization of non-local static
objects defined in different translation units is undefined. There is a
reason for this. Determining the “proper” order in which to initialize
non-local static objects is hard. Very hard. Unsolvably hard. In its
most general form — with multiple translation units and non-local
static objects generated through implicit template instantiations
(which may themselves arise via implicit template instantiations) —
it’s not only impossible to determine the right order of initialization,
it’s typically not even worth looking for special cases where it is possi-
ble to determine the right order.

Fortunately, a small design change eliminates the problem entirely.
All that has to be done is to move each non-local static object into its
own function, where it’s declared static. These functions return refer-
ences to the objects they contain. Clients then call the functions
instead of referring to the objects. In other words, non-local static
objects are replaced with local static objects. (Aficionados of design
patterns will recognize this as a common implementation of the Sin-
gleton pattern.†)

This approach is founded on C++’s guarantee that local static objects
are initialized when the object’s definition is first encountered during
a call to that function. So if you replace direct accesses to non-local

† Actually, it’s only part of a Singleton implementation. An essential part of Singleton I
ignore in this Item is preventing the creation of multiple objects of a particular type.
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static objects with calls to functions that return references to local
static objects, you’re guaranteed that the references you get back will
refer to initialized objects. As a bonus, if you never call a function
emulating a non-local static object, you never incur the cost of con-
structing and destructing the object, something that can’t be said for
true non-local static objects.

Here’s the technique applied to both tfs and tempDir:

class FileSystem { ... }; // as before

FileSystem& tfs() // this replaces the tfs object; it could be
{ // static in the FileSystem class

static FileSystem fs; // define and initialize a local static object
return fs; // return a reference to it

}

class Directory { ... }; // as before

Directory::Directory( params ) // as before, except references to tfs are 
{ // now to tfs()

...
std::size_t disks = tfs().numDisks();
...

}

Directory& tempDir() // this replaces the tempDir object; it
{ // could be static in the Directory class

static Directory td( params ); // define/initialize local static object
return td; // return reference to it

}

Clients of this modified system program exactly as they used to,
except they now refer to tfs() and tempDir() instead of tfs and tempDir.
That is, they use functions returning references to objects instead of
using the objects themselves.

The reference-returning functions dictated by this scheme are always
simple: define and initialize a local static object on line 1, return it on
line 2. This simplicity makes them excellent candidates for inlining,
especially if they’re called frequently (see Item 30). On the other hand,
the fact that these functions contain static objects makes them prob-
lematic in multithreaded systems. Then again, any kind of non-const
static object — local or non-local — is trouble waiting to happen in the
presence of multiple threads. One way to deal with such trouble is to
manually invoke all the reference-returning functions during the sin-
gle-threaded startup portion of the program. This eliminates initializa-
tion-related race conditions.

Of course, the idea of using reference-returning functions to prevent
initialization order problems is dependent on there being a reasonable
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initialization order for your objects in the first place. If you have a sys-
tem where object A must be initialized before object B, but A’s initial-
ization is dependent on B’s having already been initialized, you are
going to have problems, and frankly, you deserve them. If you steer
clear of such pathological scenarios, however, the approach described
here should serve you nicely, at least in single-threaded applications. 

To avoid using objects before they’re initialized, then, you need to do
only three things. First, manually initialize non-member objects of
built-in types. Second, use member initialization lists to initialize all
parts of an object. Finally, design around the initialization order
uncertainty that afflicts non-local static objects defined in separate
translation units. 

Things to Remember

✦ Manually initialize objects of built-in type, because C++ only some-
times initializes them itself.

✦ In a constructor, prefer use of the member initialization list to as-
signment inside the body of the constructor. List data members in
the initialization list in the same order they’re declared in the class.

✦ Avoid initialization order problems across translation units by re-
placing non-local static objects with local static objects.



Constructors, Destructors, operator=Almost every class you write will have one or more constructors, a
destructor, and a copy assignment operator. Little wonder. These are
your bread-and-butter functions, the ones that control the fundamen-
tal operations of bringing a new object into existence and making sure
it’s initialized, getting rid of an object and making sure it’s properly
cleaned up, and giving an object a new value. Making mistakes in
these functions will lead to far-reaching — and unpleasant — reper-
cussions throughout your classes, so it’s vital that you get them right.
In this chapter, I offer guidance on putting together the functions that
comprise the backbone of well-formed classes.

Item 5: Know what functions C++ silently writes and 
calls.

When is an empty class not an empty class? When C++ gets through
with it. If you don’t declare them yourself, compilers will declare their
own versions of a copy constructor, a copy assignment operator, and a
destructor. Furthermore, if you declare no constructors at all, compil-
ers will also declare a default constructor for you. All these functions
will be both public and inline (see Item 30). As a result, if you write

class Empty{};

it’s essentially the same as if you’d written this:

class Empty {
public:

Empty() { ... } // default constructor
Empty(const Empty& rhs) { ... } // copy constructor

~Empty() { ... } // destructor — see below
// for whether it’s virtual

Empty& operator=(const Empty& rhs) { ... } // copy assignment operator
};

Chapter 2: Constructors, Destructors, and Assignment Operators

Constructors,
Destructors, and

Assignment Operators
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These functions are generated only if they are needed, but it doesn’t
take much to need them. The following code will cause each function
to be generated:

Empty e1; // default constructor;
// destructor

Empty e2(e1); // copy constructor 

e2 = e1; // copy assignment operator 

Given that compilers are writing functions for you, what do the func-
tions do? Well, the default constructor and the destructor primarily
give compilers a place to put “behind the scenes” code such as invoca-
tion of constructors and destructors of base classes and non-static
data members. Note that the generated destructor is non-virtual (see
Item 7) unless it’s for a class inheriting from a base class that itself
declares a virtual destructor (in which case the function’s virtualness
comes from the base class). 

As for the copy constructor and the copy assignment operator, the
compiler-generated versions simply copy each non-static data mem-
ber of the source object over to the target object. For example, con-
sider a NamedObject template that allows you to associate names with
objects of type T:

template<typename T>
class NamedObject {
public:

NamedObject(const char *name, const T& value);
NamedObject(const std::string& name, const T& value);

...

private:
std::string nameValue;
T objectValue;

};

Because a constructor is declared in NamedObject, compilers won’t
generate a default constructor. This is important. It means that if
you’ve carefully engineered a class to require constructor arguments,
you don’t have to worry about compilers overriding your decision by
blithely adding a constructor that takes no arguments.

NamedObject declares neither copy constructor nor copy assignment
operator, so compilers will generate those functions (if they are
needed). Look, then, at this use of the copy constructor:

NamedObject<int> no1("Smallest Prime Number", 2);

NamedObject<int> no2(no1); // calls copy constructor
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The copy constructor generated by compilers must initialize
no2.nameValue and no2.objectValue using no1.nameValue and no1.object-
Value, respectively. The type of nameValue is string, and the standard
string type has a copy constructor, so no2.nameValue will be initialized
by calling the string copy constructor with no1.nameValue as its argu-
ment. On the other hand, the type of NamedObject<int>::objectValue is
int (because T is int for this template instantiation), and int is a built-in
type, so no2.objectValue will be initialized by copying the bits in
no1.objectValue.

The compiler-generated copy assignment operator for NamedOb-
ject<int> would behave essentially the same way, but in general, com-
piler-generated copy assignment operators behave as I’ve described
only when the resulting code is both legal and has a reasonable
chance of making sense. If either of these tests fails, compilers will
refuse to generate an operator= for your class. 

For example, suppose NamedObject were defined like this, where
nameValue is a reference to a string and objectValue is a const T:

template<typename T>
class NamedObject {
public:

// this ctor no longer takes a const name, because nameValue
// is now a reference-to-non-const string. The char* constructor
// is gone, because we must have a string to refer to.
NamedObject(std::string& name, const T& value);

... // as above, assume no
// operator= is declared

private:
std::string& nameValue; // this is now a reference
const T objectValue; // this is now const

};

Now consider what should happen here:

std::string newDog("Persephone");
std::string oldDog("Satch");

NamedObject<int> p(newDog, 2); // when I originally wrote this, our
// dog Persephone was about to
// have her second birthday

NamedObject<int> s(oldDog, 36); // the family dog Satch (from my
// childhood) would be 36 if she
// were still alive

p = s; // what should happen to 
// the data members in p?

Before the assignment, both p.nameValue and s.nameValue refer to string
objects, though not the same ones. How should the assignment affect
p.nameValue? After the assignment, should p.nameValue refer to the
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string referred to by s.nameValue, i.e., should the reference itself be
modified? If so, that breaks new ground, because C++ doesn’t provide
a way to make a reference refer to a different object. Alternatively,
should the string object to which p.nameValue refers be modified, thus
affecting other objects that hold pointers or references to that string,
i.e., objects not directly involved in the assignment? Is that what the
compiler-generated copy assignment operator should do?

Faced with this conundrum, C++ refuses to compile the code. If you
want to support copy assignment in a class containing a reference
member, you must define the copy assignment operator yourself.
Compilers behave similarly for classes containing const members
(such as objectValue in the modified class above). It’s not legal to mod-
ify const members, so compilers are unsure how to treat them during
an implicitly generated assignment function. Finally, compilers reject
implicit copy assignment operators in derived classes that inherit
from base classes declaring the copy assignment operator private.
After all, compiler-generated copy assignment operators for derived
classes are supposed to handle base class parts, too (see Item 12), but
in doing so, they certainly can’t invoke member functions the derived
class has no right to call.

Things to Remember

✦ Compilers may implicitly generate a class’s default constructor, copy
constructor, copy assignment operator, and destructor.

Item 6: Explicitly disallow the use of compiler-
generated functions you do not want.

Real estate agents sell houses, and a software system supporting such
agents would naturally have a class representing homes for sale:

class HomeForSale { ... };

As every real estate agent will be quick to point out, every property is
unique — no two are exactly alike. That being the case, the idea of
making a copy of a HomeForSale object makes little sense. How can
you copy something that’s inherently unique? You’d thus like
attempts to copy HomeForSale objects to not compile:

HomeForSale h1;
HomeForSale h2;

HomeForSale h3(h1); // attempt to copy h1 — should 
// not compile!

h1 = h2; // attempt to copy h2 — should
// not compile!
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Alas, preventing such compilation isn’t completely straightforward.
Usually, if you don’t want a class to support a particular kind of func-
tionality, you simply don’t declare the function that would provide it.
This strategy doesn’t work for the copy constructor and copy assign-
ment operator, because, as Item 5 points out, if you don’t declare
them and somebody tries to call them, compilers declare them for you.

This puts you in a bind. If you don’t declare a copy constructor or a
copy assignment operator, compilers may generate them for you. Your
class thus supports copying. If, on the other hand, you do declare
these functions, your class still supports copying. But the goal here is
to prevent copying!

The key to the solution is that all the compiler generated functions are
public. To prevent these functions from being generated, you must
declare them yourself, but there is nothing that requires that you
declare them public. Instead, declare the copy constructor and the
copy assignment operator private. By declaring a member function
explicitly, you prevent compilers from generating their own version,
and by making the function private, you keep people from calling it. 

Mostly. The scheme isn’t foolproof, because member and friend func-
tions can still call your private functions. Unless, that is, you are
clever enough not to define them. Then if somebody inadvertently
calls one, they’ll get an error at link-time. This trick — declaring mem-
ber functions private and deliberately not implementing them — is so
well established, it’s used to prevent copying in several classes in
C++’s iostreams library. Take a look, for example, at the definitions of
ios_base, basic_ios, and sentry in your standard library implementation.
You’ll find that in each case, both the copy constructor and the copy
assignment operator are declared private and are not defined.

Applying the trick to HomeForSale is easy:

class HomeForSale {
public:

...

private:
...
HomeForSale(const HomeForSale&); // declarations only
HomeForSale& operator=(const HomeForSale&);

};

You’ll note that I’ve omitted the names of the functions’ parameters.
This isn’t required, it’s just a common convention. After all, the func-
tions will never be implemented, much less used, so what’s the point
in specifying parameter names?

With the above class definition, compilers will thwart client attempts
to copy HomeForSale objects, and if you inadvertently try to do it in a
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member or a friend function, the linker will complain.

It’s possible to move the link-time error up to compile time (always a
good thing — earlier error detection is better than later) by declaring
the copy constructor and copy assignment operator private not in
HomeForSale itself, but in a base class specifically designed to prevent
copying. The base class is simplicity itself:

class Uncopyable {
protected: // allow construction

Uncopyable() {} // and destruction of
~Uncopyable() { } // derived objects...

private:
Uncopyable(const Uncopyable&); // ...but prevent copying
Uncopyable& operator=(const Uncopyable&);

};

To keep HomeForSale objects from being copied, all we have to do now
is inherit from Uncopyable:

class HomeForSale: private Uncopyable { // class no longer
... // declares copy ctor or

}; // copy assign. operator

This works, because compilers will try to generate a copy constructor
and a copy assignment operator if anybody — even a member or friend
function — tries to copy a HomeForSale object. As Item 12 explains, the
compiler-generated versions of these functions will try to call their
base class counterparts, and those calls will be rejected, because the
copying operations are private in the base class.

The implementation and use of Uncopyable include some subtleties,
such as the fact that inheritance from Uncopyable needn’t be public
(see Items 32 and 39) and that Uncopyable’s destructor need not be
virtual (see Item 7). Because Uncopyable contains no data, it’s eligible
for the empty base class optimization described in Item 39, but
because it’s a base class, use of this technique could lead to multiple
inheritance (see Item 40). Multiple inheritance, in turn, can some-
times disable the empty base class optimization (again, see Item 39).
In general, you can ignore these subtleties and just use Uncopyable as
shown, because it works precisely as advertised. You can also use the
version available at Boost (see Item 55). That class is named noncopy-
able. It’s a fine class, I just find the name a bit un-, er, nonnatural.

Things to Remember

✦ To disallow functionality automatically provided by compilers, de-
clare the corresponding member functions private and give no imple-
mentations. Using a base class like Uncopyable is one way to do this.
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Item 7: Declare destructors virtual in polymorphic 
base classes.

There are lots of ways to keep track of time, so it would be reasonable
to create a TimeKeeper base class along with derived classes for differ-
ent approaches to timekeeping:

class TimeKeeper {
public:

TimeKeeper();
~TimeKeeper();
...

};

class AtomicClock: public TimeKeeper { ... };

class WaterClock: public TimeKeeper { ... };

class WristWatch: public TimeKeeper { ... };

Many clients will want access to the time without worrying about the
details of how it’s calculated, so a factory function — a function that
returns a base class pointer to a newly-created derived class object —
can be used to return a pointer to a timekeeping object:

TimeKeeper* getTimeKeeper(); // returns a pointer to a dynamic-
// ally allocated object of a class 
// derived from TimeKeeper

In keeping with the conventions of factory functions, the objects
returned by getTimeKeeper are on the heap, so to avoid leaking mem-
ory and other resources, it’s important that each returned object be
properly deleted:

TimeKeeper *ptk = getTimeKeeper(); // get dynamically allocated object
// from TimeKeeper hierarchy

... // use it

delete ptk; // release it to avoid resource leak

Item 13 explains that relying on clients to perform the deletion is
error-prone, and Item 18 explains how the interface to the factory
function can be modified to prevent common client errors, but such
concerns are secondary here, because in this Item we address a more
fundamental weakness of the code above: even if clients do everything
right, there is no way to know how the program will behave.

The problem is that getTimeKeeper returns a pointer to a derived class
object (e.g., AtomicClock), that object is being deleted via a base class
pointer (i.e., a TimeKeeper* pointer), and the base class (TimeKeeper)
has a non-virtual destructor. This is a recipe for disaster, because C++
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specifies that when a derived class object is deleted through a pointer
to a base class with a non-virtual destructor, results are undefined.
What typically happens at runtime is that the derived part of the
object is never destroyed. If getTimeKeeper were to return a pointer to
an AtomicClock object, the AtomicClock part of the object (i.e., the data
members declared in the AtomicClock class) would probably not be
destroyed, nor would the AtomicClock destructor run. However, the
base class part (i.e., the TimeKeeper part) typically would be destroyed,
thus leading to a curious “partially destroyed” object. This is an excel-
lent way to leak resources, corrupt data structures, and spend a lot of
time with a debugger.

Eliminating the problem is simple: give the base class a virtual
destructor. Then deleting a derived class object will do exactly what
you want. It will destroy the entire object, including all its derived
class parts:

class TimeKeeper {
public:

TimeKeeper();
virtual ~TimeKeeper();
...

};

TimeKeeper *ptk = getTimeKeeper();

...

delete ptk; // now behaves correctly

Base classes like TimeKeeper generally contain virtual functions other
than the destructor, because the purpose of virtual functions is to
allow customization of derived class implementations (see Item 34).
For example, TimeKeeper might have a virtual function, getCurrentTime,
which would be implemented differently in the various derived
classes. Any class with virtual functions should almost certainly have
a virtual destructor. 

If a class does not contain virtual functions, that often indicates it is
not meant to be used as a base class. When a class is not intended to
be a base class, making the destructor virtual is usually a bad idea.
Consider a class for representing points in two-dimensional space:

class Point { // a 2D point
public:

Point(int xCoord, int yCoord);
~Point();

private:
int x, y;

};
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If an int occupies 32 bits, a Point object can typically fit into a 64-bit
register. Furthermore, such a Point object can be passed as a 64-bit
quantity to functions written in other languages, such as C or FOR-
TRAN. If Point’s destructor is made virtual, however, the situation
changes. 

The implementation of virtual functions requires that objects carry
information that can be used at runtime to determine which virtual
functions should be invoked on the object. This information typically
takes the form of a pointer called a vptr (“virtual table pointer”). The
vptr points to an array of function pointers called a vtbl (“virtual
table”); each class with virtual functions has an associated vtbl. When
a virtual function is invoked on an object, the actual function called is
determined by following the object’s vptr to a vtbl and then looking up
the appropriate function pointer in the vtbl.

The details of how virtual functions are implemented are unimport-
ant. What is important is that if the Point class contains a virtual func-
tion, objects of that type will increase in size. On a 32-bit architecture,
they’ll go from 64 bits (for the two ints) to 96 bits (for the ints plus the
vptr); on a 64-bit architecture, they may go from 64 to 128 bits,
because pointers on such architectures are 64 bits in size. Addition of
a vptr to Point will thus increase its size by 50–100%! No longer can
Point objects fit in a 64-bit register. Furthermore, Point objects in C++
can no longer look like the same structure declared in another lan-
guage such as C, because their foreign language counterparts will
lack the vptr. As a result, it is no longer possible to pass Points to and
from functions written in other languages unless you explicitly com-
pensate for the vptr, which is itself an implementation detail and
hence unportable.

The bottom line is that gratuitously declaring all destructors virtual is
just as wrong as never declaring them virtual. In fact, many people
summarize the situation this way: declare a virtual destructor in a
class if and only if that class contains at least one virtual function. 

It is possible to get bitten by the non-virtual destructor problem even
in the complete absence of virtual functions. For example, the stan-
dard string type contains no virtual functions, but misguided program-
mers sometimes use it as a base class anyway:

class SpecialString: public std::string { // bad idea! std::string has a 
... // non-virtual destructor

};

At first glance, this may look innocuous, but if anywhere in an appli-
cation you somehow convert a pointer-to-SpecialString into a pointer-to-
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string and you then use delete on the string pointer, you are instantly
transported to the realm of undefined behavior:

SpecialString *pss =new SpecialString("Impending Doom");

std::string *ps;

...

ps = pss; // SpecialString* ⇒ std::string*
...

delete ps; // undefined! In practice, 
// *ps’s SpecialString resources
// will be leaked, because the
// SpecialString destructor won’t
// be called.

The same analysis applies to any class lacking a virtual destructor,
including all the STL container types (e.g., vector, list, set,
tr1::unordered_map (see Item 54), etc.). If you’re ever tempted to inherit
from a standard container or any other class with a non-virtual
destructor, resist the temptation! (Unfortunately, C++ offers no deriva-
tion-prevention mechanism akin to Java’s final classes or C#’s sealed
classes.)

Occasionally it can be convenient to give a class a pure virtual
destructor. Recall that pure virtual functions result in abstract classes
— classes that can’t be instantiated (i.e., you can’t create objects of
that type). Sometimes, however, you have a class that you’d like to be
abstract, but you don’t have any pure virtual functions. What to do?
Well, because an abstract class is intended to be used as a base class,
and because a base class should have a virtual destructor, and
because a pure virtual function yields an abstract class, the solution
is simple: declare a pure virtual destructor in the class you want to be
abstract. Here’s an example:

class AWOV { // AWOV = “Abstract w/o Virtuals”
public:

virtual ~AWOV() = 0; // declare pure virtual destructor
};

This class has a pure virtual function, so it’s abstract, and it has a vir-
tual destructor, so you won’t have to worry about the destructor prob-
lem. There is one twist, however: you must provide a definition for the
pure virtual destructor:

AWOV::~AWOV() {} // definition of pure virtual dtor

The way destructors work is that the most derived class’s destructor
is called first, then the destructor of each base class is called. Compil-
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ers will generate a call to ~AWOV from its derived classes’ destructors,
so you have to be sure to provide a body for the function. If you don’t,
the linker will complain.

The rule for giving base classes virtual destructors applies only to
polymorphic base classes — to base classes designed to allow the
manipulation of derived class types through base class interfaces.
TimeKeeper is a polymorphic base class, because we expect to be able
to manipulate AtomicClock and WaterClock objects, even if we have only
TimeKeeper pointers to them. 

Not all base classes are designed to be used polymorphically. Neither
the standard string type, for example, nor the STL container types are
designed to be base classes at all, much less polymorphic ones. Some
classes are designed to be used as base classes, yet are not designed
to be used polymorphically. Such classes — examples include Uncopy-
able from Item 6 and input_iterator_tag from the standard library (see
Item 47) — are not designed to allow the manipulation of derived class
objects via base class interfaces. As a result, they don’t need virtual
destructors. 

Things to Remember

✦ Polymorphic base classes should declare virtual destructors. If a
class has any virtual functions, it should have a virtual destructor.

✦ Classes not designed to be base classes or not designed to be used
polymorphically should not declare virtual destructors.

Item 8: Prevent exceptions from leaving destructors.

C++ doesn’t prohibit destructors from emitting exceptions, but it cer-
tainly discourages the practice. With good reason. Consider:

class Widget {
public:

...
~Widget() { ... } // assume this might emit an exception

};

void doSomething()
{

std::vector<Widget> v;
...

} // v is automatically destroyed here

When the vector v is destroyed, it is responsible for destroying all the
Widgets it contains. Suppose v has ten Widgets in it, and during
destruction of the first one, an exception is thrown. The other nine
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Widgets still have to be destroyed (otherwise any resources they hold
would be leaked), so v should invoke their destructors. But suppose
that during those calls, a second Widget destructor throws an excep-
tion. Now there are two simultaneously active exceptions, and that’s
one too many for C++. Depending on the precise conditions under
which such pairs of simultaneously active exceptions arise, program
execution either terminates or yields undefined behavior. In this
example, it yields undefined behavior. It would yield equally undefined
behavior using any other standard library container (e.g., list, set), any
container in TR1 (see Item 54), or even an array. Not that containers
or arrays are required to get into trouble. Premature program termi-
nation or undefined behavior can result from destructors emitting
exceptions even without using containers and arrays. C++ does not
like destructors that emit exceptions!

That’s easy enough to understand, but what should you do if your
destructor needs to perform an operation that may fail by throwing an
exception? For example, suppose you’re working with a class for data-
base connections:

class DBConnection {
public:

...

static DBConnection create(); // function to return
// DBConnection objects; params
// omitted for simplicity

void close(); // close connection; throw an
}; // exception if closing fails

To ensure that clients don’t forget to call close on DBConnection objects,
a reasonable idea would be to create a resource-managing class for
DBConnection that calls close in its destructor. Such resource-managing
classes are explored in detail in Chapter 3, but here, it’s enough to
consider what the destructor for such a class would look like:

class DBConn { // class to manage DBConnection
public: // objects

...

~DBConn() // make sure database connections
{ // are always closed

db.close();
}

private:
DBConnection db;

};

That allows clients to program like this:
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{ // open a block

DBConn dbc(DBConnection::create()); // create DBConnection object
// and turn it over to a DBConn
// object to manage

... // use the DBConnection object
// via the DBConn interface

} // at end of block, the DBConn
// object is destroyed, thus
// automatically calling close on 
// the DBConnection object

This is fine as long as the call to close succeeds, but if the call yields
an exception, DBConn’s destructor will propagate that exception, i.e.,
allow it to leave the destructor. That’s a problem, because destructors
that throw mean trouble.

There are two primary ways to avoid the trouble. DBConn’s destructor
could:

■ Terminate the program if close throws, typically by calling abort:

DBConn::~DBConn()
{

try { db.close(); }
catch (...) {

make log entry that the call to close failed;
std::abort();

}
}

This is a reasonable option if the program cannot continue to run
after an error is encountered during destruction. It has the advan-
tage that if allowing the exception to propagate from the destructor
would lead to undefined behavior, this prevents that from happen-
ing. That is, calling abort may forestall undefined behavior.

■ Swallow the exception arising from the call to close:

DBConn::~DBConn()
{

try { db.close(); }
catch (...) {

make log entry that the call to close failed;
}

}

In general, swallowing exceptions is a bad idea, because it sup-
presses important information — something failed! Sometimes,
however, swallowing exceptions is preferable to running the risk of
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premature program termination or undefined behavior. For this to
be a viable option, the program must be able to reliably continue
execution even after an error has been encountered and ignored. 

Neither of these approaches is especially appealing. The problem with
both is that the program has no way to react to the condition that led
to close throwing an exception in the first place. 

A better strategy is to design DBConn’s interface so that its clients have
an opportunity to react to problems that may arise. For example,
DBConn could offer a close function itself, thus giving clients a chance
to handle exceptions arising from that operation. It could also keep
track of whether its DBConnection had been closed, closing it itself in
the destructor if not. That would prevent a connection from leaking. If
the call to close were to fail in the DBConnection destructor, however,
we’d be back to terminating or swallowing:

class DBConn {
public:

...

void close() // new function for
{ // client use

db.close();
closed = true;

}

~DBConn()
{

if (!closed) {
try { // close the connection

db.close(); // if the client didn’t
}
catch (...) { // if closing fails,

make log entry that call to close failed; // note that and
... // terminate or swallow

}
}

}

private:
DBConnection db;
bool closed;

};

Moving the responsibility for calling close from DBConn’s destructor to
DBConn’s client (with DBConn’s destructor containing a “backup” call)
may strike you as an unscrupulous shift of burden. You might even
view it as a violation of Item 18’s advice to make interfaces easy to use
correctly. In fact, it’s neither. If an operation may fail by throwing an
exception and there may be a need to handle that exception, the
exception has to come from some non-destructor function. That’s
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because destructors that emit exceptions are dangerous, always run-
ning the risk of premature program termination or undefined behav-
ior. In this example, telling clients to call close themselves doesn’t
impose a burden on them; it gives them an opportunity to deal with
errors they would otherwise have no chance to react to. If they don’t
find that opportunity useful (perhaps because they believe that no
error will really occur), they can ignore it, relying on DBConn’s destruc-
tor to call close for them. If an error occurs at that point — if close does
throw — they’re in no position to complain if DBConn swallows the
exception or terminates the program. After all, they had first crack at
dealing with the problem, and they chose not to use it.

Things to Remember

✦ Destructors should never emit exceptions. If functions called in a
destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

✦ If class clients need to be able to react to exceptions thrown during
an operation, the class should provide a regular (i.e., non-destruc-
tor) function that performs the operation.

Item 9: Never call virtual functions during 
construction or destruction.

I’ll begin with the recap: you shouldn’t call virtual functions during
construction or destruction, because the calls won’t do what you
think, and if they did, you’d still be unhappy. If you’re a recovering
Java or C# programmer, pay close attention to this Item, because this
is a place where those languages zig, while C++ zags. 

Suppose you’ve got a class hierarchy for modeling stock transactions,
e.g., buy orders, sell orders, etc. It’s important that such transactions
be auditable, so each time a transaction object is created, an appro-
priate entry needs to be created in an audit log. This seems like a rea-
sonable way to approach the problem:

class Transaction { // base class for all
public: // transactions

Transaction();

virtual void logTransaction() const = 0; // make type-dependent
// log entry

...

};
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Transaction::Transaction() // implementation of
{ // base class ctor

...
logTransaction(); // as final action, log this

} // transaction

class BuyTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

class SellTransaction: public Transaction { // derived class
public:

virtual void logTransaction() const; // how to log trans-
// actions of this type

...

};

Consider what happens when this code is executed:

BuyTransaction b;

Clearly a BuyTransaction constructor will be called, but first, a Transac-
tion constructor must be called; base class parts of derived class
objects are constructed before derived class parts are. The last line of
the Transaction constructor calls the virtual function logTransaction, but
this is where the surprise comes in. The version of logTransaction that’s
called is the one in Transaction, not the one in BuyTransaction — even
though the type of object being created is BuyTransaction. During base
class construction, virtual functions never go down into derived
classes. Instead, the object behaves as if it were of the base type.
Informally speaking, during base class construction, virtual functions
aren’t. 

There’s a good reason for this seemingly counterintuitive behavior.
Because base class constructors execute before derived class con-
structors, derived class data members have not been initialized when
base class constructors run. If virtual functions called during base
class construction went down to derived classes, the derived class
functions would almost certainly refer to local data members, but
those data members would not yet have been initialized. That would
be a non-stop ticket to undefined behavior and late-night debugging
sessions. Calling down to parts of an object that have not yet been ini-
tialized is inherently dangerous, so C++ gives you no way to do it. 

It’s actually more fundamental than that. During base class construc-
tion of a derived class object, the type of the object is that of the base
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class. Not only do virtual functions resolve to the base class, but the
parts of the language using runtime type information (e.g.,
dynamic_cast (see Item 27) and typeid) treat the object as a base class
type. In our example, while the Transaction constructor is running to
initialize the base class part of a BuyTransaction object, the object is of
type Transaction. That’s how every part of C++ will treat it, and the
treatment makes sense: the BuyTransaction-specific parts of the object
haven’t been initialized yet, so it’s safest to treat them as if they didn’t
exist. An object doesn’t become a derived class object until execution
of a derived class constructor begins. 

The same reasoning applies during destruction. Once a derived class
destructor has run, the object’s derived class data members assume
undefined values, so C++ treats them as if they no longer exist. Upon
entry to the base class destructor, the object becomes a base class
object, and all parts of C++ — virtual functions, dynamic_casts, etc., —
treat it that way.

In the example code above, the Transaction constructor made a direct
call to a virtual function, a clear and easy-to-see violation of this
Item’s guidance. The violation is so easy to see, some compilers issue
a warning about it. (Others don’t. See Item 53 for a discussion of
warnings.) Even without such a warning, the problem would almost
certainly become apparent before runtime, because the logTransaction
function is pure virtual in Transaction. Unless it had been defined
(unlikely, but possible — see Item 34), the program wouldn’t link: the
linker would be unable to find the necessary implementation of Trans-
action::logTransaction.

It’s not always so easy to detect calls to virtual functions during con-
struction or destruction. If Transaction had multiple constructors, each
of which had to perform some of the same work, it would be good soft-
ware engineering to avoid code replication by putting the common ini-
tialization code, including the call to logTransaction, into a private non-
virtual initialization function, say, init:

class Transaction {
public:

Transaction()
{ init(); } // call to non-virtual...

virtual void logTransaction() const = 0;
...

private:
void init()
{

...
logTransaction(); // ...that calls a virtual!

}
};
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This code is conceptually the same as the earlier version, but it’s more
insidious, because it will typically compile and link without complaint.
In this case, because logTransaction is pure virtual in Transaction, most
runtime systems will abort the program when the pure virtual is
called (typically issuing a message to that effect). However, if logTrans-
action were a “normal” virtual function (i.e., not pure virtual) with an
implementation in Transaction, that version would be called, and the
program would merrily trot along, leaving you to figure out why the
wrong version of logTransaction was called when a derived class object
was created. The only way to avoid this problem is to make sure that
none of your constructors or destructors call virtual functions on the
object being created or destroyed and that all the functions they call
obey the same constraint. 

But how do you ensure that the proper version of logTransaction is
called each time an object in the Transaction hierarchy is created?
Clearly, calling a virtual function on the object from the Transaction
constructor(s) is the wrong way to do it. 

There are different ways to approach this problem. One is to turn log-
Transaction into a non-virtual function in Transaction, then require that
derived class constructors pass the necessary log information to the
Transaction constructor. That function can then safely call the non-vir-
tual logTransaction. Like this:

class Transaction {
public:

explicit Transaction(const std::string& logInfo);

void logTransaction(const std::string& logInfo) const; // now a non-
// virtual func

...

};

Transaction::Transaction(const std::string& logInfo)
{

...
logTransaction(logInfo); // now a non-

} // virtual call

class BuyTransaction: public Transaction {
public:

BuyTransaction( parameters )
: Transaction(createLogString( parameters )) // pass log info
{ ... } // to base class
... // constructor

private:
static std::string createLogString( parameters );

};
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In other words, since you can’t use virtual functions to call down from
base classes during construction, you can compensate by having
derived classes pass necessary construction information up to base
class constructors instead. 

In this example, note the use of the (private) static function createLog-
String in BuyTransaction. Using a helper function to create a value to
pass to a base class constructor is often more convenient (and more
readable) than going through contortions in the member initialization
list to give the base class what it needs. By making the function static,
there’s no danger of accidentally referring to the nascent BuyTransac-
tion object’s as-yet-uninitialized data members. That’s important,
because the fact that those data members will be in an undefined
state is why calling virtual functions during base class construction
and destruction doesn’t go down into derived classes in the first place.

Things to Remember

✦ Don’t call virtual functions during construction or destruction, be-
cause such calls will never go to a more derived class than that of
the currently executing constructor or destructor.

Item 10: Have assignment operators return a 
reference to *this.

One of the interesting things about assignments is that you can chain
them together:

int x, y, z;

x = y = z = 15; // chain of assignments

Also interesting is that assignment is right-associative, so the above
assignment chain is parsed like this:

x = (y = (z = 15));

Here, 15 is assigned to z, then the result of that assignment (the
updated z) is assigned to y, then the result of that assignment (the
updated y) is assigned to x. 

The way this is implemented is that assignment returns a reference to
its left-hand argument, and that’s the convention you should follow
when you implement assignment operators for your classes:

class Widget {
public:

...
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Widget& operator=(const Widget& rhs) // return type is a reference to
{ // the current class

...
return *this; // return the left-hand object

}
...

};

This convention applies to all assignment operators, not just the stan-
dard form shown above. Hence:

class Widget {
public:

...
Widget& operator+=(const Widget& rhs) // the convention applies to
{ // +=, -=, *=, etc.

...
return *this;

}

Widget& operator=(int rhs) // it applies even if the
{ // operator’s parameter type

... // is unconventional
return *this;

}
...

};

This is only a convention; code that doesn’t follow it will compile. How-
ever, the convention is followed by all the built-in types as well as by
all the types in (or soon to be in — see Item 54) the standard library
(e.g., string, vector, complex, tr1::shared_ptr, etc.). Unless you have a
good reason for doing things differently, don’t.

Things to Remember

✦ Have assignment operators return a reference to *this.

Item 11: Handle assignment to self in operator=.

An assignment to self occurs when an object is assigned to itself:

class Widget { ... };

Widget w;

...

w = w; // assignment to self

This looks silly, but it’s legal, so rest assured that clients will do it.
Besides, assignment isn’t always so recognizable. For example, 
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a[i] = a[j]; // potential assignment to self

is an assignment to self if i and j have the same value, and 

*px = *py; // potential assignment to self

is an assignment to self if px and py happen to point to the same
thing. These less obvious assignments to self are the result of aliasing:
having more than one way to refer to an object. In general, code that
operates on references or pointers to multiple objects of the same type
needs to consider that the objects might be the same. In fact, the two
objects need not even be declared to be of the same type if they’re from
the same hierarchy, because a base class reference or pointer can
refer or point to an object of a derived class type:

class Base { ... };

class Derived: public Base { ... };

void doSomething(const Base& rb, // rb and *pd might actually be
Derived* pd); // the same object 

If you follow the advice of Items 13 and 14, you’ll always use objects to
manage resources, and you’ll make sure that the resource-managing
objects behave well when copied. When that’s the case, your assign-
ment operators will probably be self-assignment-safe without your
having to think about it. If you try to manage resources yourself, how-
ever (which you’d certainly have to do if you were writing a resource-
managing class), you can fall into the trap of accidentally releasing a
resource before you’re done using it. For example, suppose you create
a class that holds a raw pointer to a dynamically allocated bitmap:

class Bitmap { ... };

class Widget {
...

private:
Bitmap *pb; // ptr to a heap-allocated object

};

Here’s an implementation of operator= that looks reasonable on the
surface but is unsafe in the presence of assignment to self. (It’s also
not exception-safe, but we’ll deal with that in a moment.)

Widget&
Widget::operator=(const Widget& rhs) // unsafe impl. of operator=
{

delete pb; // stop using current bitmap
pb = new Bitmap(*rhs.pb); // start using a copy of rhs’s bitmap

return *this; // see Item 10
}
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The self-assignment problem here is that inside operator=, *this (the
target of the assignment) and rhs could be the same object. When they
are, the delete not only destroys the bitmap for the current object, it
destroys the bitmap for rhs, too. At the end of the function, the Widget
— which should not have been changed by the assignment to self —
finds itself holding a pointer to a deleted object!†

The traditional way to prevent this error is to check for assignment to
self via an identity test at the top of operator=:

Widget& Widget::operator=(const Widget& rhs)
{

if (this == &rhs) return *this; // identity test: if a self-assignment,
// do nothing

delete pb;
pb = new Bitmap(*rhs.pb);

return *this;
}

This works, but I mentioned above that the previous version of opera-
tor= wasn’t just self-assignment-unsafe, it was also exception-unsafe,
and this version continues to have exception trouble. In particular, if
the “new Bitmap” expression yields an exception (either because there
is insufficient memory for the allocation or because Bitmap’s copy con-
structor throws one), the Widget will end up holding a pointer to a
deleted Bitmap. Such pointers are toxic. You can’t safely delete them.
You can’t even safely read them. About the only safe thing you can do
with them is spend lots of debugging energy figuring out where they
came from.

Happily, making operator= exception-safe typically renders it self-
assignment-safe, too. As a result, it’s increasingly common to deal
with issues of self-assignment by ignoring them, focusing instead on
achieving exception safety. Item 29 explores exception safety in depth,
but in this Item, it suffices to observe that in many cases, a careful
ordering of statements can yield exception-safe (and self-assignment-
safe) code. Here, for example, we just have to be careful not to delete
pb until after we’ve copied what it points to:

Widget& Widget::operator=(const Widget& rhs)
{

Bitmap *pOrig = pb; // remember original pb
pb = new Bitmap(*rhs.pb); // make pb point to a copy of *pb
delete pOrig; // delete the original pb

return *this;
}

† Probably. C++ implementations are permitted to change the value of a deleted pointer
(e.g., to null or some other special bit pattern), but I am unaware of any that do.
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Now, if “new Bitmap” throws an exception, pb (and the Widget it’s inside
of) remains unchanged. Even without the identity test, this code han-
dles assignment to self, because we make a copy of the original bit-
map, delete the original bitmap, then point to the copy we made. It
may not be the most efficient way to handle self-assignment, but it
does work.

If you’re concerned about efficiency, you could put the identity test
back at the top of the function. Before doing that, however, ask your-
self how often you expect self-assignments to occur, because the test
isn’t free. It makes the code (both source and object) a bit bigger, and
it introduces a branch into the flow of control, both of which can
decrease runtime speed. The effectiveness of instruction prefetching,
caching, and pipelining can be reduced, for example.

An alternative to manually ordering statements in operator= to make
sure the implementation is both exception- and self-assignment-safe
is to use the technique known as “copy and swap.” This technique is
closely associated with exception safety, so it’s described in Item 29.
However, it’s a common enough way to write operator= that it’s worth
seeing what such an implementation often looks like:

class Widget {
...
void swap(Widget& rhs); // exchange *this’s and rhs’s data;
... // see Item 29 for details

};

Widget& Widget::operator=(const Widget& rhs)
{

Widget temp(rhs); // make a copy of rhs’s data

swap(temp); // swap *this’s data with the copy’s

return *this;
}

A variation on this theme takes advantage of the facts that (1) a class’s
copy assignment operator may be declared to take its argument by
value and (2) passing something by value makes a copy of it (see
Item 20):

Widget& Widget::operator=(Widget rhs) // rhs is a copy of the object
{ // passed in — note pass by val

swap(rhs); // swap *this’s data with
// the copy’s

return *this;
}
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Personally, I worry that this approach sacrifices clarity at the altar of
cleverness, but by moving the copying operation from the body of the
function to construction of the parameter, it’s a fact that compilers
can sometimes generate more efficient code. 

Things to Remember

✦ Make sure operator= is well-behaved when an object is assigned to
itself. Techniques include comparing addresses of source and target
objects, careful statement ordering, and copy-and-swap.

✦ Make sure that any function operating on more than one object be-
haves correctly if two or more of the objects are the same.

Item 12: Copy all parts of an object.

In well-designed object-oriented systems that encapsulate the internal
parts of objects, only two functions copy objects: the aptly named
copy constructor and copy assignment operator. We’ll call these the
copying functions. Item 5 observes that compilers will generate the
copying functions, if needed, and it explains that the compiler-gener-
ated versions do precisely what you’d expect: they copy all the data of
the object being copied. 

When you declare your own copying functions, you are indicating to
compilers that there is something about the default implementations
you don’t like. Compilers seem to take offense at this, and they retali-
ate in a curious fashion: they don’t tell you when your implementa-
tions are almost certainly wrong. 

Consider a class representing customers, where the copying functions
have been manually written so that calls to them are logged:

void logCall(const std::string& funcName); // make a log entry

class Customer {
public:

...
Customer(const Customer& rhs);
Customer& operator=(const Customer& rhs);
...

private:
std::string name;

};
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Customer::Customer(const Customer& rhs)
: name(rhs.name) // copy rhs’s data
{

logCall("Customer copy constructor");
}

Customer& Customer::operator=(const Customer& rhs)
{

logCall("Customer copy assignment operator");

name = rhs.name; // copy rhs’s data

return *this; // see Item 10
}

Everything here looks fine, and in fact everything is fine — until
another data member is added to Customer:

class Date { ... }; // for dates in time

class Customer {
public:

... // as before

private:
std::string name;
Date lastTransaction;

};

At this point, the existing copying functions are performing a partial
copy: they’re copying the customer’s name, but not its lastTransaction.
Yet most compilers say nothing about this, not even at maximal warn-
ing level (see also Item 53). That’s their revenge for your writing the
copying functions yourself. You reject the copying functions they’d
write, so they don’t tell you if your code is incomplete. The conclusion
is obvious: if you add a data member to a class, you need to make
sure that you update the copying functions, too. (You’ll also need to
update all the constructors (see Items 4 and 45) as well as any non-
standard forms of operator= in the class (Item 10 gives an example). If
you forget, compilers are unlikely to remind you.)

One of the most insidious ways this issue can arise is through inheri-
tance. Consider:

class PriorityCustomer: public Customer { // a derived class
public:

...
PriorityCustomer(const PriorityCustomer& rhs);
PriorityCustomer& operator=(const PriorityCustomer& rhs);
...

private:
int priority;

};
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PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)
: priority(rhs.priority)
{

logCall("PriorityCustomer copy constructor");
}

PriorityCustomer&
PriorityCustomer::operator=(const PriorityCustomer& rhs)
{

logCall("PriorityCustomer copy assignment operator");

priority = rhs.priority;

return *this;
}

PriorityCustomer’s copying functions look like they’re copying every-
thing in PriorityCustomer, but look again. Yes, they copy the data mem-
ber that PriorityCustomer declares, but every PriorityCustomer also
contains a copy of the data members it inherits from Customer, and
those data members are not being copied at all! PriorityCustomer’s copy
constructor specifies no arguments to be passed to its base class con-
structor (i.e., it makes no mention of Customer on its member initial-
ization list), so the Customer part of the PriorityCustomer object will be
initialized by the Customer constructor taking no arguments — by the
default constructor. (Assuming it has one. If not, the code won’t com-
pile.) That constructor will perform a default initialization for name
and lastTransaction. 

The situation is only slightly different for PriorityCustomer’s copy
assignment operator. It makes no attempt to modify its base class
data members in any way, so they’ll remain unchanged.

Any time you take it upon yourself to write copying functions for a
derived class, you must take care to also copy the base class parts.
Those parts are typically private, of course (see Item 22), so you can’t
access them directly. Instead, derived class copying functions must
invoke their corresponding base class functions:

PriorityCustomer::PriorityCustomer(const PriorityCustomer& rhs)
: Customer(rhs), // invoke base class copy ctor

priority(rhs.priority)
{

logCall("PriorityCustomer copy constructor");
}

PriorityCustomer&
PriorityCustomer::operator=(const PriorityCustomer& rhs)
{

logCall("PriorityCustomer copy assignment operator");

Customer::operator=(rhs); // assign base class parts
priority = rhs.priority;

return *this;
}
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The meaning of “copy all parts” in this Item’s title should now be clear.
When you’re writing a copying function, be sure to (1) copy all local
data members and (2) invoke the appropriate copying function in all
base classes, too.

In practice, the two copying functions will often have similar bodies,
and this may tempt you to try to avoid code duplication by having one
function call the other. Your desire to avoid code duplication is laud-
able, but having one copying function call the other is the wrong way
to achieve it. 

It makes no sense to have the copy assignment operator call the copy
constructor, because you’d be trying to construct an object that
already exists. This is so nonsensical, there’s not even a syntax for it.
There are syntaxes that look like you’re doing it, but you’re not; and
there are syntaxes that do do it in a backwards kind of way, but they
corrupt your object under some conditions. So I’m not going to show
you any of those syntaxes. Simply accept that having the copy assign-
ment operator call the copy constructor is something you don’t want
to do.

Trying things the other way around — having the copy constructor
call the copy assignment operator — is equally nonsensical. A con-
structor initializes new objects, but an assignment operator applies
only to objects that have already been initialized. Performing an
assignment on an object under construction would mean doing some-
thing to a not-yet-initialized object that makes sense only for an ini-
tialized object. Nonsense! Don’t try it.

Instead, if you find that your copy constructor and copy assignment
operator have similar code bodies, eliminate the duplication by creat-
ing a third member function that both call. Such a function is typi-
cally private and is often named init. This strategy is a safe, proven
way to eliminate code duplication in copy constructors and copy
assignment operators.

Things to Remember

✦ Copying functions should be sure to copy all of an object’s data
members and all of its base class parts.

✦ Don’t try to implement one of the copying functions in terms of the
other. Instead, put common functionality in a third function that
both call.



Resource ManagementA resource is something that, once you’re done using it, you need to
return to the system. If you don’t, bad things happen. In C++ pro-
grams, the most commonly used resource is dynamically allocated
memory (if you allocate memory and never deallocate it, you’ve got a
memory leak), but memory is only one of many resources you must
manage. Other common resources include file descriptors, mutex
locks, fonts and brushes in graphical user interfaces (GUIs), database
connections, and network sockets. Regardless of the resource, it’s
important that it be released when you’re finished with it. 

Trying to ensure this by hand is difficult under any conditions, but
when you consider exceptions, functions with multiple return paths,
and maintenance programmers modifying software without fully com-
prehending the impact of their changes, it becomes clear that ad hoc
ways of dealing with resource management aren’t sufficient. 

This chapter begins with a straightforward object-based approach to
resource management built on C++’s support for constructors,
destructors, and copying operations. Experience has shown that dis-
ciplined adherence to this approach can all but eliminate resource
management problems. The chapter then moves on to Items dedicated
specifically to memory management. These latter Items complement
the more general Items that come earlier, because objects that man-
age memory have to know how to do it properly.

Item 13: Use objects to manage resources.

Suppose we’re working with a library for modeling investments (e.g.,
stocks, bonds, etc.), where the various investment types inherit from a
root class Investment:

class Investment { ... }; // root class of hierarchy of
// investment types

Chapter 3: Resource Management

Resource
Management
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Further suppose that the way the library provides us with specific
Investment objects is through a factory function (see Item 7):

Investment* createInvestment(); // return ptr to dynamically allocated
// object in the Investment hierarchy;
// the caller must delete it
// (parameters omitted for simplicity)

As the comment indicates, callers of createInvestment are responsible
for deleting the object that function returns when they are done with
it. Consider, then, a function f written to fulfill this obligation:

void f()
{

Investment *pInv = createInvestment(); // call factory function

... // use pInv

delete pInv; // release object
}

This looks okay, but there are several ways f could fail to delete the
investment object it gets from createInvestment. There might be a pre-
mature return statement somewhere inside the “...” part of the func-
tion. If such a return were executed, control would never reach the
delete statement. A similar situation would arise if the uses of createIn-
vestment and delete were in a loop, and the loop was prematurely
exited by a break or goto statement. Finally, some statement inside the
“...” might throw an exception. If so, control would again not get to the
delete. Regardless of how the delete were to be skipped, we’d leak not
only the memory containing the investment object but also any
resources held by that object.

Of course, careful programming could prevent these kinds of errors,
but think about how the code might change over time. As the software
gets maintained, somebody might add a return or continue statement
without fully grasping the repercussions on the rest of the function’s
resource management strategy. Even worse, the “...” part of f might
call a function that never used to throw an exception but suddenly
starts doing so after it has been “improved.” Relying on f always get-
ting to its delete statement simply isn’t viable.

To make sure that the resource returned by createInvestment is always
released, we need to put that resource inside an object whose destruc-
tor will automatically release the resource when control leaves f. In
fact, that’s half the idea behind this Item: by putting resources inside
objects, we can rely on C++’s automatic destructor invocation to make
sure that the resources are released. (We’ll discuss the other half of
the idea in a moment.)
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Many resources are dynamically allocated on the heap, are used only
within a single block or function, and should be released when control
leaves that block or function. The standard library’s auto_ptr is tailor-
made for this kind of situation. auto_ptr is a pointer-like object (a
smart pointer) whose destructor automatically calls delete on what it
points to. Here’s how to use auto_ptr to prevent f’s potential resource
leak:

void f()
{

std::auto_ptr<Investment> pInv(createInvestment()); // call factory
// function

... // use pInv as
// before

} // automatically
// delete pInv via 
// auto_ptr’s dtor

This simple example demonstrates the two critical aspects of using
objects to manage resources:

■ Resources are acquired and immediately turned over to re-
source-managing objects. Above, the resource returned by create-
Investment is used to initialize the auto_ptr that will manage it. In
fact, the idea of using objects to manage resources is often called
Resource Acquisition Is Initialization (RAII), because it’s so common
to acquire a resource and initialize a resource-managing object in
the same statement. Sometimes acquired resources are assigned
to resource-managing objects instead of initializing them, but ei-
ther way, every resource is immediately turned over to a resource-
managing object at the time the resource is acquired.

■ Resource-managing objects use their destructors to ensure
that resources are released. Because destructors are called auto-
matically when an object is destroyed (e.g., when an object goes
out of scope), resources are correctly released, regardless of how
control leaves a block. Things can get tricky when the act of re-
leasing resources can lead to exceptions being thrown, but that’s a
matter addressed by Item 8, so we’ll not worry about it here.

Because an auto_ptr automatically deletes what it points to when the
auto_ptr is destroyed, it’s important that there never be more than one
auto_ptr pointing to an object. If there were, the object would be
deleted more than once, and that would put your program on the fast
track to undefined behavior. To prevent such problems, auto_ptrs have
an unusual characteristic: copying them (via copy constructor or copy
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assignment operator) sets them to null, and the copying pointer
assumes sole ownership of the resource!

std::auto_ptr<Investment> // pInv1 points to the
pInv1(createInvestment()); // object returned from

// createInvestment

std::auto_ptr<Investment> pInv2(pInv1); // pInv2 now points to the
// object; pInv1 is now null

pInv1 = pInv2; // now pInv1 points to the
// object, and pInv2 is null

This odd copying behavior, plus the underlying requirement that
resources managed by auto_ptrs must never have more than one
auto_ptr pointing to them, means that auto_ptrs aren’t the best way to
manage all dynamically allocated resources. For example, STL con-
tainers require that their contents exhibit “normal” copying behavior,
so containers of auto_ptr aren’t allowed. 

An alternative to auto_ptr is a reference-counting smart pointer (RCSP).
An RCSP is a smart pointer that keeps track of how many objects
point to a particular resource and automatically deletes the resource
when nobody is pointing to it any longer. As such, RCSPs offer behav-
ior that is similar to that of garbage collection. Unlike garbage collec-
tion, however, RCSPs can’t break cycles of references (e.g., two
otherwise unused objects that point to one another). 

TR1’s tr1::shared_ptr (see Item 54) is an RCSP, so you could write f this
way:

void f()
{

...

std::tr1::shared_ptr<Investment>
pInv(createInvestment()); // call factory function

... // use pInv as before

} // automatically delete
// pInv via shared_ptr’s dtor

This code looks almost the same as that employing auto_ptr, but copy-
ing shared_ptrs behaves much more naturally:

void f()
{

...

std::tr1::shared_ptr<Investment> // pInv1 points to the
pInv1(createInvestment()); // object returned from

// createInvestment


