

Programming in
Objective-C

Fourth Edition

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0321-77640-2

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

Programming in
Objective-C

Fourth Edition

Stephen G. Kochan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Programming in Objective-C, Fourth Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-81190-5

ISBN-10: 0-321-81190-9

Library of Congress Cataloging-in-Publication Data

Kochan, Stephen G.

Programming in objective-c / Stephen G. Kochan. -- 4th ed.

p. cm.

ISBN 978-0-321-81190-5 (pbk.)

1. Objective-C (Computer program language) 2. Object-oriented

programming (Computer science) 3. Macintosh (Computer)--Programming.

I. Title.

QA76.64.K655 2012

005.1'17--dc23

2011046245

Printed in the United States of America

First Printing December 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions
Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Indexer
Heather McNeill

Proofreader
Sheri Cain

Technical Editors
Wendy Mui
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

❖

To Roy and Ve, two people whom I dearly miss.

To Ken Brown,“It’s just a jump to the left.”

❖

Contents at a Glance
1 Introduction 1

2 Programming in Objective-C 7

3 Classes, Objects, and Methods 27

4 Data Types and Expressions 51

5 Program Looping 71

6 Making Decisions 93

7 More on Classes 127

8 Inheritance 151

9 Polymorphism, Dynamic Typing, and
Dynamic Binding 177

10 More on Variables and Data Types 195

11 Categories and Protocols 219

12 The Preprocessor 233

13 Underlying C Language Features 247

14 Introduction to the Foundation Framework 303

15 Numbers, Strings, and Collections 307

16 Working with Files 369

17 Memory Management and Automatic
Reference Counting 399

18 Copying Objects 413

19 Archiving 425

20 Introduction to Cocoa and Cocoa Touch 443

21 Writing iOS Applications 447

A Glossary 479

B Address Book Example Source Code 487

Index 493

Contents

1 Introduction 1
What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Preface to the Fourth Edition 6

2 Programming in Objective-C 7
Compiling and Running Programs 7

Using Xcode 8

Using Terminal 17

Explanation of Your First Program 19

Displaying the Values of Variables 23

Summary 25

Exercises 25

3 Classes, Objects, and Methods 27
What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 33

Choosing Names 34

Class and Instance Methods 35

The @implementation Section 37

The program Section 39

Accessing Instance Variables and Data Encapsulation 45

Summary 49

Exercises 49

4 Data Types and Expressions 51
Data Types and Constants 51

Type int 51

Type float 52

Type char 52

viii Contents

Qualifiers: long, long long, short, unsigned,
and signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 63

Assignment Operators 64

A Calculator Class 65

Exercises 67

5 Program Looping 71
The for Statement 72

Keyboard Input 79

Nested for Loops 81

for Loop Variants 83

The while Statement 84

The do Statement 88

The break Statement 90

The continue Statement 90

Summary 91

Exercises 91

6 Making Decisions 93
The if Statement 93

The if-else Construct 98

Compound Relational Tests 100

Nested if Statements 103

The else if Construct 105

The switch Statement 114

Boolean Variables 117

The Conditional Operator 122

Exercises 124

ixContents

7 More on Classes 127
Separate Interface and Implementation Files 127

Synthesized Accessor Methods 132

Accessing Properties Using the Dot Operator 134

Multiple Arguments to Methods 135

Methods Without Argument Names 137

Operations on Fractions 137

Local Variables 140

Method Arguments 141

The static Keyword 141

The self Keyword 145

Allocating and Returning Objects from Methods 146

Extending Class Definitions and the Interface File 148

Exercises 148

8 Inheritance 151
It All Begins at the Root 151

Finding the Right Method 155

Extension Through Inheritance: Adding New Methods 156

A Point Class and Object Allocation 160

The @class Directive 161

Classes Owning Their Objects 165

Overriding Methods 169

Which Method Is Selected? 171

Abstract Classes 173

Exercises 174

9 Polymorphism, Dynamic Typing,
and Dynamic Binding 177
Polymorphism: Same Name, Different Class 177

Dynamic Binding and the id Type 180

Compile Time Versus Runtime Checking 182

The id Data Type and Static Typing 183

Argument and Return Types with Dynamic Typing 184

Asking Questions About Classes 185

Exception Handling Using @try 189

Exercises 192

x Contents

10 More on Variables and Data Types 195
Initializing Objects 195

Scope Revisited 198

Directives for Controlling Instance Variable Scope 198

More on Properties, Synthesized Accessors, and
Instance Variables 200

Global Variables 200

Static Variables 202

Enumerated Data Types 205

The typedef Statement 208

Data Type Conversions 209

Conversion Rules 210

Bit Operators 211

The Bitwise AND Operator 212

The Bitwise Inclusive-OR Operator 213

The Bitwise Exclusive-OR Operator 214

The Ones Complement Operator 214

The Left Shift Operator 216

The Right Shift Operator 216

Exercises 217

11 Categories and Protocols 219
Categories 219

Class Extensions 224

Some Notes About Categories 225

Protocols and Delegation 226

Delegation 229

Informal Protocols 229

Composite Objects 230

Exercises 231

12 The Preprocessor 233
The #define Statement 233

More Advanced Types of Definitions 235

The #import Statement 240

Conditional Compilation 241

The #ifdef, #endif, #else 241

The #if and #elif Preprocessor Statements 243

The #undef Statement 244

Exercises 245

xiContents

13 Underlying C Language Features 247
Arrays 248

Initializing Array Elements 250

Character Arrays 251

Multidimensional Arrays 252

Functions 254

Arguments and Local Variables 255

Returning Function Results 257

Functions, Methods, and Arrays 261

Blocks 262

Structures 266

Initializing Structures 269

Structures Within Structures 270

Additional Details About Structures 272

Don’t Forget About Object-Oriented Programming! 273

Pointers 273

Pointers and Structures 277

Pointers, Methods, and Functions 279

Pointers and Arrays 280

Constant Character Strings and Pointers 286

Operations on Pointers 290

Pointers and Memory Addresses 292

They’re Not Objects! 293

Miscellaneous Language Features 293

Compound Literals 293

The goto Statement 294

The null Statement 294

The Comma Operator 294

The sizeof Operator 295

Command-Line Arguments 296

How Things Work 298

Fact #1: Instance Variables Are Stored
in Structures 298

Fact #2: An Object Variable Is Really a Pointer 299

Fact #3: Methods Are Functions, and Message
Expressions Are Function Calls 299

Fact #4: The id Type Is a Generic Pointer Type 299

Exercises 300

xii Contents

14 Introduction to the Foundation Framework 303
Foundation Documentation 303

15 Numbers, Strings, and Collections 307
Number Objects 307

String Objects 312

More on the NSLog Function 312

The description Method 313

Mutable Versus Immutable Objects 314

Mutable Strings 320

Array Objects 327

Making an Address Book 330

Sorting Arrays 347

Dictionary Objects 354

Enumerating a Dictionary 355

Set Objects 358

NSIndexSet 362

Exercises 365

16 Working with Files 369
Managing Files and Directories: NSFileManager 370

Working with the NSData Class 375

Working with Directories 376

Enumerating the Contents of a Directory 379

Working with Paths: NSPathUtilities.h 381

Common Methods for Working with Paths 383

Copying Files and Using the NSProcessInfo Class 386

Basic File Operations: NSFileHandle 390

The NSURL Class 395

The NSBundle Class 396

Exercises 397

17 Memory Management and Automatic Reference
Counting 399
Automatic Garbage Collection 401

Manual Reference Counting 402

Object References and the Autorelease Pool 403

xiiiContents

The Event Loop and Memory Allocation 405

Summary of Manual Memory Management Rules 407

Automatic Reference Counting (ARC) 408

Strong Variables 408

Weak Variables 409

@autoreleasepool Blocks 410

Method Names and Non-ARC Compiled Code 411

18 Copying Objects 413
The copy and mutableCopy Methods 413

Shallow Versus Deep Copying 416

Implementing the <NSCopying> Protocol 418

Copying Objects in Setter and Getter Methods 421

Exercises 423

19 Archiving 425
Archiving with XML Property Lists 425

Archiving with NSKeyedArchiver 427

Writing Encoding and Decoding Methods 429

Using NSData to Create Custom Archives 436

Using the Archiver to Copy Objects 439

Exercises 441

20 Introduction to Cocoa and Cocoa Touch 443
Framework Layers 443

Cocoa Touch 444

21 Writing iOS Applications 447
The iOS SDK 447

Your First iPhone Application 447

Creating a New iPhone Application Project 449

Entering Your Code 452

Designing the Interface 455

An iPhone Fraction Calculator 461

Starting the New Fraction_Calculator Project 462

Defining the View Controller 464

xiv Contents

The Fraction Class 469

A Calculator Class That Deals with Fractions 473

Designing the UI 474

Summary 475

Exercises 476

A Glossary 479

B Address Book Example Source Code 487

Index 493

About the Author
Stephen Kochan is the author and coauthor of several bestselling titles on the C
language, including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994),
and Topics in C Programming (Wiley, 1991), and several Unix titles, including Exploring
the Unix System (Sams, 1992) and Unix Shell Programming (Sams, 2003). He has been
programming on Macintosh computers since the introduction of the first Mac in 1984,
and he wrote Programming C for the Mac as part of the Apple Press Library. In 2003
Kochan wrote Programming in Objective-C (Sams, 2003), and followed that with another
Mac-related title, Beginning AppleScript (Wiley, 2004).

About the Technical Reviewers
Wendy Mui is a programmer and software development manager in the San Francisco
Bay Area.After learning Objective-C from the second edition of Steve Kochan’s book,
she landed a job at Bump Technologies, where she put her programming skills to good
use working on the client app and the API/SDK for Bump’s third-party developers.

Prior to her iOS experience,Wendy spent her formative years at Sun and various other
tech companies in Silicon Valley and San Francisco. She got hooked on programming
while earning a B.A. in Mathematics from University of California Berkeley.When not
working,Wendy is pursuing her 4th Dan Tae Kwon Do black belt.

Michael Trent has been programming in Objective-C since 1997—and programming
Macs since well before that. He is a regular contributor to Steven Frank’s cocoadev.com
website, a technical reviewer for numerous books and magazine articles, and an occasional
dabbler in Mac OS X open-source projects. Currently, he is using Objective-C and
Apple Computer’s Cocoa frameworks to build professional video applications for Mac
OS X. Michael holds a Bachelor of Science degree in computer science and a Bachelor
of Arts degree in music from Beloit College of Beloit,Wisconsin. He lives in Santa
Clara, California, with his lovely wife,Angela.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.informit.com/register

1
Introduction

Dennis Ritchie at AT&T Bell Laboratories pioneered the C programming language in
the early 1970s. However, this programming language did not begin to gain widespread
popularity and support until the late 1970s.This was because, until that time, C compilers
were not readily available for commercial use outside of Bell Laboratories. Initially, this
growth in popularity was also partly spurred by the equal, if not faster, growth in popular-
ity of the UNIX operating system, which was written almost entirely in C.

Brad J. Cox designed the Objective-C language in the early 1980s.The language was
based on a language called SmallTalk-80. Objective-C was layered on top of the C lan-
guage, meaning that extensions were added to C to create a new programming language
that enabled objects to be created and manipulated.

NeXT Software licensed the Objective-C language in 1988 and developed its libraries
and a development environment called NEXTSTEP. In 1992, Objective-C support was
added to the Free Software Foundation’s GNU development environment.The copy-
rights for all Free Software Foundation (FSF) products are owned by the FSF. It is released
under the GNU General Public License.

In 1994, NeXT Computer and Sun Microsystems released a standardized specification
of the NEXTSTEP system, called OPENSTEP.The Free Software Foundation’s imple-
mentation of OPENSTEP is called GNUStep.A Linux version, which also includes the
Linux kernel and the GNUStep development environment, is called, appropriately
enough, LinuxSTEP.

On December 20, 1996,Apple Computer announced that it was acquiring NeXT
Software, and the NEXTSTEP/OPENSTEP environment became the basis for the next
major release of Apple’s operating system, OS X.Apple’s version of this development
environment was called Cocoa.With built-in support for the Objective-C language, cou-
pled with development tools such as Project Builder (or its successor Xcode) and Inter-
face Builder,Apple created a powerful development environment for application
development on Mac OS X.

In 2007,Apple released an update to the Objective-C language and labeled it Objective-
C 2.0.That version of the language formed the basis for the second edition of the book.

2 Chapter 1 Introduction

When the iPhone was released in 2007, developers clamored for the opportunity to
develop applications for this revolutionary device.At first,Apple did not welcome third-
party application development.The company’s way of placating wannabe iPhone devel-
opers was to allow them to develop web-based applications.A web-based application
runs under the iPhone’s built-in Safari web browser and requires the user to connect to
the website that hosts the application in order to run it. Developers were not satisfied
with the many inherent limitations of web-based applications, and Apple shortly there-
after announced that developers would be able to develop so-called native applications for
the iPhone.

A native application is one that resides on the iPhone and runs under the iPhone’s
operating system, in the same way that the iPhone’s built-in applications (such as Con-
tacts, Stocks, and Weather) run on the device.The iPhone’s OS is actually a version of
Mac OS X, which meant that applications could be developed and debugged on a Mac-
Book Pro, for example. In fact,Apple soon provided a powerful Software Development
Kit (SDK) that allowed for rapid iPhone application development and debugging.The
availability of an iPhone simulator made it possible for developers to debug their applica-
tions directly on their development system, obviating the need to download and test the
program on an actual iPhone or iPod Touch device.

With the introduction of the iPad in 2010,Apple started to genericize the terminol-
ogy used for the operating system and the SDK that now support different devices with
different physical sizes and screen resolutions.The iOS SDK allows you to develop appli-
cations for any iOS device and as of this writing, iOS 5 is the current release of the oper-
ating system.

What You Will Learn from This Book
When I contemplated writing a tutorial on Objective-C, I had to make a fundamental
decision.As with other texts on Objective-C, I could write mine to assume that the
reader already knew how to write C programs. I could also teach the language from the
perspective of using the rich library of routines, such as the Foundation and UIKit
frameworks. Some texts also take the approach of teaching how to use the development
tools, such as the Mac’s Xcode and the tool formerly known as Interface Builder to
design the UI.

I had several problems adopting this approach. First, learning the entire C language
before learning Objective-C is wrong. C is a procedural language containing many features
that are not necessary for programming in Objective-C, especially at the novice level. In
fact, resorting to some of these features goes against the grain of adhering to a good
object-oriented programming methodology. It’s also not a good idea to learn all the
details of a procedural language before learning an object-oriented one.This starts the
programmer in the wrong direction, and gives the wrong orientation and mindset for fos-
tering a good object-oriented programming style. Just because Objective-C is an exten-
sion to the C language doesn’t mean you have to learn C first.

3How This Book Is Organized

So I decided neither to teach C first nor to assume prior knowledge of the language.
Instead, I decided to take the unconventional approach of teaching Objective-C and the
underlying C language as a single integrated language, from an object-oriented program-
ming perspective.The purpose of this book is as its name implies: to teach you how to
program in Objective-C. It does not profess to teach you in detail how to use the devel-
opment tools that are available for entering and debugging programs, or to provide in-
depth instructions on how to develop interactive graphical applications.You can learn all
that material in greater detail elsewhere, after you’ve learned how to write programs in
Objective-C. In fact, mastering that material will be much easier when you have a solid
foundation of how to program in Objective-C.This book does not assume much, if any,
previous programming experience. In fact, if you’re a novice programmer, with some
dedication and hard work you should be able to learn Objective-C as your first program-
ming language. Other readers have been successful at this, based on the feedback I’ve
received from the previous editions of this book.

This book teaches Objective-C by example.As I present each new feature of the lan-
guage, I usually provide a small complete program example to illustrate the feature. Just as
a picture is worth a thousand words, so is a properly chosen program example.You are
strongly encouraged to run each program (all of which are available online) and compare
the results obtained on your system to those shown in the text. By doing so, you will
learn the language and its syntax, but you will also become familiar with the process of
compiling and running Objective-C programs.

How This Book Is Organized
This book is divided into three logical parts. Part I,“The Objective-C Language,” teaches
the essentials of the language. Part II,“The Foundation Framework,” teaches how to use
the rich assortment of predefined classes that form the Foundation framework. Part III,
“Cocoa, Cocoa Touch, and the iOS SDK,” gives you an overview of the Cocoa and
Cocoa Touch frameworks and then walks you through the process of developing a simple
iOS application using the iOS SDK.

A framework is a set of classes and routines that have been logically grouped together to
make developing programs easier. Much of the power of programming in Objective-C
rests on the extensive frameworks that are available.

Chapter 2,“Programming in Objective-C,” begins by teaching you how to write your
first program in Objective-C.

Because this is not a book on Cocoa or iOS programming, graphical user interfaces
(GUIs) are not extensively taught and are hardly even mentioned until Part III. So an
approach was needed to get input into a program and produce output. Most of the exam-
ples in this text take input from the keyboard and produce their output in a window
pane: a Terminal window if you’re using the command line, or a debug output pane if
you’re using Xcode.

Chapter 3,“Classes, Objects, and Methods,” covers the fundamentals of object-oriented
programming.This chapter introduces some terminology, but it’s kept to a minimum. I

4 Chapter 1 Introduction

also introduce the mechanism for defining a class and the means for sending messages to
instances or objects. Instructors and seasoned Objective-C programmers will notice that I
use static typing for declaring objects. I think this is the best way for the student to get
started because the compiler can catch more errors, making the programs more self-
documenting and encouraging the new programmer to explicitly declare the data types
when they are known.As a result, the notion of the id type and its power is not fully
explored until Chapter 9,“Polymorphism, Dynamic Typing, and Dynamic Binding.”

Chapter 4,“Data Types and Expressions,” describes the basic Objective-C data types
and how to use them in your programs.

Chapter 5,“Program Looping,” introduces the three looping statements you can use in
your programs: for, while, and do.

Making decisions is fundamental to any computer programming language. Chapter 6,
“Making Decisions,” covers the Objective-C language’s if and switch statements in detail.

Chapter 7,“More on Classes,” delves more deeply into working with classes and
objects. Details about methods, multiple arguments to methods, and local variables are
discussed here.

Chapter 8,“Inheritance,” introduces the key concept of inheritance.This feature makes
the development of programs easier because you can take advantage of what comes from
above. Inheritance and the notion of subclasses make modifying and extending existing
class definitions easy.

Chapter 9 discusses three fundamental characteristics of the Objective-C language.
Polymorphism, dynamic typing, and dynamic binding are the key concepts covered here.

Chapters 10–13 round out the discussion of the Objective-C language, covering issues
such as initialization of objects, blocks, protocols, categories, the preprocessor, and some of
the underlying C features, including functions, arrays, structures, and pointers.These
underlying features are often unnecessary (and often best avoided) when first developing
object-oriented applications. It’s recommended that you skim Chapter 13,“Underlying C
Language Features,” the first time through the text and return to it only as necessary to
learn more about a particular feature of the language. Chapter 13 also introduces a recent
addition to the C language known as blocks.This should be learned after you learn about
how to write functions, since the syntax of the former is derived from the latter.

Part II begins with Chapter 14,“Introduction to the Foundation Framework,” which
gives an introduction to the Foundation framework and how to use its voluminous
documentation.

Chapters 15–19 cover important features of the Foundation framework.These include
number and string objects, collections, the file system, memory management, and the
process of copying and archiving objects.

By the time you’re done with Part II, you will be able to develop fairly sophisticated
programs in Objective-C that work with the Foundation framework.

Part III starts with Chapter 20,“Introduction to Cocoa and Cocoa Touch” Here you’ll
get a quick overview of the frameworks that provide the classes you need to develop
sophisticated graphical applications on the Mac and on your iOS devices.

5Acknowledgments

Chapter 21,“Writing iOS Applications,” introduces the iOS SDK and the UIKit
framework.This chapter illustrates a step-by-step approach to writing a simple iOS appli-
cation, followed by a more sophisticated calculator application that enables you to use
your iPhone to perform simple arithmetic calculations with fractions.

Because object-oriented parlance involves a fair amount of terminology,Appendix A,
“Glossary,” provides definitions of some common terms.

Appendix B,“Address Book Example Source Code,” gives the source code listing for
two classes that are developed and used extensively in Part II of this text.These classes
define address card and address book classes. Methods enable you to perform simple
operations such as adding and removing address cards from the address book, looking up
someone, listing the contents of the address book, and so on.

After you’ve learned how to write Objective-C programs, you can go in several direc-
tions.You might want to learn more about the underlying C programming language—or
you might want to start writing Cocoa programs to run on Mac OS X, or develop more
sophisticated iOS applications.

Support
If you go to classroomM.com/objective-c, you’ll find a forum rich with content.There
you can get source code (note that you won’t find the “official” source code for all the
examples there, as I am a firm believer that a big part the learning process occurs when
you type in the program examples yourself and learn how to identify and correct any
errors.), answers to exercises, errata, quizzes, and pose questions to me and fellow forum
members.The forum has turned into a rich community of active members who are
happy to help other members solve their problems and answer their questions. Please go,
join, and participate!

Acknowledgments
I would like to acknowledge several people for their help in the preparation of the first
edition of this text. First, I want to thank Tony Iannino and Steven Levy for reviewing the
manuscript. I am also grateful to Mike Gaines for providing his input.

I’d also like to thank my technical editors, Jack Purdum (first edition) and Mike Trent.
I was lucky enough to have Mike review the first two editions of this text. He provided
the most thorough review of any book I’ve ever written. Not only did he point out
weaknesses, but he was also generous enough to offer his suggestions. Because of Mike’s
comments in the first edition, I changed my approach to teaching memory management
and tried to make sure that every program example in this book was “leak free.”This was
prior to the fourth edition, where the strong emphasis on memory management became
obsolete with the introduction of ARC. Mike also provided invaluable input for my
chapter on iPhone programming.

6 Chapter 1 Introduction

From the first edition, Catherine Babin supplied the cover photograph and provided
me with many wonderful pictures to choose from. Having the cover art from a friend
made the book even more special.

I am so grateful to Mark Taber (for all editions) from Pearson for putting up with all
delays and for being kind enough to work around my schedule and to tolerate my consis-
tent missing of deadlines. I am extremely grateful to Michael de Haan and Wendy Mui
for doing an incredible, unsolicited job proofreading the second edition (and thanks
Wendy for your work on the third edition as well).Their meticulous attention to detail
has resulted in a list of both typographical and substantive errors that have been addressed
in the second printing. Publishers take note:These two pairs of eyes are priceless!

As noted at the start of this Introduction, Dennis Ritchie invented the C language. He
was also a co-inventor of the Unix operating system, which is the basis for Mac OS X
and iOS. Sadly, the world lost both Dennis Ritchie and Steve Jobs within the span of a
week.These two people had a profound effect on my career. Needless to say, this book
would not exist if not for them.

Finally, I’d like to thank the members of the forum at classroomM.com/objective-c for
all their feedback, support, and kind words.

Preface to the Fourth Edition
When I attended Apple’s World Wide Developer’s Conference (WWDC) in June 2011, I
was in for quite a surprise.The third edition of this book had been written and was
scheduled for release in just a few short weeks.What Apple announced there with respect
to Objective-C was a game-changer for new, would-be Objective-C programmers. Prior
to Xcode 4.2 (and the Apple LLVM 3.0 compiler it contained), iOS developers had to
struggle with the perils of memory management, which involved judiciously tracking
objects and telling the system when to hold onto and when to release them. Making the
smallest mistake in this could and did easily cause applications to crash.Well, at WWDC
2011 Apple introduced a new version of the Objective-C compiler that contained a fea-
ture called ARC, which is short for Automatic Reference Counting.With ARC, pro-
grammers no longer needed to worry about their object’s life cycle; the compiler handles
it all automatically for them!

I must apologize for such a short period of time between editions, but this fundamen-
tal change in how to approach teaching the language made this fourth edition necessary.
So this edition assumes you’re using Xcode 4.2 or later and that you’re using ARC. If
you’re not, you need to still learn about manual memory management, which is briefly
covered in Chapter 17,“Memory Management and Automatic Reference Counting.”

Stephen G. Kochan
October 2011

2
Programming in Objective-C

In this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won’t work with objects just yet; that’s the topic of the next chapter.We want
you to understand the steps involved in keying in a program and compiling and running it.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen.Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task.

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

Compiling and Running Programs
Before we go into a detailed explanation of this program, we need to cover the steps
involved in compiling and running it.You can both compile and run your program using
Xcode, or you can use the Clang Objective-C compiler in a Terminal window. Let’s go
through the sequence of steps using both methods.Then you can decide how you want
to work with your programs throughout the rest of this book.

8 Chapter 2 Programming in Objective-C

Note
You’ll want to go to developer.apple.com and make sure you have the latest version of the
Xcode development tools. There you can download Xcode and the iOS SDK at no charge. If
you’re not a registered developer, you’ll have to register first. That can also be done at no
charge. Note that Xcode is also available for a minimal cost from the Mac App Store.

Using Xcode
Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile.We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical
application with it.

Note
As mentioned, Xcode is a sophisticated tool, and the introduction of Xcode 4 added even
more features. It’s easy to get lost using this tool. If that happens to you, back up a little
and try reading the Xcode User Guide, which can be accessed from Xcode help menu, to get
your bearings.

Xcode is located in the Developer folder inside a subfolder called Applications.
Figure 2.1 shows its icon.

Start Xcode.You can then select “Create a New Xcode Project” from the startup
screen.Alternatively, under the File menu, select New, New Project... (see Figure 2.2).

Figure 2.1 Xcode icon

9Compiling and Running Programs

Figure 2.2 Starting a new project

Figure 2.3 Starting a new project: selecting the application type

A window appears, as shown in Figure 2.3.

10 Chapter 2 Programming in Objective-C

Figure 2.4 Starting a new project: specifying the product name and type

In the left pane, you’ll see a section labeled Mac OS X. Select Application. In the
upper-right pane, select Command Line Tool, as depicted in the previous figure. On the
next pane that appears, you pick your application’s name. Enter prog1 for the Product
Name and make sure Foundation is selected for the Type.Also, be sure that the Use Auto-
matic Reference Counting box is checked.Your screen should look like Figure 2.4.

11Compiling and Running Programs

Figure 2.5 Selecting the location and name of the project folder

Click Next.The dropdown that appears allows you to specify the name of the project
folder that will contain the files related to your project. Here, you can also specify where
you want that project folder stored.According to Figure 2.5 we’re going to store our
project on the Desktop in a folder called prog1.

12 Chapter 2 Programming in Objective-C

Click the Create button to create your new project. Xcode will open a project win-
dow such as the one shown in Figure 2.6. Note that your window might look different if
you’ve used Xcode before or have changed any of its options.

Figure 2.6 Xcode prog1 project window

13Compiling and Running Programs

Now it’s time to type in your first program. Select the file main.m in the left pane (you
may have to reveal the files under the project name by clicking the disclosure triangle).
Your Xcode window should now appear as shown in Figure 2.7.

Figure 2.7 File main.m and edit window

14 Chapter 2 Programming in Objective-C

Table 2.1 Common Filename Extensions

Extension Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.mm Objective-C++ source file

.pl Perl source file

.o Object (compiled) file

Objective-C source files use .m as the last two characters of the filename (known as its
extension).Table 2.1 lists other commonly used filename extensions.

Returning to your Xcode project window, the right pane shows the contents of the
file called main.m, which was automatically created for you as a template file by Xcode,
and which contains the following lines:
//
// main.m
// prog1
//
// Created by Steve Kochan on 7/7/11.
// Copyright 2011 ClassroomM, Inc.. All rights reserved.
//
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
@autoreleasepool {

// insert code here...
NSLog (@"Hello World!");

}
return 0;

}

You can edit your file inside this window. Make changes to the program shown in the
Edit window to match Program 2.1.The lines that start with two slash characters (//) are
called comments; we talk more about comments shortly.

Your program in the edit window should now look like this (don’t worry if your
comments don’t match).

Program 2.1

// First program example

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

15Compiling and Running Programs

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

Note
Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors. This will prove very valuable as you start
programming more, as it can indicate the source of a potential error.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
building and running. Before doing that, we need to reveal a window pane that will display
the results (output) from our program.You can do this most easily by selecting the middle
icon under View in the toolbar.When you hover over this icon, it says “Hide or show the
Debug area.”Your window should now appear as shown in Figure 2.8. Note that XCode
will normally reveal the Debug area automatically whenever any data is written to it.

Now, if you press the Run button located at the top left of the toolbar or select Run
from the Product menu, Xcode will go through the two-step process of first building and
then running your program.The latter occurs only if no errors are discovered in your
program.

If you do make mistakes in your program, along the way you’ll see errors denoted as
red stop signs containing exclamation points—these are known as fatal errors and you can’t

Figure 2.8 Xcode Debug area revealed

16 Chapter 2 Programming in Objective-C

run your program without correcting these. Warnings are depicted by yellow triangles
containing exclamation points—you can still run your program with them, but in general
you should examine and correct them.After running the program with all the errors
removed, the lower right pane will display the output from your program and should look
similar to Figure 2.9. Don’t worry about the verbose messages that appear.The output line
we’re interested in is the one you see in bold.

You’re now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!).The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.

2. If this is a new project, select File, New, New Project... or choose Create a New
Xcode Project from the startup screen.

3. For the type of application, select Application, Command Line Tool, and click Next.

4. Select a name for your application and set its Type to Foundation. Make sure Use
Automatic Reference Counting is checked. Click Next.

5. Select a name for your project folder, and a directory to store your project files in.
Click Create.

6. In the left pane, you will see the file main.m (you might need to reveal it from
inside the folder that has the product’s name). Highlight that file.Type your program
into the edit window that appears in the rightmost pane.

7. In the toolbar, select the middle icon under View.This will reveal the Debug area.
That’s where you’ll see your output.

8. Build and run your application by clicking the Run button in the toolbar or select-
ing Run from the Product menu.

Note
Xcode contains a powerful built-in tool known as the static analyzer. It does an analysis of
your code and can find program logic errors. You can use it by selecting Analyze from the
Product menu or from the Run button in the toolbar.

Figure 2.9 Xcode Debug output

17Compiling and Running Programs

9. If you get any compiler errors or the output is not what you expected, make your
changes to the program and rerun it.

Using Terminal
Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you’re used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here,
we examine how to go about doing that.

The first step is to start the Terminal application on your Mac.The Terminal applica-
tion is located in the Applications folder, stored under Utilities. Figure 2.10 shows its icon.

Start the Terminal application.You’ll see a window that looks like Figure 2.11.

You type commands after the $ (or %, depending on how yourTerminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this straightforward.

Figure 2.10 Terminal program icon

Figure 2.11 Terminal window

18 Chapter 2 Programming in Objective-C

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples.Then, you must run a text edi-
tor, such as vi or emacs, to enter your program:

sh-2.05a$ mkdir Progs Create a directory to store programs in

sh-2.05a$ cd Progs Change to the new directory

sh-2.05a$ vi main.m Start up a text editor to enter program

--

Note
In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you’ve entered your program into a file (and we’re not showing the edit com-
mands to enter and save your text here), you can use the LLVM Clang Objective-C com-
piler, which is called clang, to compile and link your program.This is the general format
of the clang command:

clang -fobjc-arc –framework Foundation files -o program

This option says to use information about the Foundation framework:

-framework Foundation

Just remember to use this option on your command line. files is the list of files to be
compiled. In our example, we have only one such file, and we’re calling it main.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program prog1; here, then, is the command line to compile your first
Objective-C program:

$ clang -fobjc-arc –framework Foundation main.m -o prog1 Compile main.m & call it prog1

$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name prog1 at the command prompt:

$ prog1 Execute prog1

sh: prog1: command not found

$

This is the result you’ll probably get unless you’ve used Terminal before.The UNIX
shell (which is the application running your program) doesn’t know where prog1 is
located (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute.The other is to add the directory in

19Explanation of Your First Program

which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./prog1 Execute prog1

2008-06-08 18:48:44.210 prog1[7985:10b] Programming is fun!

$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iOS applications, there’s more to just the executable file that needs to be “pack-
aged” into an application bundle. It’s not easy to do that from the Terminal application,
and it’s one of Xcode’s specialties.Therefore, I suggest you start learning to use Xcode to
develop your programs.There is a learning curve to do this, but the effort will be well
worth it in the end.

Explanation of Your First Program
Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

//

// main.m

// prog1

//

// Created by Steve Kochan on 7/7/11.

// Copyright 2011 ClassroomM, Inc.. All rights reserved.

//

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

@autoreleasepool {

NSLog (@"Programming is fun!");

}

return 0;

}

In Objective-C, lowercase and uppercase letters are distinct.Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first seven lines of the program introduce the concept of the comment.A comment
statement is used in a program to document a program and enhance its readability. Com-
ments tell the reader of the program—whether it’s the programmer or someone else

20 Chapter 2 Programming in Objective-C

whose responsibility it is to maintain the program—just what the programmer had in
mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//).The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the
beginning of the comment.These types of comments have to be terminated.To end the
comment, you use the characters * and /, again without any embedded spaces.All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler.This form of comment is
often used when comments span many lines of code, as in the following:

/*

This file implements a class called Fraction, which

represents fractional numbers. Methods allow manipulation of

fractions, such as addition, subtraction, etc.

For more information, consult the document:

/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or type
it into the computer, for three good reasons. First, documenting the program while the partic-
ular program logic is still fresh in your mind is far easier than going back and rethinking the
logic after the program has been completed. Second, by inserting comments into the program
at such an early stage of the game, you can reap the benefits of the comments during the
debug phase,when program logic errors are isolated and debugged.Not only can a comment
help you (and others) read through the program,but it also can help point the way to the
source of the logic mistake. Finally, I haven’t yet discovered a programmer who actually enjoys
documenting a program. In fact, after you’ve finished debugging your program, you will prob-
ably not relish the idea of going back to the program to insert comments. Inserting comments
while developing the program makes this sometimes-tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or
include the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char * argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion.The reserved word int that precedes main specifies the type of value main returns,

21Explanation of Your First Program

which is an integer (more about that soon).We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon.The system treats all the program statements included
between the braces as part of the main routine.

The next line in main reads

@autoreleasepool {

Any program statements between the { and the matching closing } are executed
within a context known an autorelease pool.The autorelease pool is a mechanism that
allows the system to efficiently manage the memory your application uses as it creates
new objects. I mention it in more detail in Chapter 17,“Memory Management and Auto-
matic Reference Counting.” Here, we have one statement inside our @autoreleasepool
context.

That statement specifies that a routine named NSLog is to be invoked, or called.The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@"Programming is fun!"

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NSString object.

Note
If you have C programming experience, you might be puzzled by the leading @ character. With-
out that leading @ character, you are writing a constant C-style string; with it, you are writing
an NSString string object. More on this topic in Chapter 15.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here.Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of 0.
By convention, 0 means that the program ended normally.Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

22 Chapter 2 Programming in Objective-C

If you’re using Xcode and you glance back to your output window (refer to Figure
2.9), you’ll recall that the following displayed after the line of output from NSLog:

Program exited with status value:0.

You should understand what that message means now.
Now that we have finished discussing your first program, let’s modify it to also display

the phrase “And programming in Objective-C is even more fun!” You can do this by
simply adding another call to the NSLog routine, as shown in Program 2.2. Remember
that every Objective-C program statement must be terminated by a semicolon. Note that
we’ve removed the leading comment lines in all the following program examples.

Program 2.2

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
NSLog (@"Programming is fun!");
NSLog (@"Programming in Objective-C is even more fun!");

}
return 0;

}

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the
output):

Program 2.2 Output

Programming is fun!

Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence.The backslash (\) and the letter
n are known collectively as the newline character.A newline character tells the system to
do precisely what its name implies: go to a new line.Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you
examine the output (no cheating, now!).

23Displaying the Values of Variables

Program 2.3
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

NSLog (@"Testing...\n..1\n...2\n....3");
}
return 0;

}

Program 2.3 Output

Testing...

..1

...2

....3

Displaying the Values of Variables
Not only can simple phrases be displayed with NSLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

Program 2.4
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {

int sum;

sum = 50 + 25;
NSLog (@"The sum of 50 and 25 is %i", sum);

}

return 0;
}

Program 2.4 Output

The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can

24 Chapter 2 Programming in Objective-C

use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it.The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable
defined as type int can be used to hold only integral values—that is, values without deci-
mal places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal places,
such as 2.14, 2.455, and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the result
is stored (as indicated by the assignment operator, the equals sign) in the variable sum.

The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses.These arguments are separated by a comma.The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of
the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

The percent character inside the first argument is a special character recognized by the
NSLog function.The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after “The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

@autoreleasepool {
int value1, value2, sum;

value1 = 50;
value2 = 25;
sum = value1 + value2;

NSLog (@"The sum of %i and %i is %i", value1, value2, sum);

25Displaying the Values of Variables

}
return 0;

}

Program 2.5 Output

The sum of 50 and 25 is 75

The second program statement inside main defines three variables called value1,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int value1;

int value2;

int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable value1 and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

The call to the NSLog routine now contains four arguments. Once again, the first
argument, commonly called the format string, describes to the system how the
remaining arguments are to be displayed.The value of value1 is to be displayed immedi-
ately following the phrase “The sum of.” Similarly, the values of value2 and sum are to be
printed at the points indicated by the next two occurrences of the %i characters in the
format string.

Summary
After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you
begin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program.

2. Write a program that displays the following text:
In Objective-C, lowercase letters are significant.

main is where program execution begins.

Open and closed braces enclose program statements in a routine.

All program statements must be terminated by a semicolon.

26 Chapter 2 Programming in Objective-C

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {
int i;
i = 1;
NSLog (@"Testing...");
NSLog (@"....%i", i);
NSLog (@"...%i", i + 1);
NSLog (@"..%i", i + 2);

}
return 0;

}

4. Write a program that subtracts the value 15 from 87 and displays the result, together
with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]);
(

@autoreleasepool {
INT sum;
/* COMPUTE RESULT //
sum = 25 + 37 - 19
/ DISPLAY RESULTS /
NSLog (@'The answer is %i' sum);

}
return 0;

}

6. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{

@autoreleasepool {

int answer, result;

answer = 100;

result = answer - 10;

NSLog (@"The result is %i\n", result + 5);

}

return 0;

}

3
Classes, Objects, and Methods

In this chapter, you’ll learn about some key concepts in object-oriented programming
and start working with classes in Objective-C.You’ll need to learn a little bit of terminol-
ogy, but we keep it fairly informal.We also cover only some of the basic terms here
because you can easily get overwhelmed. Refer to Appendix A,“Glossary,” at the end of
this book, for more precise definitions of these terms.

What Is an Object, Anyway?
An object is a thing.Think about object-oriented programming as a thing and some-
thing you want to do to that thing.This is in contrast to a programming language such as
C, known as a procedural programming language. In C, you typically think about what
you want to do first and then you worry about the objects, almost the opposite of object
orientation.

Consider an example from everyday life. Let’s assume that you own a car, which is
obviously an object, and one that you own.You don’t have just any car; you have a partic-
ular car that was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe
someplace else.Your car has a vehicle identification number (VIN) that uniquely identifies
that car here in the United States.

In object-oriented parlance, your particular car is an instance of a car. Continuing with
the terminology, car is the name of the class from which this instance was created. So
each time a new car is manufactured, a new instance from the class of cars is created, and
each instance of the car is referred to as an object.

Your car might be silver, have a black interior, be a convertible or hardtop, and so on.
Additionally, you perform certain actions with your car. For example, you drive your car,
fill it with gas, (hopefully) wash it, take it in for service, and so on.Table 3.1 depicts this.

28 Chapter 3 Classes, Objects, and Methods

The actions listed in Table 3.1 can be done with your car, and they can be done
with other cars as well. For example, your sister drives her car, washes it, fills it with gas,
and so on.

Instances and Methods
A unique occurrence of a class is an instance, and the actions that are performed on the
instance are called methods. In some cases, a method can be applied to an instance of the
class or to the class itself. For example, washing your car applies to an instance (in fact,
all the methods listed in Table 3.1 can be considered instance methods). Finding out
how many types of cars a manufacturer makes would apply to the class, so it would be a
class method.

Suppose you have two cars that came off the assembly line and are seemingly identical:
They both have the same interior, same paint color, and so on.They might start out the
same, but as each car is used by its respective owner, its unique characteristics or properties
change. For example, one car might end up with a scratch on it and the other might have
more miles on it. Each instance or object contains not only information about its initial
characteristics acquired from the factory, but also its current characteristics.Those charac-
teristics can change dynamically.As you drive your car, the gas tank becomes depleted, the
car gets dirtier, and the tires get a little more worn.

Applying a method to an object can affect the state of that object. If your method is to
“fill up my car with gas,” after that method is performed, your car’s gas tank will be full.
The method then will have affected the state of the car’s gas tank.

The key concepts here are that objects are unique representations from a class, and
each object contains some information (data) that is typically private to that object.The
methods provide the means of accessing and changing that data.

The Objective-C programming language has the following particular syntax for apply-
ing methods to classes and instances:

[ClassOrInstance method];

In this syntax, a left bracket is followed by the name of a class or instance of that class,
which is followed by one or more spaces, which is followed by the method you want to
perform. Finally, it is closed off with a right bracket and a terminating semicolon.When
you ask a class or an instance to perform some action, you say that you are sending it a

Table 3.1 Actions on Objects

Object What You Do with It

Your car Drive it

Fill it with gas

Wash it

Service it

29Instances and Methods

message; the recipient of that message is called the receiver. So another way to look at the
general format described previously is as follows:

[receiver message];

Let’s go back to the previous list and write everything in this new syntax. Before you
do that, though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

You send a new message to the Car class (the receiver of the message) asking it to give
you a new car.The resulting object (which represents your unique car) is then stored in
the variable yourCar. From now on, yourCar can be used to refer to your instance of the
car, which you got from the factory.

Because you went to the factory to get the car, the method new is called a factory or
class method.The rest of the actions on your new car will be instance methods because
they apply to your car. Here are some sample message expressions you might write for
your car:

[yourCar prep]; get it ready for first-time use

[yourCar drive]; drive your car

[yourCar wash]; wash your car

[yourCar getGas]; put gas in your car if you need it

[yourCar service]; service your car

[yourCar topDown]; if it’s a convertible

[yourCar topUp];

currentMileage = [yourCar odometer];

This last example shows an instance method that returns information—presumably, the
current mileage, as indicated on the odometer. Here, we store that information inside a
variable in our program called currentMileage.

Here’s an example of where a method takes an argument that specifies a particular value
that may differ from one method call to the next:

[yourCar setSpeed: 55]; set the speed to 55 mph

Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];

[suesCar wash];

[suesCar getGas];

Applying the same methods to different objects is one of the key concepts of object-
oriented programming, and you’ll learn more about it later.

You probably won’t need to work with cars in your programs.Your objects will likely
be computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a
calculator or a playlist of songs.And just like the methods used for your cars, your meth-
ods might look similar, as in the following:

30 Chapter 3 Classes, Objects, and Methods

[myWindow erase]; Clear the window

theArea = [myRect area]; Calculate the area of the rectangle

[userText spellCheck]; Spell-check some text

[deskCalculator clearEntry]; Clear the last entry

[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber dial]; Dial a phone number

[myTable reloadData]; Show the updated table’s data

n = [aTouch tapCount]; Store the number of times the display was tapped

An Objective-C Class for Working with Fractions
Now it’s time to define an actual class in Objective-C and learn how to work with
instances of the class.

Once again, you’ll learn procedure first.As a result, the actual program examples might
not seem very practical.We get into more practical stuff later.

Suppose you need to write a program to work with fractions. Maybe you need to deal
with adding, subtracting, multiplying, and so on. If you didn’t know about classes, you
might start with a simple program that looked like this.

Program 3.1

// Simple program to work with fractions

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])

{

@autoreleasepool {

int numerator = 1;

int denominator = 3;

NSLog (@"The fraction is %i/%i", numerator, denominator);

}

return 0;

}

Program 3.1 Output

The fraction is 1/3

In Program 3.1, the fraction is represented in terms of its numerator and denominator.
After the @autoreleasepool directive, the two lines in main both declare the variables

31An Objective-C Class for Working with Fractions

numerator and denominator as integers and assign them initial values of 1 and 3, respec-
tively.This is equivalent to the following lines:

int numerator, denominator;

numerator = 1;

denominator = 3;

We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the
variable denominator. If you needed to store a lot of fractions in your program, this could
be cumbersome. Each time you wanted to refer to the fraction, you’d have to refer to the
corresponding numerator and denominator.And performing operations on these fractions
would be just as awkward.

It would be better if you could define a fraction as a single entity and collectively refer
to its numerator and denominator with a single name, such as myFraction.You can do
that in Objective-C, and it starts by defining a new class.

Program 3.2 duplicates the functionality of Program 3.1 using a new class called
Fraction. Here, then, is the program, followed by a detailed explanation of how it works.

Program 3.2

// Program to work with fractions – class version

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;

-(void) setNumerator: (int) n;

-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction

{

int numerator;

int denominator;

}

-(void) print

{

NSLog (@"%i/%i", numerator, denominator);

32 Chapter 3 Classes, Objects, and Methods

}

-(void) setNumerator: (int) n

{

numerator = n;

}

-(void) setDenominator: (int) d

{

denominator = d;

}

@end

//---- program section ----

int main (int argc, char * argv[])

{

@autoreleasepool {

Fraction *myFraction;

// Create an instance of a Fraction

myFraction = [Fraction alloc];

myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");

[myFraction print];

}

return 0;

}

Program 3.2 Output

The value of myFraction is:

1/3

33The @interface Section

As you can see from the comments in Program 3.2, the program is logically divided
into three sections:

n @interface section
n @implementation section
n program section

The @interface section describes the class and its methods, whereas the
@implementation section describes the data (the instance variables that objects from the
class will store) and contains the actual code that implements the methods declared in the
interface section. Finally, the program section contains the program code to carry out the
intended purpose of the program.

Note
You can also declare the instance variables for a class in the interface section. The ability to
do it in the implementation section was added as of Xcode 4.2 and is considered a better
way to define a class. You learn more about why in a later chapter.

Each of these sections is a part of every Objective-C program, even though you might
not need to write each section yourself.As you’ll see, each section is typically put in its
own file. For now, however, we keep it all together in a single file.

The @interface Section
When you define a new class, you have to tell the Objective-C compiler where the class
came from.That is, you have to name its parent class. Next, you need to define the type of
operations, or methods, that can be used when working with objects from this class.And,
as you learn in a later chapter, you also list items known as properties in this special section
of the program called the @interface section.The general format of this section looks
like this:

@interface NewClassName: ParentClassName

propertyAndMethodDeclarations;

@end

By convention, class names begin with an uppercase letter, even though it’s not
required.This enables someone reading your program to distinguish class names from
other types of variables by simply looking at the first character of the name. Let’s take a
short diversion to talk a little about forming names in Objective-C.

34 Chapter 3 Classes, Objects, and Methods

Choosing Names
In Chapter 2,“Programming in Objective-C,” you used several variables to store integer
values. For example, you used the variable sum in Program 2.4 to store the result of the
addition of the two integers 50 and 25.

The Objective-C language allows you to store data types other than just integers in
variables as well, as long as the proper declaration for the variable is made before it is used
in the program.Variables can be used to store floating-point numbers, characters, and even
objects (or, more precisely, references to objects).

The rules for forming names are quite simple:They must begin with a letter or under-
score (_), and they can be followed by any combination of letters (upper- or lowercase),
underscores, or the digits 0–9.The following is a list of valid names:

n sum

n pieceFlag

n i

n myLocation

n numberOfMoves

n sysFlag

n ChessBoard

On the other hand, the following names are not valid for the stated reasons:

n sum$value $—is not a valid character.
n piece flag—Embedded spaces are not permitted.
n 3Spencer—Names can’t start with a number.
n int—This is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the
Objective-C compiler.This use is known as a reserved name or reserved word. In general, any
name that has special significance to the Objective-C compiler cannot be used as a vari-
able name.

Always remember that upper- and lowercase letters are distinct in Objective-C.There-
fore, the variable names sum, Sum, and SUM each refer to a different variable.As noted, when
naming a class, start it with a capital letter. Instance variables, objects, and method names,
on the other hand, typically begin with lowercase letters.To aid readability, capital letters
are used inside names to indicate the start of a new word, as in the following examples:

n AddressBook— This could be a class name.
n currentEntry— This could be an object.
n current_entry— Some programmers use underscores as word separators.
n addNewEntry— This could be a method name.

35The @interface Section

When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick
names that reflect the intended use of the variable or object.The reasons are obvious. Just
as with the comment statement, meaningful names can dramatically increase the readabil-
ity of a program and will pay off in the debug and documentation phases. In fact, the doc-
umentation task will probably be much easier because the program will be more
self-explanatory.

Here, again, is the @interface section from Program 3.2:

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;

-(void) setNumerator: (int) n;

-(void) setDenominator: (int) d;

@end

The name of the new class is Fraction, and its parent class is NSObject. (We talk in
greater detail about parent classes in Chapter 8,“Inheritance.”) The NSObject class is
defined in the file NSObject.h, which is automatically included in your program when-
ever you import Foundation.h.

Class and Instance Methods
You have to define methods to work with your Fractions.You need to be able to set the
value of a fraction to a particular value. Because you won’t have direct access to the inter-
nal representation of a fraction (in other words, direct access to its instance variables), you
must write methods to set the numerator and denominator.You’ll also write a method
called print that will display the value of a fraction. Here’s what the declaration for the
print method looks like in the interface file:

-(void) print;

The leading minus sign (-) tells the Objective-C compiler that the method is an
instance method.The only other option is a plus sign (+), which indicates a class method.
A class method is one that performs some operation on the class itself, such as creating a
new instance of the class.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the car
example, after you have manufactured the car, you might need to fill it with gas.The
operation of filling it with gas is performed on a particular car, so it is analogous to an
instance method.

36 Chapter 3 Classes, Objects, and Methods

Return Values
When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns.You do this by enclos-
ing the return type in parentheses after the leading minus or plus sign. So this declaration
specifies that the instance method called currentAge returns an integer value:

–(int) currentAge;

Similarly, this line declares a method that returns a double precision value. (You’ll learn
more about this data type in Chapter 4,“Data Types and Expressions.”)

–(double) retrieveDoubleValue;

A value is returned from a method using the Objective-C return statement, similar to
the way in which we returned a value from main in previous program examples.

If the method returns no value, you indicate that using the type void, as in the following:

–(void) print;

This declares an instance method called print that returns no value. In such a case, you
do not need to execute a return statement at the end of your method.Alternatively, you
can execute a return without any specified value, as in the following:

return;

Method Arguments
Two other methods are declared in the @interface section from Program 3.2:

–(void) setNumerator: (int) n;

–(void) setDenominator: (int) d;

These are both instance methods that return no value. Each method takes an integer
argument, which is indicated by the (int) in front of the argument name. In the case of
setNumerator, the name of the argument is n.This name is arbitrary and is the name the
method uses to refer to the argument.Therefore, the declaration of setNumerator specifies
that one integer argument, called n, will be passed to the method and that no value will be
returned.This is similar for setDenominator, except that the name of its argument is d.

Notice the syntax of the declaration for these methods. Each method name ends with a
colon, which tells the Objective-C compiler that the method expects to see an argument.
Next, the type of the argument is specified, enclosed in a set of parentheses, in much the
same way the return type is specified for the method itself. Finally, the symbolic name to
be used to identify that argument in the method is specified.The entire declaration is ter-
minated with a semicolon. Figure 3.1 depicts this syntax.

When a method takes an argument, you also append a colon to the method name
when referring to the method.Therefore, setNumerator: and setDenominator: is the
correct way to identify these two methods, each of which takes a single argument.Also,
identifying the print method without a trailing colon indicates that this method does not

37The @implementation Section

method
type

return
type

method
name

method
takes

argument

argument
type

argument
name

Figure 3.1 Declaring a method

The @implementation Section
As noted, the @implementation section contains the actual code for the methods you
declared in the @interface section.You have to specify what type of data is to be stored
in the objects of this class.That is, you have to describe the data that members of the class
will contain.These members are called the instance variables. Just as a point of terminology,
you say that you declare the methods in the @interface section and that you define them
(that is, give the actual code) in the @implementation section.The general format for the
@implementation section is as follows:

@implementation NewClassName

{

memberDeclarations;

}

methodDefinitions;

@end

NewClassName is the same name that was used for the class in the @interface section.
You can use the trailing colon followed by the parent class name, as we did in the
@interface section:

@implementation Fraction: NSObject

However, this is optional and typically not done.
The memberDeclarations section specifies what types of data are stored in a

Fraction, along with the names of those data types.As you can see, this section is
enclosed inside its own set of curly braces. For your Fraction class, these declarations say
that a Fraction object has two integer members, called numerator and denominator:

int numerator;

int denominator;

The members declared in this section are known as the instance variables. Each time
you create a new object, a new and unique set of instance variables also is created.There-
fore, if you have two Fractions, one called fracA and another called fracB, each will
have its own set of instance variables—that is, fracA and fracB each will have its own
separate numerator and denominator.The Objective-C system automatically keeps track
of this for you, which is one of the nicer things about working with objects.The

take any arguments. In Chapter 7,“More on Classes,” you’ll see how methods that take
more than one argument are identified.

38 Chapter 3 Classes, Objects, and Methods

methodDefinitions part of the @implementation section contains the code for each
method specified in the @interface section. Similar to the @interface section, each
method’s definition starts by identifying the type of method (class or instance), its return
type, and its arguments and their types. However, instead of the line ending with a semi-
colon, the code for the method follows, enclosed inside a set of curly braces. It’s noted
here that you can have the compiler automatically generate methods for you by using a
special @synthesize directive.This is covered in detail in Chapter 7.

Consider the @implementation section from Program 3.2:

//---- @implementation section ----

@implementation Fraction

{

int numerator;

int denominator;

}

–(void) print

{

NSLog (@"%i/%i", numerator, denominator);

}

–(void) setNumerator: (int) n

{

numerator = n;

}

–(void) setDenominator: (int) d

{

denominator = d;

}

@end

The print method uses NSLog to display the values of the instance variables
numerator and denominator. But to which numerator and denominator does this
method refer? It refers to the instance variables contained in the object that is the receiver
of the message.That’s an important concept, and we return to it shortly.

The setNumerator: method stores the integer argument you called n in the instance
variable numerator. Similarly, setDenominator: stores the value of its argument d in the
instance variable denominator.

39The program Section

The program Section
The program section contains the code to solve your particular problem, which can be
spread out across many files, if necessary. Somewhere you must have a routine called main,
as we’ve previously noted.That’s where your program always begins execution. Here’s the
program section from Program 3.2:

//---- program section ----

int main (int argc, char * argv[])

{

@autoreleasepool {

Fraction *myFraction;

// Create an instance of a Fraction and initialize it

myFraction = [Fraction alloc];

myFraction = [myFraction init];

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");

[myFraction print];

}

return 0;

}

Inside main, you define a variable called myFraction with the following line:

Fraction *myFraction;

This line says that myFraction is an object of type Fraction; that is, myFraction is
used to store values from your new Fraction class.The asterisk that precedes the variable
name is described in more detail below.

Now that you have an object to store a Fraction, you need to create one, just as you
ask the factory to build you a new car.This is done with the following line:

myFraction = [Fraction alloc];

alloc is short for allocate.You want to allocate memory storage space for a new frac-
tion.This expression sends a message to your newly created Fraction class:

[Fraction alloc]

40 Chapter 3 Classes, Objects, and Methods

You are asking the Fraction class to apply the alloc method, but you never defined
an alloc method, so where did it come from? The method was inherited from a parent
class. Chapter 8,“Inheritance,” deals with this topic in detail.

When you send the alloc message to a class, you get back a new instance of that class.
In Program 3.2, the returned value is stored inside your variable myFraction.The alloc
method is guaranteed to zero out all of an object’s instance variables. However, that does-
n’t mean that the object has been properly initialized for use.You need to initialize an
object after you allocate it.

This is done with the next statement in Program 3.2, which reads as follows:

myFraction = [myFraction init];

Again, you are using a method here that you didn’t write yourself.The init method
initializes the instance of a class. Note that you are sending the init message to
myFraction.That is, you want to initialize a specific Fraction object here, so you don’t
send it to the class—you send it to an instance of the class. Make sure you understand this
point before continuing.

The init method also returns a value—namely, the initialized object.You store the
return value in your Fraction variable myFraction.

The two-line sequence of allocating a new instance of class and then initializing it is
done so often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

This inner message expression is evaluated first:

[Fraction alloc]

As you know, the result of this message expression is the actual Fraction that is allo-
cated. Instead of storing the result of the allocation in a variable, as you did before, you
directly apply the init method to it. So, again, first you allocate a new Fraction and then
you initialize it.The result of the initialization is then assigned to the myFraction variable.

As a final shorthand technique, the allocation and initialization is often incorporated
directly into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

Returning to Program 3.2, you are now ready to set the value of your fraction.These
program lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

The first message statement sends the setNumerator: message to myFraction.The
argument that is supplied is the value 1. Control is then sent to the setNumerator:
method you defined for your Fraction class.The Objective-C system knows that it is the

