

“The simplified yet deep level of detail, comprehensive coverage of material,
and informative historical references make this book perfect for the class-
room... An easy read, with complex examples presented simply, and great
historical references rarely found in such books. Awesome!”

—Gloria W.

Praise for the Previous Edition

“The long-awaited second edition of Wesley Chun’s Core Python Programming
proves to be well worth the wait—its deep and broad coverage and useful
exercises will help readers learn and practice good Python.”

—Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

“There has been lot of good buzz around Wesley Chun’s Core Python
Programming. It turns out that all the buzz is well earned. I think this is the
best book currently available for learning Python. I would recommend Chun’s
book over Learning Python (O’Reilly), Programming Python (O’Reilly), or The
Quick Python Book (Manning).”

—David Mertz, Ph.D., IBM DeveloperWorks

“I have been doing a lot of research [on] Python for the past year and have
seen a number of positive reviews of your book. The sentiment expressed
confirms the opinion that Core Python Programming is now considered the
standard introductory text.”

—Richard Ozaki, Lockheed Martin

“Finally, a book good enough to be both a textbook and a reference on the
Python language now exists.”

—Michael Baxter, Linux Journal

“Very well written. It is the clearest, friendliest book I have come across
yet for explaining Python, and putting it in a wider context. It does not
presume a large amount of other experience. It does go into some impor-
tant Python topics carefully and in depth. Unlike too many beginner
books, it never condescends or tortures the reader with childish hide-and-
seek prose games. [It] sticks to gaining a solid grasp of Python syntax and
structure.”

—http://python.org bookstore Web site

http://python.org

“[If] I could only own one Python book, it would be Core Python Programming
by Wesley Chun. This book manages to cover more topics in more depth
than Learning Python but includes it all in one book that also more than
adequately covers the core language. [If] you are in the market for just one
book about Python, I recommend this book. You will enjoy reading it,
including its wry programmer’s wit. More importantly, you will learn
Python. Even more importantly, you will find it invaluable in helping
you in your day-to-day Python programming life. Well done, Mr. Chun!”

—Ron Stephens, Python Learning Foundation

“I think the best language for beginners is Python, without a doubt. My
favorite book is Core Python Programming.”

—s003apr, MP3Car.com Forums

“Personally, I really like Python. It’s simple to learn, completely intuitive,
amazingly flexible, and pretty darned fast. Python has only just started to
claim mindshare in the Windows world, but look for it to start gaining lots
of support as people discover it. To learn Python, I’d start with Core Python
Programming by Wesley Chun.”

—Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

“If you learn well from books, I suggest Core Python Programming. It is by
far the best I’ve found. I’m a Python newbie as well and in three months’
time I’ve been able to implement Python in projects at work (automating
MSOffice, SQL DB stuff, etc.).”

—ptonman, Dev Shed Forums

“Python is simply a beautiful language. It’s easy to learn, it’s cross-plat-
form, and it works. It has achieved many of the technical goals that Java
strives for. A one-sentence description of Python would be: ‘All other lan-
guages appear to have evolved over time—but Python was designed.’ And
it was designed well. Unfortunately, there aren’t a large number of books for
Python. The best one I’ve run across so far is Core Python Programming.”

—Chris Timmons, C. R. Timmons Consulting

“If you like the Prentice Hall Core series, another good full-blown treat-
ment to consider would be Core Python Programming. It addresses in elabo-
rate concrete detail many practical topics that get little, if any, coverage in
other books.”

—Mitchell L. Model, MLM Consulting

www.MP3Car.com

Core

PYTHON
Applications Programming

Third Edition

The Core Series is designed to provide you � the experienced programmer �
with the essential information you need to quickly learn and apply the latest,
most important technologies.

Authors in The Core Series are seasoned professionals who have pioneered
the use of these technologies to achieve tangible results in real-world settings.
These experts:
� Share their practical experiences
� Support their instruction with real-world examples
� Provide an accelerated, highly effective path to learning the subject at hand

The resulting book is a no-nonsense tutorial and thorough reference that allows
you to quickly produce robust, production-quality code.

Visit informit.com/coreseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Core Series

www.informit.com/coreseries
www.informit.com/socialconnect

Core

PYTHON
Applications Programming

Third Edition

Wesley J. Chun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

��������	
��������	������������������	���������������	����	�����
�	
����������	�
��������������	�����������
����	
���������	��������������	
������������	
������
��
�����������������	����������������	
��������	����
�������������	�����	
����	����
����	�����		�����������������	���

�
����	
������������
���
����	�������������	
���������	�������	
����������	���������
�������������������������	������������������������������������	���������������
�������� ���������	���������������������	����������!���	��������������������	����
��	
�������������	����	
��������	
���������	������������������	������
������

�
�������
�����������������	�������	����	
��������
��������������!���	�	�����������
����
�������������������
��
�����������������	����������������"�����	���������
�������	��	����	�������	��������������	�������������������	�����������������������
��	���	��#���������������	��������������	��	$

%�&��'������	������(��������	�&���
)*++,�-*.�-/01
�������2������	��
���������

#���������	����	
��%��	���&	�	�����������	��	$

3�	����	������&���
��	����	�����2����������

4��	������	
�����$��������	����

��������	
��	�����������	���������������	������
'
����������
'������	
����������	����������������"�������5��'
����6�-������
�� ���

7����������$�'����8�	
���������������"�������5��'
�����.++9�
3�������������
3&: �+�0-�.;9*.+�1�)�����$�����������,
0��8�	
���)'����	�������������������,�3��'
�����������'����8�	
��

�������������33����	���
<=9;�9-�81*'/*�.+0.
++>�0?096��.- .+00+>.1+-

'������
	� .+0.�8������A����	�����3���

=������
	����������8���	������	
��%��	���&	�	�����=���������
���������	���������	��	���
����������
	�����������������	������	�����������	
�������
���������	���������
���	���
��������	�����	�������������	��������	�������	�������������������������������������
����	����������
���������
�	��������������������������������������	�������������	��
�� ��	�����������	
������������������	������		�����!��	�	��8������A����	�����3�����
8��������B����	���	��C���D����&	���	��%�����&������7������ ���5�����+9/>*���������
���������������!��	�	��).+0,�.-;�-.1+��

3&: �0-$�19*�+�0-�.;9*.+�1
3&: �0+$��������+�0-�.;9*.+�1

���	�����	������	
��%��	���&	�	���������������������	�A������:��	
�������������
=���=���������
�����
&����������	�����5����.+0-

mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://informit.com

To my parents,
who taught me that everybody is different.

And to my wife,
who lives with someone who is different.

This page intentionally left blank

ix

CONTENTS

Preface xv

Acknowledgments xxvii

About the Author xxxi

Part I General Application Topics 1

Chapter 1 Regular Expressions 2
1.1 Introduction/Motivation 3
1.2 Special Symbols and Characters 6
1.3 Regexes and Python 16
1.4 Some Regex Examples 36
1.5 A Longer Regex Example 41
1.6 Exercises 48

Chapter 2 Network Programming 53
2.1 Introduction 54
2.2 What Is Client/Server Architecture? 54
2.3 Sockets: Communication Endpoints 58
2.4 Network Programming in Python 61
2.5 *The SocketServer Module 79
2.6 *Introduction to the Twisted Framework 84
2.7 Related Modules 88
2.8 Exercises 89

x Contents

Chapter 3 Internet Client Programming 94
��� ����	
��	�������	�������� ��
��� ������������	����� ��
��� �������	���� � !
��! "#$��� ��!
��� �	%��&��&� ���

����� "#$���	��'(������� ���
����� "#$���	%������ ��!
����� ��)#*���+	���,+	"#$���	-��.�&�� ���
����! *���	%��&��&��/	-�&,���01	2���&������ ���
����� 3����4	$��� ��5
����� 6'��� �!!

��� 2�����+	$�+,��� �!�
��7 "8��&���� �!5

Chapter 4 Multithreaded Programming 156
!�� ����+,&����9$���.����� ��7
!�� �����+�	��+	%��&����� ��5
!�� �����+�	��+	%0���� ��
!�! ���	thread	$�+,�� ��!
!�� ���	threading	$�+,�� ���
!�� ��'(�����	-�����	.��	$,��������+�+	"8�&,���� �5
!�7 $,��������+���	��	%��&��&� �5�
!�5 %��+,&��#����,'��	%��)��'	��+	���	Queue/queue	$�+,�� � �
!��
��������.�	�����+��������	��	�����+� � �
!�� 2�����+	$�+,��� � �
!��� "8��&���� ��

Chapter 5 GUI Programming 213
��� ����+,&���� ��!
��� �������	��+	%0����	%�����''��� ���
��� �������	"8�'(��� ���
��!
	*����	��,�	��	:����	6;� ���
��� 2�����+	$�+,���	��+	:����	6;� �!7
��� "8��&���� ��

Chapter 6 Database Programming 253
��� ����+,&���� ��!
��� ���	%0����	<*#
% ���
��� :2$� �5�
��! ���#2���������	<���)���� � �
��� 2�����+	2������&�� ���
��� "8��&���� ���

Contents xi

Chapter 7 *Programming Microsoft Office 324
7�� ����+,&���� ���
7�� �:$	������	%�����''���	����	%0���� ���
7�� ����+,&���0	"8�'(��� ��5
7�! ����'�+����	"8�'(��� ��5
7�� 2�����+	$�+,���9%�&����� ��7
7�� "8��&���� ��7

Chapter 8 Extending Python 364
5�� ����+,&����9$���.����� ���
5�� "8���+���	%0����)0	�������	"8�������� ��5
5�� 2�����+	��(�&� �5!
5�! "8��&���� �55

Part II Web Development 389

Chapter 9 Web Clients and Servers 390
��� ����+,&���� ���
��� %0����	��)	������	����� ���
��� ��)	������� !�
��! ��)	=>��%?	-��.��� !�5
��� 2�����+	$�+,��� !��
��� "8��&���� !��

Chapter 10 Web Programming: CGI and WSGI 441
� �� ����+,&���� !!�
� �� >��(���	��)	-��.���	%��&���	������	<��� !!�
� �� *,��+���	�6	
((��&������ !!�
� �! ;����	;��&�+�	����	�6 !�!
� ��
+.��&�+	�6 !��
� �� ����+,&����	��	�-6 !75
� �7 2���#����+	��)	<�.���('��� !57
� �5 2�����+	$�+,��� !55
� �� "8��&���� !�

Chapter 11 Web Frameworks: Django 493
���� ����+,&���� !�!
���� ��)	���'������ !�!
���� ����+,&����	��	<@���� !��
���! %��@�&��	��+	
((� � �
���� 3�,�	A>����	����+B	
((��&�����	=
	*���? � 7
���� ��������	�	$�+��	��	
++	<���)���	-��.�&� � �
���7 ���	%0����	
((��&�����	-���� ��!
���5 ���	<@����	
+'�����������	
((��5
���� ��������	���	*���C�	;���	������&� ��7

xii Contents

���� '(��.���	���	:,�(,� ��7
����� �������	����	;���	�(,� �!�
����� ���'�	��+	$�+��	���'� �!�
����� $���	
)�,�	D���� ���
����! EF���#��+#����	'(��.�'���� ���
����� E;���	������� ��!
����� E
�	����'�+����	<@����	
((/	���	�����
((��.�� ��!
����7 2���,�&�� ��7
����5 ���&�,���� ��7
����� "8��&���� ��5

Chapter 12 Cloud Computing: Google App Engine 604
���� ����+,&���� � �
���� ����	�	���,+	��'(,����� � �
���� ���	-��+)�8	��+	���	
(("�����	-<G ���
���! ��������	��	
(("�����	���'����� ��7
���� %0����	��7	-,((��� ���
���� ��'(�������	��	<@���� ��5
���7 -�������	A>����	����+B ��5
���5 ��������	A>����	����+B	$��,���0	=H�(����	;����? ���
���� ;(���+���	0�,�	
((��&�����	��	6����� ���
���� $��(����	A>����	����+B	����	�	-�'(�� *��� ���
�����
++���	$�'&�&��	-��.�&� �!7
����� -����&	����� ���
�����
++���	;����	-��.�&� ���
����! 2�'���	
%	-���� ��!
����� F��������	2�,�+	=����	%0����	��+�? ���
����� -��+���	������	$�������)0	;���� I$%% ��
����7 %��&������	'���� ���
����5 ����	J,�,��	=;��&��+,��+	�����? ���
����� %��������	����	
((����� �7
���� ���	;2F���&�	-��.�&� �7�
����� F��������	2�,�+	=�����,�	%0����	��+�? �7�
����� D��+��	F�&�#� �7�
����� 2���,�&�� �7�
����! ���&�,���� �7�
����� "8��&���� �5

Chapter 13 Web Services 684
���� ����+,&���� �5�
���� ���	3����4	�����&�	-��&�	J,���	-��.�� �5�
���� $�&��)�������	����	������� ��
���! "8��&���� 7 7

Contents xiii

Part III Supplemental/Experimental 713

Chapter 14 Text Processing 714
�!�� ��''�#-�(�����+	D��,�� 7��
�!�� K�.�-&��(�	:)@�&�	�������� 7��
�!�� "8�����)��	$���,(F���,��� 7�!
�!�! 2������&�� 7�5
�!�� 2�����+	$�+,��� 7!
�!�� "8��&���� 7!

Chapter 15 Miscellaneous 743
���� K0���� 7!!
���� 6�����L 7!5
���� "8��&���� 7��

Appendix A Answers to Selected Exercises 763

Appendix B Reference Tables 768

Appendix C Python 3: The Evolution of a Programming Language 798
��� ��0	�	%0����	��������� 7��
��� ����	>��	������+� 7��
��� $��������	����� 5 �
��! ���&�,���� 5 �
��� 2������&�� 5 �

Appendix D Python 3 Migration with 2.6+ 807
<�� %0����	�/	���	��8�	6��������� 5 7
<�� ������� 5 �
<�� *,���#�	�,�&����� 5��
<�! :)@�&�#:������+	%�����''���/	���	<��������	�����	:)@�&�� 5�!
<�� -������ 5��
<�� "8&�(����� 5��
<�7 :����	����������	�����	��+	��(� 5�7
<�5 �������	��+�	����	��	��'(���)��	��	*��� D�������	��8	��+	��8 5�5
<�� ���&�,���� 5��

Index 823

This page intentionally left blank

xv

PREFACE

Welcome to the Third Edition of Core Python
Applications Programming!
We are delighted that you have engaged us to help you learn Python as
quickly and as deeply as possible. The goal of the Core Python series of
books is not to just teach developers the Python language; we want you
you to develop enough of a personal knowledge base to be able to develop
software in any application area.

In our other Core Python offerings, Core Python Programming and Core
Python Language Fundamentals, we not only teach you the syntax of the
Python language, but we also strive to give you in-depth knowledge of
how Python works under the hood. We believe that armed with this
knowledge, you will write more effective Python applications, whether
you’re a beginner to the language or a journeyman (or journeywoman!).

Upon completion of either or any other introductory Python books, you
might be satisfied that you have learned Python and learned it well. By
completing many of the exercises, you’re probably even fairly confident in
your newfound Python coding skills. Still, you might be left wondering,
“Now what? What kinds of applications can I build with Python?” Per-
haps you learned Python for a work project that’s constrained to a very
narrow focus. “What else can I build with Python?”

xvi Preface

About this Book
In Core Python Applications Programming, you will take all the Python
knowledge gained elsewhere and develop new skills, building up a toolset
with which you’ll be able to use Python for a variety of general applica-
tions. These advanced topics chapters are meant as intros or “quick dives”
into a variety of distinct subjects. If you’re moving toward the specific
areas of application development covered by any of these chapters, you’ll
likely discover that they contain more than enough information to get you
pointed in the right direction. Do not expect an in-depth treatment because
that will detract from the breadth-oriented treatment that this book is
designed to convey.

Like all other Core Python books, throughout this one, you will find
many examples that you can try right in front of your computer. To ham-
mer the concepts home, you will also find fun and challenging exercises at
the end of every chapter. These easy and intermediate exercises are meant
to test your learning and push your Python skills. There simply is no sub-
stitute for hands-on experience. We believe you should not only pick up
Python programming skills but also be able to master them in as short a
time period as possible.

Because the best way for you to extend your Python skills is through
practice, you will find these exercises to be one of the greatest strengths of
this book. They will test your knowledge of chapter topics and definitions
as well as motivate you to code as much as possible. There is no substitute
for improving your skills more effectively than by building applications.
You will find easy, intermediate, and difficult problems to solve. It is also
here that you might need to write one of those “large” applications that
many readers wanted to see in the book, but rather than scripting
them—which frankly doesn’t do you all that much good—you gain by
jumping right in and doing it yourself. Appendix A, “Answers to Selected
Exercises,” features answers to selected problems from each chapter. As
with the second edition, you’ll find useful reference tables collated in
Appendix B, “Reference Tables.”

I’d like to personally thank all readers for your feedback and encourage-
ment. You’re the reason why I go through the effort of writing these books.
I encourage you to keep sending your feedback and help us make a fourth
edition possible, and even better than its predecessors!

Preface xvii

Who Should Read This Book?
This book is meant for anyone who already knows some Python but wants
to know more and expand their application development skillset.

Python is used in many fields, including engineering, information tech-
nology, science, business, entertainment, and so on. This means that the list
of Python users (and readers of this book) includes but is not limited to

• Software engineers

• Hardware design/CAD engineers

• QA/testing and automation framework developers

• IS/IT/system and network administrators

• Scientists and mathematicians

• Technical or project management staff

• Multimedia or audio/visual engineers

• SCM or release engineers

• Web masters and content management staff

• Customer/technical support engineers

• Database engineers and administrators

• Research and development engineers

• Software integration and professional services staff

• Collegiate and secondary educators

• Web service engineers

• Financial software engineers

• And many others!

Some of the most famous companies that use Python include Google,
Yahoo!, NASA, Lucasfilm/Industrial Light and Magic, Red Hat, Zope, Disney,
Pixar, and Dreamworks.

xviii Preface

The Author and Python
I discovered Python over a decade ago at a company called Four11. At the
time, the company had one major product, the Four11.com White Page
directory service. Python was being used to design its next product: the
Rocketmail Web-based e-mail service that would eventually evolve into
what today is Yahoo! Mail.

It was fun learning Python and being on the original Yahoo! Mail engi-
neering team. I helped re-design the address book and spell checker. At
the time, Python also became part of a number of other Yahoo! sites,
including People Search, Yellow Pages, and Maps and Driving Directions,
just to name a few. In fact, I was the lead engineer for People Search.

Although Python was new to me then, it was fairly easy to pick
up—much simpler than other languages I had learned in the past. The
scarcity of textbooks at the time led me to use the Library Reference and
Quick Reference Guide as my primary learning tools; it was also a driving
motivation for the book you are reading right now.

Since my days at Yahoo!, I have been able to use Python in all sorts of
interesting ways at the jobs that followed. In each case, I was able to har-
ness the power of Python to solve the problems at hand, in a timely man-
ner. I have also developed several Python courses and have used this book
to teach those classes—truly eating my own dogfood.

Not only are the Core Python books great learning devices, but they’re
also among the best tools with which to teach Python. As an engineer, I
know what it takes to learn, understand, and apply a new technology. As a
professional instructor, I also know what is needed to deliver the most effective
sessions for clients. These books provide the experience necessary to be able
to give you real-world analogies and tips that you cannot get from some-
one who is “just a trainer” or “just a book author.”

What to Expect of the Writing Style:
Technical, Yet Easy Reading
Rather than being strictly a “beginners” book or a pure, hard-core com-
puter science reference book, my instructional experience has taught me
that an easy-to-read, yet technically oriented book serves the purpose the
best, which is to get you up to speed on Python as quickly as possible so
that you can apply it to your tasks posthaste. We will introduce concepts

www.Four11.com

Preface xix

coupled with appropriate examples to expedite the learning process. At the
end of each chapter you will find numerous exercises to reinforce some of
the concepts and ideas acquired in your reading.

We are thrilled and humbled to be compared with Bruce Eckel’s writing
style (see the reviews to the first edition at the book’s Web site, http://
corepython.com). This is not a dry college textbook. Our goal is to have a
conversation with you, as if you were attending one of my well-received
Python training courses. As a lifelong student, I constantly put myself in
my student’s shoes and tell you what you need to hear in order to learn
the concepts as quickly and as thoroughly as possible. You will find read-
ing this book fast and easy, without losing sight of the technical details.

As an engineer, I know what I need to tell you in order to teach you a
concept in Python. As a teacher, I can take technical details and boil them
down into language that is easy to understand and grasp right away. You
are getting the best of both worlds with my writing and teaching styles,
but you will enjoy programming in Python even more.

Thus, you’ll notice that even though I’m the sole author, I use the “third-
person plural” writing structure; that is to say, I use verbiage such as “we”
and “us” and “our,” because in the grand scheme of this book, we’re all in
this together, working toward the goal of expanding the Python program-
ming universe.

About This Third Edition
At the time the first edition of this book was published, Python was enter-
ing its second era with the release of version 2.0. Since then, the language
has undergone significant improvements that have contributed to the
overall continued success, acceptance, and growth in the use of the lan-
guage. Deficiencies have been removed and new features added that bring
a new level of power and sophistication to Python developers worldwide.
The second edition of the book came out in 2006, at the height of Python’s
ascendance, during the time of its most popular release to date, 2.5.

The second edition was released to rave reviews and ended up outsell-
ing the first edition. Python itself had won numerous accolades since that
time as well, including the following:

• Tiobe (www.tiobe.com)

– Language of the Year (2007, 2010)

www.tiobe.com
http://corepython.com
http://corepython.com

xx Preface

• LinuxJournal (linuxjournal.com)

– Favorite Programming Language (2009–2011)

– Favorite Scripting Language (2006–2008, 2010, 2011)

• LinuxQuestions.org Members Choice Awards

– Language of the Year (2007–2010)

These awards and honors have helped propel Python even further.
Now it’s on its next generation with Python 3. Likewise, Core Python Pro-
gramming is moving towards its “third generation,” too, as I’m exceedingly
pleased that Prentice Hall has asked me to develop this third edition.
Because version 3.x is backward-incompatible with Python 1 and 2, it will
take some time before it is universally adopted and integrated into indus-
try. We are happy to guide you through this transition. The code in this
edition will be presented in both Python 2 and 3 (as appropriate—not
everything has been ported yet). We’ll also discuss various tools and prac-
tices when porting.

The changes brought about in version 3.x continue the trend of iterating
and improving the language, taking a larger step toward removing some
of its last major flaws, and representing a bigger jump in the continuing
evolution of the language. Similarly, the structure of the book is also mak-
ing a rather significant transition. Due to its size and scope, Core Python
Programming as it has existed wouldn’t be able to handle all the new mate-
rial introduced in this third edition.

Therefore, Prentice Hall and I have decided the best way of moving for-
ward is to take that logical division represented by Parts I and II of the pre-
vious editions, representing the core language and advanced applications
topics, respectively, and divide the book into two volumes at this juncture.
You are holding in your hands (perhaps in eBook form) the second half of
the third edition of Core Python Programming. The good news is that the
first half is not required in order to make use of the rich amount of content
in this volume. We only recommend that you have intermediate Python
experience. If you’ve learned Python recently and are fairly comfortable
with using it, or have existing Python skills and want to take it to the next
level, then you’ve come to the right place!

As existing Core Python Programming readers already know, my primary
focus is teaching you the core of the Python language in a comprehen-
sive manner, much more than just its syntax (which you don’t really need
a book to learn, right?). Knowing more about how Python works under
the hood—including the relationship between data objects and memory
management—will make you a much more effective Python programmer

www.linuxjournal.com

Preface xxi

right out of the gate. This is what Part I, and now Core Python Language
Fundamentals, is all about.

As with all editions of this book, I will continue to update the book’s
Web site and my blog with updates, downloads, and other related articles
to keep this publication as contemporary as possible, regardless to which
new release of Python you have migrated.

For existing readers, the new topics we have added to this edition include:
• Web-based e-mail examples (Chapter 3)

• Using Tile/Ttk (Chapter 5)

• Using MongoDB (Chapter 6)

• More significant Outlook and PowerPoint examples (Chapter 7)

• Web server gateway interface (WSGI) (Chapter 10)

• Using Twitter (Chapter 13)

• Using Google+ (Chapter 15)

In addition, we are proud to introduce three brand new chapters to the
book: Chapter 11, “Web Frameworks: Django,” Chapter 12, “Cloud Com-
puting: Google App Engine,” and Chapter 14, “Text Processing.” These rep-
resent new or ongoing areas of application development for which Python
is used quite often. All existing chapters have been refreshed and updated
to the latest versions of Python, possibly including new material. Take a
look at the chapter guide that follows for more details on what to expect
from every part of this volume.

Chapter Guide
This book is divided into three parts. The first part, which takes up about
two-thirds of the text, gives you treatment of the “core” members of any
application development toolset (with Python being the focus, of course).
The second part concentrates on a variety of topics, all tied to Web pro-
gramming. The book concludes with the supplemental section which pro-
vides experimental chapters that are under development and hopefully
will grow into independent chapters in future editions.

All three parts provide a set of various advanced topics to show what
you can build by using Python. We are certainly glad that we were at least
able to provide you with a good introduction to many of the key areas of
Python development including some of the topics mentioned previously.

Following is a more in-depth, chapter-by-chapter guide.

xxii Preface

Part I: General Application Topics

Chapter 1—Regular Expressions

Regular expressions are a powerful tool that you can use for pattern
matching, extracting, and search-and-replace functionality.

Chapter 2—Network Programming

So many applications today need to be network oriented. In this chapter, you
learn to create clients and servers using TCP/IP and UDP/IP as well as get an
introduction to SocketServer and Twisted.

Chapter 3—Internet Client Programming

Most Internet protocols in use today were developed using sockets. In
Chapter 3, we explore some of those higher-level libraries that are used to
build clients of these Internet protocols. In particular, we focus on file
transfer (FTP), the Usenet news protocol (NNTP), and a variety of e-mail
protocols (SMTP, POP3, IMAP4).

Chapter 4—Multithreaded Programming

Multithreaded programming is one way to improve the execution perfor-
mance of many types of applications by introducing concurrency. This
chapter ends the drought of written documentation on how to implement
threads in Python by explaining the concepts and showing you how to
correctly build a Python multithreaded application and what the best use
cases are.

Chapter 5—GUI Programming

Based on the Tk graphical toolkit, Tkinter (renamed to tkinter in Python 3)
is Python’s default GUI development library. We introduce Tkinter to you
by showing you how to build simple GUI applications. One of the best
ways to learn is to copy, and by building on top of some of these applica-
tions, you will be on your way in no time. We conclude the chapter by tak-
ing a brief look at other graphical libraries, such as Tix, Pmw, wxPython,
PyGTK, and Ttk/Tile.

Preface xxiii

Chapter 6—Database Programming

Python helps simplify database programming, as well. We first review
basic concepts and then introduce you to the Python database application
programmer’s interface (DB-API). We then show you how you can connect
to a relational database and perform queries and operations by using
Python. If you prefer a hands-off approach that uses the Structured Query
Language (SQL) and want to just work with objects without having to
worry about the underlying database layer, we have object-relational man-
agers (ORMs) just for that purpose. Finally, we introduce you to the world
of non-relational databases, experimenting with MongoDB as our NoSQL
example.

Chapter 7—Programming Microsoft Office

Like it or not, we live in a world where we will likely have to interact with
Microsoft Windows-based PCs. It might be intermittent or something we
have to deal with on a daily basis, but regardless of how much exposure
we face, the power of Python can be used to make our lives easier. In this
chapter, we explore COM Client programming by using Python to control
and communicate with Office applications, such as Word, Excel, Power-
Point, and Outlook. Although experimental in the previous edition, we’re
glad we were able to add enough material to turn this into a standalone
chapter.

Chapter 8—Extending Python

We mentioned earlier how powerful it is to be able to reuse code and
extend the language. In pure Python, these extensions are modules and
packages, but you can also develop lower-level code in C/C++, C#, or Java.
Those extensions then can interface with Python in a seamless fashion.
Writing your extensions in a lower-level programming language gives you
added performance and some security (because the source code does not
have to be revealed). This chapter walks you step-by-step through the
extension building process using C.

xxiv Preface

Part II: Web Development

Chapter 9—Web Clients and Servers

Extending our discussion of client-server architecture in Chapter 2, we apply
this concept to the Web. In this chapter, we not only look at clients, but also
explore a variety of Web client tools, parsing Web content, and finally, we
introduce you to customizing your own Web servers in Python.

Chapter 10—Web Programming: CGI and WSGI

The main job of Web servers is to take client requests and return results.
But how do servers get that data? Because they’re really only good at
returning results, they generally do not have the capabilities or logic nec-
essary to do so; the heavy lifting is done elsewhere. CGI gives servers the
ability to spawn another program to do this processing and has histori-
cally been the solution, but it doesn’t scale and is thus not really used in
practice; however, its concepts still apply, regardless of what framework(s)
you use, so we’ll spend most of the chapter learning CGI. You will also
learn how WSGI helps application developers by providing them a com-
mon programming interface. In addition, you’ll see how WSGI helps
framework developers who have to connect to Web servers on one side
and application code on the other so that application developers can write
code without having to worry about the execution platform.

Chapter 11—Web Frameworks: Django

Python features a host of Web frameworks with Django being one of the
most popular. In this chapter, you get an introduction to this framework
and learn how to write simple Web applications. With this knowledge,
you can then explore other Web frameworks as you wish.

Chapter 12—Cloud Computing: Google App Engine

Cloud computing is taking the industry by storm. While the world is most
familiar with infrastructure services like Amazon’s AWS and online appli-
cations such as Gmail and Yahoo! Mail, platforms present a powerful alter-
native that take advantage of infrastructure without user involvement but
give more flexibility than cloud software because you control the application
and its code. In this chapter, you get a comprehensive introduction to the first
platform service using Python, Google App Engine. With the knowledge
gained here, you can then explore similar services in the same space.

Preface xxv

�������	
����	��������

��������	�
�������������������������������	���������������������������
��������
��
���� ������	�� �!
���"�#��
�	���
� �
�������������������
!�����
�������������
	�������������$�����������	����%��������%�����
�
�����
�������� ���%��&����
��� �$�'��
����	�
�����

Part III: Supplemental/Experimental

�������	
������	����������

(�� $���� ������'���
�� 	�
���� ���� �	��� %��� ��� ����� ��	������� �����
�%���������$�����������)*+�������,*(-��
� �$��
��%�./0����������
����
�
�$� ����� 	�
�������� �
��� ��� 	�����1����� ������ ��� $�'� �
���� ��� ���
�����
� � 	�'����� ��� ����� ./0� ��� �����
�� ���� %��� 	
�� 	�
��� ������
�'������	� ���	
�����2�)������	����%�������./0�2�)�

�������	
���������������

����� 	�
���� 	�������� �$� ������'
���
�� ��
���������� �����%� ������� ����
$����� �� ��� �
��	�
����� ���
� $������ �����������	��	���� ����� ��	�� �
,
�
1,%�����
� �3�����4�

Conventions
5������
'��������
� ����	��	� ��
�����monospaced�$������%�������%�
�� ��
���
����Bold-monospaced�$�����0������$��������������������
 ���
��
�����
���������>>>���������������%����������������'����5���
 �
����
��������6�����$�����$�
�	�
�������	�����������	������� �	
������
������
���
 �
�	� �
� 1��������
��'
���
���

2���������)���-����

2���������)���/� ���

2���������)�������

-���$�
���������%�����
������������ ������������	���������������'�
��� ����������� ���������� �$� �%����� ��� ���	�� ���� $�
����� $���

���
� �

2.5

xxvi Preface

Book Resources
We welcome any and all feedback—the good, the bad, and the ugly. If you
have any comments, suggestions, kudos, complaints, bugs, questions, or
anything at all, feel free to contact me at corepython@yahoo.com.

You will find errata, source code, updates, upcoming talks, Python train-
ing, downloads, and other information at the book’s Web site located at:
http://corepython.com. You can also participate in the community discus-
sion around the “Core Python” books at their Google+ page, which is
located at: http://plus.ly/corepython.

http://corepython.com
http://plus.ly/corepython

xxvii

ACKNOWLEDGMENTS

Acknowledgments for the Third Edition

Reviewers and Contributors
Gloria Willadsen (lead reviewer)
Martin Omander (reviewer and also coauthor of Chapter 11, “Web
Frameworks: Django,” creator of the TweetApprover application, and
coauthor of Section 15.2, “Google+,” in Chapter 15, “Miscellaneous”).
Darlene Wong
Bryce Verdier
Eric Walstad
Paul Bissex (coauthor of Python Web Development with Django)
Johan “proppy” Euphrosine
Anthony Vallone

Inspiration
My wife Faye, who has continued to amaze me by being able to run the
household, take care of the kids and their schedule, feed us all, handle the
finances, and be able to do this while I’m off on the road driving cloud
adoption or under foot at home, writing books.

xxviii Acknowledgments

Editorial
Mark Taub (Editor-in-Chief)
Debra Williams Cauley (Acquisitions Editor)
John Fuller (Managing Editor)
Elizabeth Ryan (Project Editor)
Bob Russell, Octal Publishing, Inc. (Copy Editor)
Dianne Russell, Octal Publishing, Inc. (Production and Management Services)

Acknowledgments for the Second Edition

Reviewers and Contributors
Shannon -jj Behrens (lead reviewer)
Michael Santos (lead reviewer)
Rick Kwan
Lindell Aldermann (coauthor of the Unicode section in Chapter 6)
Wai-Yip Tung (coauthor of the Unicode example in Chapter 20)
Eric Foster-Johnson (coauthor of Beginning Python)
Alex Martelli (editor of Python Cookbook and author of Python in a Nutshell)
Larry Rosenstein
Jim Orosz
Krishna Srinivasan
Chuck Kung

Inspiration
My wonderful children and pet hamster.

Acknowledgments xxix

Acknowledgments for the First Edition

Reviewers and Contributors
Guido van Rossum (creator of the Python language)
Dowson Tong
James C. Ahlstrom (coauthor of Internet Programming with Python)
S. Candelaria de Ram
Cay S. Horstmann (coauthor of Core Java and Core JavaServer Faces)
Michael Santos
Greg Ward (creator of distutils package and its documentation)
Vincent C. Rubino
Martijn Faassen
Emile van Sebille
Raymond Tsai
Albert L. Anders (coauthor of MT Programming chapter)
Fredrik Lundh (author of Python Standard Library)
Cameron Laird
Fred L. Drake, Jr. (coauthor of Python & XML and editor of the official
Python documentation)
Jeremy Hylton
Steve Yoshimoto
Aahz Maruch (author of Python for Dummies)
Jeffrey E. F. Friedl (author of Mastering Regular Expressions)
Pieter Claerhout
Catriona (Kate) Johnston
David Ascher (coauthor of Learning Python and editor of Python Cookbook)
Reg Charney
Christian Tismer (creator of Stackless Python)
Jason Stillwell
and my students at UC Santa Cruz Extension

Inspiration
I would like to extend my great appreciation to James P. Prior, my high
school programming teacher.

To Louise Moser and P. Michael Melliar-Smith (my graduate thesis advi-
sors at The University of California, Santa Barbara), you have my deepest
gratitude.)

xxx Acknowledgments

Thanks to Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart
Elliott, David Paton, all other Project participants, and fellow Projectologists
and Roadkillers (for all the music, support, and good times).

I would like to thank my family, friends, and the Lord above, who have kept
me safe and sane during this crazy period of late nights and abandonment,
on the road and off. I want to also give big thanks to all those who
believed in me for the past two decades (you know who you are!)—I
couldn’t have done it without you.

Finally, I would like to thank you, my readers, and the Python community
at large. I am excited at the prospect of teaching you Python and hope that
you enjoy your travels with me on this, our third journey.

Wesley J. Chun
Silicon Valley, CA
(It’s not so much a place as it is a state of sanity.)
October 2001; updated July 2006,
March 2009, March 2012

xxxi

ABOUT THE AUTHOR

Wesley Chun was initiated into the world of computing during high
school, using BASIC and 6502 assembly on Commodore systems. This was
followed by Pascal on the Apple IIe, and then ForTran on punch cards. It
was the last of these that made him a careful/cautious developer, because
sending the deck out to the school district’s mainframe and getting the
results was a one-week round-trip process. Wesley also converted the
journalism class from typewriters to Osborne 1 CP/M computers. He got
his first paying job as a student-instructor teaching BASIC programming to
fourth, fifth, and sixth graders and their parents.

After high school, Wesley went to University of California at Berkeley
as a California Alumni Scholar. He graduated with an AB in applied math
(computer science) and a minor in music (classical piano). While at Cal, he
coded in Pascal, Logo, and C. He also took a tutoring course that featured
videotape training and psychological counseling. One of his summer
internships involved coding in a 4GL and writing a “Getting Started” user
manual. He then continued his studies several years later at University of
California, Santa Barbara, receiving an MS in computer science (distributed
systems). While there, he also taught C programming. A paper based on his
master’s thesis was nominated for Best Paper at the 29th HICSS conference,
and a later version appeared in the University of Singapore’s Journal of High
Performance Computing.

xxxii About the Author

Wesley has been in the software industry since graduating and has con-
tinued to teach and write, publishing several books and delivering hun-
dreds of conference talks and tutorials, plus Python courses, both to the
public as well as private corporate training. Wesley’s Python experience
began with version 1.4 at a startup where he designed the Yahoo! Mail
spellchecker and address book. He then became the lead engineer for
Yahoo! People Search. After leaving Yahoo!, he wrote the first edition of
this book and then traveled around the world. Since returning, he has
used Python in a variety of ways, from local product search, anti-spam
and antivirus e-mail appliances, and Facebook games/applications to
something completely different: software for doctors to perform spinal
fracture analysis.

In his spare time, Wesley enjoys piano, bowling, basketball, bicycling,
ultimate frisbee, poker, traveling, and spending time with his family. He
volunteers for Python users groups, the Tutor mailing list, and PyCon.
He also maintains the Alan Parsons Project Monster Discography. If you
think you’re a fan but don’t have “Freudiana,” you had better find it! At
the time of this writing, Wesley was a Developer Advocate at Google, rep-
resenting its cloud products. He is based in Silicon Valley, and you can fol-
low him at @wescpy or plus.ly/wescpy.

PAR T

General
Application

Topics

2

CHAPTER

Regular Expressions

Some people, when confronted with a problem, think, “I know, I’ll
use regular expressions.” Now they have two problems.

—Jamie “jwz” Zawinski, August 1997

In this chapter...

• Introduction/Motivation
• Special Symbols and Characters
• Regexes and Python
• Some Regex Examples
• A Longer Regex Example

1.1 Introduction/Motivation 3

1.1 Introduction/Motivation
Manipulating text or data is a big thing. If you don’t believe me, look very
carefully at what computers primarily do today. Word processing, “fill-
out-form” Web pages, streams of information coming from a database
dump, stock quote information, news feeds—the list goes on and on.
Because we might not know the exact text or data that we have pro-
grammed our machines to process, it becomes advantageous to be able to
express it in patterns that a machine can recognize and take action upon.

If I were running an e-mail archiving company, and you, as one of my
customers, requested all of the e-mail that you sent and received last Feb-
ruary, for example, it would be nice if I could set a computer program to
collate and forward that information to you, rather than having a human
being read through your e-mail and process your request manually. You
would be horrified (and infuriated) that someone would be rummaging
through your messages, even if that person were supposed to be looking
only at time-stamp. Another example request might be to look for a subject
line like “ILOVEYOU,” indicating a virus-infected message, and remove
those e-mail messages from your personal archive. So this begs the ques-
tion of how we can program machines with the ability to look for patterns
in text.

Regular expressions provide such an infrastructure for advanced text pat-
tern matching, extraction, and/or search-and-replace functionality. To put
it simply, a regular expression (a.k.a. a “regex” for short) is a string that use
special symbols and characters to indicate pattern repetition or to repre-
sent multiple characters so that they can “match” a set of strings with sim-
ilar characteristics described by the pattern (Figure 1-1). In other words,
they enable matching of multiple strings—a regex pattern that matched
only one string would be rather boring and ineffective, wouldn’t you say?

Python supports regexes through the standard library re module. In
this introductory subsection, we will give you a brief and concise intro-
duction. Due to its brevity, only the most common aspects of regexes used
in everyday Python programming will be covered. Your experience will,
of course, vary. We highly recommend reading any of the official support-
ing documentation as well as external texts on this interesting subject. You
will never look at strings in the same way again!

4 Chapter 1 • Regular Expressions

CORE NOTE: Searching vs. matching

Throughout this chapter, you will find references to searching and matching.
When we are strictly discussing regular expressions with respect to patterns in
strings, we will say “matching,” referring to the term pattern-matching. In Python
terminology, there are two main ways to accomplish pattern-matching:
searching, that is, looking for a pattern match in any part of a string; and matching,
that is, attempting to match a pattern to an entire string (starting from the begin-
ning). Searches are accomplished by using the search() function or method, and
matching is done with the match() function or method. In summary, we keep

Regular
 Expression
 Engine

Figure 1-1 You can use regular expressions, such as the one here, which recognizes valid Python
identifiers. [A-Za-z]\w+ means the first character should be alphabetic, that is, either A–Z or a–z,
followed by at least one (+) alphanumeric character (\w). In our filter, notice how many strings go
into the filter, but the only ones to come out are the ones we asked for via the regex. One
example that did not make it was “4xZ” because it starts with a number.

1.1 Introduction/Motivation 5

the term “matching” universal when referencing patterns, and we differentiate
between “searching” and “matching” in terms of how Python accomplishes
pattern-matching.

1.1.1 Your First Regular Expression
As we mentioned earlier, regexes are strings containing text and special
characters that describe a pattern with which to recognize multiple strings.
We also briefly discussed a regular expression alphabet. For general text, the
alphabet used for regular expressions is the set of all uppercase and lower-
case letters plus numeric digits. Specialized alphabets are also possible; for
instance, you can have one consisting of only the characters “0” and “1.”
The set of all strings over this alphabet describes all binary strings, that is,
“0,” “1,” “00,” “01,” “10,” “11,” “100,” etc.

Let’s look at the most basic of regular expressions now to show you that
although regexes are sometimes considered an advanced topic, they can
also be rather simplistic. Using the standard alphabet for general text, we
present some simple regexes and the strings that their patterns describe.
The following regular expressions are the most basic, “true vanilla,” as it
were. They simply consist of a string pattern that matches only one string:
the string defined by the regular expression. We now present the regexes
followed by the strings that match them:

The first regular expression pattern from the above chart is “foo.” This
pattern has no special symbols to match any other symbol other than those
described, so the only string that matches this pattern is the string “foo.”
The same thing applies to “Python” and “abc123.” The power of regular
expressions comes in when special characters are used to define character
sets, subgroup matching, and pattern repetition. It is these special symbols
that allow a regex to match a set of strings rather than a single one.

Regex Pattern String(s) Matched

foo foo

Python Python

abc123 abc123

6 Chapter 1 • Regular Expressions

1.2 Special Symbols and Characters
We will now introduce the most popular of the special characters and sym-
bols, known as metacharacters, which give regular expressions their power
and flexibility. You will find the most common of these symbols and char-
acters in Table 1-1.

Table 1-1 Common Regular Expression Symbols and Special Characters

Notation Description Example Regex

Symbols

literal Match literal string value literal foo

re1|re2 Match regular expressions re1
or re2

foo|bar

. Match any character (except
\n)

b.b

^ Match start of string ^Dear

$ Match end of string /bin/*sh$

* Match 0 or more occurrences of pre-
ceding regex

[A-Za-z0-9]*

+ Match 1 or more occurrences of pre-
ceding regex

[a-z]+\.com

? Match 0 or 1 occurrence(s) of pre-
ceding regex

goo?

{N} Match N occurrences of preceding
regex

[0-9]{3}

{M,N} Match from M to N occurrences of
preceding regex

[0-9]{5,9}

[...] Match any single character from
character class

[aeiou]

[..x-y..] Match any single character in the
range from x to y

[0-9],[A-Za-z]

1.2 Special Symbols and Characters 7

Notation Description Example Regex

Symbols

[^...] Do not match any character from
character class, including any
ranges, if present

[^aeiou],
[^A-Za-z0-9_]

(*|+|?|{})? Apply “non-greedy” versions of
above occurrence/repetition symbols
(*, +, ?, {})

.*?[a-z]

(...) Match enclosed regex and save as
subgroup

([0-9]{3})?,
f(oo|u)bar

Special Characters

\d Match any decimal digit, same as
[0-9] (\D is inverse of \d: do not
match any numeric digit)

data\d+.txt

\w Match any alphanumeric character,
same as [A-Za-z0-9_] (\W is inverse
of \w)

[A-Za-z_]\w+

\s Match any whitespace character,
same as [\n\t\r\v\f] (\S is inverse
of \s)

of\sthe

\b Match any word boundary (\B is
inverse of \b)

\bThe\b

\N Match saved subgroup N (see (...)
above)

price: \16

\c Match any special character c verba-
tim (i.e., without its special mean-
ing, literal)

\., \\, *

\A (\Z) Match start (end) of string (also see ^
and $ above)

\ADear

(Continued)

8 Chapter 1 • Regular Expressions

Table 1-1 Common Regular Expression Symbols and Special Characters
(Continued)

Notation Description Example Regex

Extension Notation

(?iLmsux) Embed one or more special “flags”
parameters within the regex itself
(vs. via function/method)

(?x), (?im)

(?:...) Signifies a group whose match is not
saved

(?:\w+\.)*

(?P<name>...) Like a regular group match only
identified with name rather than a
numeric ID

(?P<data>)

(?P=name) Matches text previously grouped by
(?P<name>) in the same string

(?P=data)

(?#...) Specifies a comment, all contents
within ignored

(?#comment)

(?=...) Matches if ... comes next without
consuming input string; called
positive lookahead assertion

(?=.com)

(?!...) Matches if ... doesn’t come next
without consuming input; called
negative lookahead assertion

(?!.net)

(?<=...) Matches if ... comes prior without
consuming input string; called posi-
tive lookbehind assertion

(?<=800-)

(?<!...) Matches if ... doesn’t come prior
without consuming input; called
negative lookbehind assertion

(?<!192\.168\.)

(?(id/name)Y|N) Conditional match of regex Y if
group with given id or name exists
else N; |N is optional

(?(1)y|x

1.2 Special Symbols and Characters 9

1.2.1 Matching More Than One Regex Pattern
with Alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an
alternation operation. It is used to separate different regular expressions.
For example, the following are some patterns that employ alternation,
along with the strings they match:

With this one symbol, we have just increased the flexibility of our regular
expressions, enabling the matching of more than just one string. Alterna-
tion is also sometimes called union or logical OR.

1.2.2 Matching Any Single Character (.)
The dot or period (.) symbol matches any single character except for \n.
(Python regexes have a compilation flag [S or DOTALL], which can override
this to include \ns.) Whether letter, number, whitespace (not including
“\n”), printable, non-printable, or a symbol, the dot can match them all.

Q: What if I want to match the dot or period character?
A: To specify a dot character explicitly, you must escape its functionality

with a backslash, as in “\.”.

Regex Pattern Strings Matched

at|home at, home

r2d2|c3po r2d2, c3po

bat|bet|bit bat, bet, bit

Regex Pattern Strings Matched

f.o Any character between “f ” and “o”; for example,
fao, f9o, f#o, etc.

.. Any pair of characters

.end Any character before the string end

10 Chapter 1 • Regular Expressions

1.2.3 Matching from the Beginning or End of
Strings or Word Boundaries (^, $, \b, \B)

There are also symbols and related special characters to specify searching
for patterns at the beginning and end of strings. To match a pattern start-
ing from the beginning, you must use the carat symbol (^) or the special
character \A (backslash-capital “A”). The latter is primarily for keyboards
that do not have the carat symbol (for instance, an international key-
board). Similarly, the dollar sign ($) or \Z will match a pattern from the
end of a string.

Patterns that use these symbols differ from most of the others we
describe in this chapter because they dictate location or position. In the
previous Core Note, we noted that a distinction is made between matching
(attempting matches of entire strings starting at the beginning) and search-
ing (attempting matches from anywhere within a string). With that said,
here are some examples of “edge-bound” regex search patterns:

Again, if you want to match either (or both) of these characters verba-
tim, you must use an escaping backslash. For example, if you wanted to
match any string that ended with a dollar sign, one possible regex solution
would be the pattern .*\$$.

The special characters \b and \B pertain to word boundary matches. The
difference between them is that \b will match a pattern to a word bound-
ary, meaning that a pattern must be at the beginning of a word, whether
there are any characters in front of it (word in the middle of a string) or not
(word at the beginning of a line). And likewise, \B will match a pattern
only if it appears starting in the middle of a word (i.e., not at a word
boundary). Here are some examples:

Regex Pattern Strings Matched

^From Any string that starts with From

/bin/tcsh$ Any string that ends with /bin/tcsh

^Subject: hi$ Any string consisting solely of the string Subject: hi

Regex Pattern Strings Matched

the Any string containing the

\bthe Any word that starts with the

1.2 Special Symbols and Characters 11

1.2.4 Creating Character Classes ([])
Whereas the dot is good for allowing matches of any symbols, there might
be occasions for which there are specific characters that you want to
match. For this reason, the bracket symbols ([]) were invented. The regu-
lar expression will match any of the enclosed characters. Here are some
examples:

One side note regarding the regex [cr][23][dp][o2]—a more restric-
tive version of this regex would be required to allow only “r2d2” or
“c3po” as valid strings. Because brackets merely imply logical OR func-
tionality, it is not possible to use brackets to enforce such a requirement.
The only solution is to use the pipe, as in r2d2|c3po.

For single-character regexes, though, the pipe and brackets are equiva-
lent. For example, let’s start with the regular expression “ab,” which
matches only the string with an “a” followed by a “b.” If we wanted either
a one-letter string, for instance, either “a” or a “b,” we could use the regex
[ab]. Because “a” and “b” are individual strings, we can also choose the
regex a|b. However, if we wanted to match the string with the pattern
“ab” followed by “cd,” we cannot use the brackets because they work
only for single characters. In this case, the only solution is ab|cd, similar to
the r2d2/c3po problem just mentioned.

\bthe\b Matches only the word the

\Bthe Any string that contains but does not begin
with the

Regex Pattern Strings Matched

b[aeiu]t bat, bet, bit, but

[cr][23][dp][o2] A string of four characters: first is “c” or “r,”
then “2” or “3,” followed by “d” or “p,” and
finally, either “o” or “2.” For example, c2do,
r3p2, r2d2, c3po, etc.

Regex Pattern Strings Matched

12 Chapter 1 • Regular Expressions

1.2.5 Denoting Ranges (-) and Negation (^)
In addition to single characters, the brackets also support ranges of charac-
ters. A hyphen between a pair of symbols enclosed in brackets is used to
indicate a range of characters; for example A–Z, a–z, or 0–9 for uppercase
letters, lowercase letters, and numeric digits, respectively. This is a lexico-
graphic range, so you are not restricted to using just alphanumeric charac-
ters. Additionally, if a caret (^) is the first character immediately inside the
open left bracket, this symbolizes a directive not to match any of the char-
acters in the given character set.

1.2.6 Multiple Occurrence/Repetition Using
Closure Operators (*, +, ?, {})

We will now introduce the most common regex notations, namely, the spe-
cial symbols *, +, and ?, all of which can be used to match single, multiple,
or no occurrences of string patterns. The asterisk or star operator (*) will
match zero or more occurrences of the regex immediately to its left (in lan-
guage and compiler theory, this operation is known as the Kleene Closure).
The plus operator (+) will match one or more occurrences of a regex
(known as Positive Closure), and the question mark operator (?) will match
exactly 0 or 1 occurrences of a regex.

There are also brace operators ({}) with either a single value or a
comma-separated pair of values. These indicate a match of exactly N occur-
rences (for {N}) or a range of occurrences; for example, {M, N} will match
from M to N occurrences. These symbols can also be escaped by using the
backslash character; * matches the asterisk, etc.

Regex Pattern Strings Matched

z.[0-9] “z” followed by any character then followed by a
single digit

[r-u][env-y]
[us]

“r,” “s,” “t,” or “u” followed by “e,” “n,” “v,” “w,”
“x,” or “y” followed by “u” or “s”

[^aeiou] A non-vowel character (Exercise: why do we say
“non-vowels” rather than “consonants”?)

[^\t\n] Not a TAB or \n

["-a] In an ASCII system, all characters that fall between
‘"’ and “a,” that is, between ordinals 34 and 97

1.2 Special Symbols and Characters 13

In the previous table, we notice the question mark is used more than
once (overloaded), meaning either matching 0 or 1 occurrences, or its
other meaning: if it follows any matching using the close operators, it will
direct the regular expression engine to match as few repetitions as possible.

What does “as few repetitions as possible” mean? When pattern-
matching is employed using the grouping operators, the regular expres-
sion engine will try to “absorb” as many characters as possible that match
the pattern. This is known as being greedy. The question mark tells the
engine to lay off and, if possible, take as few characters as possible in the
current match, leaving the rest to match as many succeeding characters of
the next pattern (if applicable). Toward the end of the chapter, we will
show you a great example where non-greediness is required. For now, let’s
continue to look at the closure operators:

Regex Pattern Strings Matched

[dn]ot? “d” or “n,” followed by an “o” and, at most,
one “t” after that; thus, do, no, dot, not.

0?[1-9] Any numeric digit, possibly prepended with
a “0.” For example, the set of numeric repre-
sentations of the months January to September,
whether single or double-digits.

[0-9]{15,16} Fifteen or sixteen digits (for example, credit
card numbers.

</?[^>]+> Strings that match all valid (and invalid)
HTML tags.

[KQRBNP][a-h][1-8]-
[a-h][1-8]

Legal chess move in “long algebraic” notation
(move only, no capture, check, etc.); that is,
strings that start with any of “K,” “Q,” “R,”
“B,” “N,” or “P” followed by a hyphenated-
pair of chess board grid locations from “a1” to
“h8” (and everything in between), with the
first coordinate indicating the former posi-
tion, and the second being the new position.

14 Chapter 1 • Regular Expressions

1.2.7 Special Characters Representing
Character Sets

We also mentioned that there are special characters that can represent
character sets. Rather than using a range of “0–9,” you can simply use \d to
indicate the match of any decimal digit. Another special character, \w, can
be used to denote the entire alphanumeric character class, serving as a
shortcut for A-Za-z0-9_, and \s can be used for whitespace characters.
Uppercase versions of these strings symbolize non-matches; for example,
\D matches any non-decimal digit (same as [^0-9]), etc.

Using these shortcuts, we will present a few more complex examples:

1.2.8 Designating Groups with Parentheses (())
Now, we have achieved the goal of matching a string and discarding non-
matches, but in some cases, we might also be more interested in the data
that we did match. Not only do we want to know whether the entire string
matched our criteria, but also whether we can extract any specific
strings or substrings that were part of a successful match. The answer is
yes. To accomplish this, surround any regex with a pair of parentheses.

A pair of parentheses (()) can accomplish either (or both) of the follow-
ing when used with regular expressions:

• Grouping regular expressions

• Matching subgroups

Regex Pattern Strings Matched

\w+-\d+ Alphanumeric string and number separated by a
hyphen

[A-Za-z]\w* Alphabetic first character; additional characters (if
present) can be alphanumeric (almost equivalent to
the set of valid Python identifiers [see exercises])

\d{3}-\d{3}-
\d{4}

American-format telephone numbers with an area
code prefix, as in 800-555-1212

\w+@\w+\.com Simple e-mail addresses of the form XXX@YYY.com

1.2 Special Symbols and Characters 15

One good example of why you would want to group regular expres-
sions is when you have two different regexes with which you want to
compare a string. Another reason is to group a regex in order to use a rep-
etition operator on the entire regex (as opposed to an individual character
or character class).

One side effect of using parentheses is that the substring that matched
the pattern is saved for future use. These subgroups can be recalled for the
same match or search, or extracted for post-processing. You will see some
examples of pulling out subgroups at the end of Section 1.3.9.

Why are matches of subgroups important? The main reason is that there
are times when you want to extract the patterns you match, in addition to
making a match. For example, what if we decided to match the pattern
\w+-\d+ but wanted save the alphabetic first part and the numeric second
part individually? We might want to do this because with any successful
match, we might want to see just what those strings were that matched
our regex patterns.

If we add parentheses to both subpatterns such as (\w+)-(\d+), then we
can access each of the matched subgroups individually. Subgrouping is
preferred because the alternative is to write code to determine we have a
match, then execute another separate routine (which we also had to create)
to parse the entire match just to extract both parts. Why not let Python do
it; it’s a supported feature of the re module, so why reinvent the wheel?

Regex Pattern Strings Matched

\d+(\.\d*)? Strings representing simple floating-point num-
bers; that is, any number of digits followed
optionally by a single decimal point and zero or
more numeric digits, as in “0.004,” “2,” “75.,” etc.

(Mr?s?\.)?[A-Z]
[a-z]* [A-Za-z-]+

First name and last name, with a restricted first
name (must start with uppercase; lowercase only
for remaining letters, if any), the full name, pre-
pended by an optional title of “Mr.,” “Mrs.,”
“Ms.,” or “M.,” and a flexible last name, allowing
for multiple words, dashes, and uppercase letters

16 Chapter 1 • Regular Expressions

1.2.9 Extension Notations
One final aspect of regular expressions we have not touched upon yet
include the extension notations that begin with the question mark symbol
(? . . .). We are not going to spend a lot of time on these as they are gen-
erally used more to provide flags, perform look-ahead (or look-behind), or
check conditionally before determining a match. Also, although paren-
theses are used with these notations, only (?P<name>) represents a grouping
for matches. All others do not create a group. However, you should still
know what they are because they might be “the right tool for the job.”

1.3 Regexes and Python
Now that we know all about regular expressions, we can examine how
Python currently supports regular expressions through the re module,
which was introduced way back in ancient history (Python 1.5), replac-
ing the deprecated regex and regsub modules—both modules were
removed from Python in version 2.5, and importing either module from
that release on triggers an ImportError exception.

The re module supports the more powerful and regular Perl-style (Perl 5)
regexes, allows multiple threads to share the same compiled regex objects,
and supports named subgroups.

Regex Pattern Notation Definition

(?:\w+\.)* Strings that end with a dot, like “google.”, “twitter.”,
“facebook.”, but such matches are neither saved for
use nor retrieval later.

(?#comment) No matching here, just a comment.

(?=.com) Only do a match if “.com” follows; do not consume
any of the target string.

(?!.net) Only do a match if “.net” does not follow.

(?<=800-) Only do a match if string is preceded by “800-”, pre-
sumably for phone numbers; again, do not consume
the input string.

(?<!192\.168\.) Only do a match if string is not preceded by “192.168.”,
presumably to filter out a group of Class C IP addresses.

(?(1)y|x) If a matched group 1 (\1) exists, match against y;
otherwise, match against x.

2.5

1.3 Regexes and Python 17

1.3.1 The re Module: Core Functions and
Methods

The chart in Table 1-2 lists the more popular functions and methods from
the re module. Many of these functions are also available as methods of
compiled regular expression objects (regex objects and regex match objects.
In this subsection, we will look at the two main functions/methods, match()
and search(), as well as the compile() function. We will introduce several
more in the next section, but for more information on all these and the others
that we do not cover, we refer you to the Python documentation.

Table 1-2 Common Regular Expression Attributes

Function/Method Description

re Module Function Only

compile(pattern,
flags=0)

Compile regex pattern with any optional flags and
return a regex object

re Module Functions and Regex Object Methods

match(pattern,
string, flags=0)

Attempt to match pattern to string with optional
flags; return match object on success, None on failure

search(pattern,
string, flags=0)

Search for first occurrence of pattern within string
with optional flags; return match object on success,
None on failure

findall(pattern,
string[,flags])a

Look for all (non-overlapping) occurrences of pattern
in string; return a list of matches

finditer(pattern,
string[, flags])b

Same as findall(), except returns an iterator instead
of a list; for each match, the iterator returns a match
object

split(pattern,
string, max=0)c

Split string into a list according to regex pattern
delimiter and return list of successful matches, split-
ting at most max times (split all occurrences is the
default)

(Continued)

18 Chapter 1 • Regular Expressions

Table 1-2 Common Regular Expression Attributes (Continued)

Function/Method Description

re Module Functions and Regex Object Methods

sub(pattern, repl,
string, count=0)c

Replace all occurrences of the regex pattern in string
with repl, substituting all occurrences unless count
provided (see also subn(), which, in addition, returns
the number of substitutions made)

purge() Purge cache of implicitly compiled regex patterns

Common Match Object Methods (see documentation for others)

group(num=0) Return entire match (or specific subgroup num)

groups
(default=None)

Return all matching subgroups in a tuple (empty if
there aren’t any)

groupdict
(default=None)

Return dict containing all matching named subgroups
with the names as the keys (empty if there weren’t any)

Common Module Attributes (flags for most regex functions)

re.I, re.IGNORECASE Case-insensitive matching

re.L, re.LOCALE Matches via \w, \W, \b, \B, \s, \S depends on locale

re.M, re.MULTILINE Respectively causes ^ and $ to match the beginning
and end of each line in target string rather than strictly
the beginning and end of the entire string itself

re.S, re.DOTALL The . normally matches any single character except \n;
this flag says . should match them, too

re.X, re.VERBOSE All whitespace plus # (and all text after it on a single
line) are ignored unless in a character class or back-
slash-escaped, allowing comments and improving
readability

a. New in Python 1.5.2; flags parameter added in 2.4.
b. New in Python 2.2; flags parameter added in 2.4.
c. flags parameter added in version 2.7 and 3.1.

1.3 Regexes and Python 19

CORE NOTE: Regex compilation (to compile or not to compile?)

In the Execution Environment chapter of Core Python Programming or the forth-
coming Core Python Language Fundamentals, we describe how Python code is
eventually compiled into bytecode, which is then executed by the interpreter. In
particular, we specified that calling eval() or exec (in version 2.x or exec()
in version 3.x) with a code object rather than a string provides a performance
improvement due to the fact that the compilation process does not have to be
performed repeatedly. In other words, using precompiled code objects is faster
than using strings because the interpreter will have to compile it into a code object
(anyway) each time before execution.

The same concept applies to regexes—regular expression patterns must be
compiled into regex objects before any pattern matching can occur. For regexes,
which are compared many times during the course of execution, we highly
recommend using precompilation because, again, regexes have to be compiled
anyway, so doing it ahead of time is prudent for performance reasons.
re.compile() provides this functionality.

The module functions do cache the compiled objects, though, so it’s not as if
every search() and match() with the same regex pattern requires compila-
tion. Still, you save the cache lookups and do not have to make function calls
with the same string, over and over. The number of compiled regex objects that
are cached might vary between releases, and is undocumented. The purge()
function can be used to clear this cache.

1.3.2 Compiling Regexes with compile()
Almost all of the re module functions we will be describing shortly are
available as methods for regex objects. Remember, even though we recom-
mend it, precompilation is not required. If you compile, you will use
methods; if you don’t, you will just use functions. The good news is that
either way, the names are the same, whether a function or a method. (This
is the reason why there are module functions and methods that are identi-
cal; for example, search(), match(), etc., in case you were wondering.)
Because it saves one small step for most of our examples, we will use
strings, instead. We will throw in a few with compilation, though, just so
you know how it is done.

Optional flags may be given as arguments for specialized compilation.
These flags allow for case-insensitive matching, using system locale set-
tings for matching alphanumeric characters, etc. Please see the entries in

20 Chapter 1 • Regular Expressions

Table 1-2 and the official documentation for more information on these
flags (re.IGNORECASE, re.MULTILINE, re.DOTALL, re.VERBOSE, etc.). They can
be combined by using the bitwise OR operator (|).

These flags are also available as a parameter to most re module functions.
If you want to use these flags with the methods, they must already be inte-
grated into the compiled regex objects, or you need to use the (?F) nota-
tion directly embedded in the regex itself, where F is one or more of i (for
re.I/IGNORECASE), m (for re.M/MULTILINE), s (for re.S/DOTALL), etc. If more
than one is desired, you place them together rather than using the bitwise OR
operation; for example, (?im) for both re.IGNORECASE plus re.MULTILINE.

1.3.3 Match Objects and the group() and
groups() Methods

When dealing with regular expressions, there is another object type in
addition to the regex object: the match object. These are the objects returned
on successful calls to match() or search(). Match objects have two primary
methods, group() and groups().

group() either returns the entire match, or a specific subgroup, if
requested. groups() simply returns a tuple consisting of only/all the sub-
groups. If there are no subgroups requested, then groups() returns an
empty tuple while group() still returns the entire match.

Python regexes also allow for named matches, which are beyond the
scope of this introductory section. We refer you to the complete re module
documentation for a complete listing of the more advanced details we
have omitted here.

1.3.4 Matching Strings with match()
match() is the first re module function and regex object (regex object)
method we will look at. The match() function attempts to match the pat-
tern to the string, starting at the beginning. If the match is successful, a
match object is returned; if it is unsuccessful, None is returned. The group()
method of a match object can be used to show the successful match. Here
is an example of how to use match() [and group()]:

>>> m = re.match('foo', 'foo') # pattern matches string
>>> if m is not None: # show match if successful
... m.group()
...
'foo'

1.3 Regexes and Python 21

The pattern “foo” matches exactly the string “foo.” We can also confirm
that m is an example of a match object from within the interactive interpreter:

>>> m # confirm match object returned
<re.MatchObject instance at 80ebf48>

Here is an example of a failed match for which None is returned:
>>> m = re.match('foo', 'bar')# pattern does not match string
>>> if m is not None: m.group() # (1-line version of if clause)
...
>>>

The preceding match fails, thus None is assigned to m, and no action is
taken due to the way we constructed our if statement. For the remaining
examples, we will try to leave out the if check for brevity, if possible, but
in practice, it is a good idea to have it there to prevent AttributeError
exceptions. (None is returned on failures, which does not have a group()
attribute [method].)

A match will still succeed even if the string is longer than the pattern, as
long as the pattern matches from the beginning of the string. For example,
the pattern “foo” will find a match in the string “food on the table”
because it matches the pattern from the beginning:

>>> m = re.match('foo', 'food on the table') # match succeeds
>>> m.group()
'foo'

As you can see, although the string is longer than the pattern, a success-
ful match was made from the beginning of the string. The substring “foo”
represents the match, which was extracted from the larger string.

We can even sometimes bypass saving the result altogether, taking
advantage of Python’s object-oriented nature:

>>> re.match('foo', 'food on the table').group()
'foo'

Note from a few paragraphs above that an AttributeError will be gen-
erated on a non-match.

1.3.5 Looking for a Pattern within a String with
search() (Searching versus Matching)

The chances are greater that the pattern you seek is somewhere in the mid-
dle of a string, rather than at the beginning. This is where search() comes
in handy. It works exactly in the same way as match, except that it searches

22 Chapter 1 • Regular Expressions

for the first occurrence of the given regex pattern anywhere with its string
argument. Again, a match object is returned on success; None is returned
otherwise.

We will now illustrate the difference between match() and search().
Let’s try a longer string match attempt. This time, let’s try to match our
string “foo” to “seafood”:

>>> m = re.match('foo', 'seafood') # no match
>>> if m is not None: m.group()
...
>>>

As you can see, there is no match here. match() attempts to match the
pattern to the string from the beginning; that is, the “f” in the pattern is
matched against the “s” in the string, which fails immediately. However,
the string “foo” does appear (elsewhere) in “seafood,” so how do we get
Python to say “yes”? The answer is by using the search() function. Rather
than attempting a match, search() looks for the first occurrence of the pat-
tern within the string. search() evaluates a string strictly from left to right.

>>> m = re.search('foo', 'seafood') # use search() instead
>>> if m is not None: m.group()
...
'foo' # search succeeds where match failed
>>>

Furthermore, both match() and search() take the optional flags parame-
ter described earlier in Section 1.3.2. Lastly, we want to note that the equiv-
alent regex object methods optionally take pos and endpos arguments to
specify the search boundaries of the target string.

We will be using the match() and search() regex object methods and
the group() and groups() match object methods for the remainder of this
subsection, exhibiting a broad range of examples of how to use regular
expressions with Python. We will be using almost all of the special charac-
ters and symbols that are part of the regular expression syntax.

1.3.6 Matching More than One String (|)
In Section 1.2, we used the pipe character in the regex bat|bet|bit. Here
is how we would use that regex with Python:

>>> bt = 'bat|bet|bit' # regex pattern: bat, bet, bit
>>> m = re.match(bt, 'bat') # 'bat' is a match
>>> if m is not None: m.group()
...

1.3 Regexes and Python 23

'bat'
>>> m = re.match(bt, 'blt') # no match for 'blt'
>>> if m is not None: m.group()
...
>>> m = re.match(bt, 'He bit me!') # does not match string
>>> if m is not None: m.group()
...
>>> m = re.search(bt, 'He bit me!') # found 'bit' via search
>>> if m is not None: m.group()
...
'bit'

1.3.7 Matching Any Single Character (.)
In the following examples, we show that a dot cannot match a \n or a non-
character; that is, the empty string:

>>> anyend = '.end'
>>> m = re.match(anyend, 'bend') # dot matches 'b'
>>> if m is not None: m.group()
...
'bend'
>>> m = re.match(anyend, 'end') # no char to match
>>> if m is not None: m.group()
...
>>> m = re.match(anyend, '\nend') # any char except \n
>>> if m is not None: m.group()
...
>>> m = re.search('.end', 'The end.')# matches ' ' in search
>>> if m is not None: m.group()
...
' end'

The following is an example of searching for a real dot (decimal point)
in a regular expression, wherein we escape its functionality by using a
backslash:

 >>> patt314 = '3.14' # regex dot
 >>> pi_patt = '3\.14' # literal dot (dec. point)
>>> m = re.match(pi_patt, '3.14') # exact match
>>> if m is not None: m.group()
...
'3.14'
>>> m = re.match(patt314, '3014') # dot matches '0'
>>> if m is not None: m.group()
...
'3014'
>>> m = re.match(patt314, '3.14') # dot matches '.'
>>> if m is not None: m.group()
...
'3.14'

24 Chapter 1 • Regular Expressions

1.3.8 Creating Character Classes ([])
Earlier, we had a long discussion about [cr][23][dp][o2] and how it dif-
fers from r2d2|c3po” In the following examples, we will show that
r2d2|c3po is more restrictive than [cr][23][dp][o2]:

>>> m = re.match('[cr][23][dp][o2]', 'c3po')# matches 'c3po'
>>> if m is not None: m.group()
...
'c3po'
>>> m = re.match('[cr][23][dp][o2]', 'c2do')# matches 'c2do'
>>> if m is not None: m.group()
...
'c2do'
>>> m = re.match('r2d2|c3po', 'c2do')# does not match 'c2do'
>>> if m is not None: m.group()
...
>>> m = re.match('r2d2|c3po', 'r2d2')# matches 'r2d2'
>>> if m is not None: m.group()
...
'r2d2'

1.3.9 Repetition, Special Characters, and
Grouping

The most common aspects of regexes involve the use of special characters,
multiple occurrences of regex patterns, and using parentheses to group
and extract submatch patterns. One particular regex we looked at related
to simple e-mail addresses (\w+@\w+\.com). Perhaps we want to match more
e-mail addresses than this regex allows. To support an additional host-
name that precedes the domain, for example, www.xxx.com as opposed to
accepting only xxx.com as the entire domain, we have to modify our
existing regex. To indicate that the hostname is optional, we create a
pattern that matches the hostname (followed by a dot), use the ? opera-
tor, indicating zero or one copy of this pattern, and insert the optional
regex into our previous regex as follows: \w+@(\w+\.)?\w+\.com. As you
can see from the following examples, either one or two names are now
accepted before the .com:

>>> patt = '\w+@(\w+\.)?\w+\.com'
>>> re.match(patt, 'nobody@xxx.com').group()
'nobody@xxx.com'
>>> re.match(patt, 'nobody@www.xxx.com').group()
'nobody@www.xxx.com'

1.3 Regexes and Python 25

Furthermore, we can even extend our example to allow any number of
intermediate subdomain names with the following pattern. Take special
note of our slight change from using ? to *. : \w+@(\w+\.)*\w+\.com:

>>> patt = '\w+@(\w+\.)*\w+\.com'
>>> re.match(patt, 'nobody@www.xxx.yyy.zzz.com').group()
'nobody@www.xxx.yyy.zzz.com'

However, we must add the disclaimer that using solely alphanumeric
characters does not match all the possible characters that might make up
e-mail addresses. The preceding regex patterns would not match a domain
such as xxx-yyy.com or other domains with \W characters.

Earlier, we discussed the merits of using parentheses to match and save
subgroups for further processing rather than coding a separate routine to
manually parse a string after a regex match had been determined. In par-
ticular, we discussed a simple regex pattern of an alphanumeric string and
a number separated by a hyphen, \w+-\d+, and how adding subgrouping
to form a new regex, (\w+)-(\d+), would do the job. Here is how the
original regex works:

>>> m = re.match('\w\w\w-\d\d\d', 'abc-123')
>>> if m is not None: m.group()
...
'abc-123'

>>> m = re.match('\w\w\w-\d\d\d', 'abc-xyz')
>>> if m is not None: m.group()
...
>>>

In the preceding code, we created a regex to recognize three alphanu-
meric characters followed by three digits. Testing this regex on abc-123,
we obtained positive results, whereas abc-xyz fails. We will now modify
our regex as discussed before to be able to extract the alphanumeric string
and number. Note how we can now use the group() method to access indi-
vidual subgroups or the groups() method to obtain a tuple of all the sub-
groups matched:

>>> m = re.match('(\w\w\w)-(\d\d\d)', 'abc-123')
>>> m.group() # entire match
'abc-123'
>>> m.group(1) # subgroup 1
'abc'
>>> m.group(2) # subgroup 2
'123'
>>> m.groups() # all subgroups
('abc', '123')

26 Chapter 1 • Regular Expressions

As you can see, group() is used in the normal way to show the entire
match, but it can also be used to grab individual subgroup matches. We
can also use the groups() method to obtain a tuple of all the substring
matches.

Here is a simpler example that shows different group permutations,
which will hopefully make things even more clear:

>>> m = re.match('ab', 'ab') # no subgroups
>>> m.group() # entire match
'ab'
>>> m.groups() # all subgroups
()
>>>
>>> m = re.match('(ab)', 'ab') # one subgroup
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.groups() # all subgroups
('ab',)
>>>
>>> m = re.match('(a)(b)', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'a'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('a', 'b')
>>>
>>> m = re.match('(a(b))', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('ab', 'b')

1.3.10 Matching from the Beginning and End of
Strings and on Word Boundaries

The following examples highlight the positional regex operators. These
apply more for searching than matching because match() always starts at
the beginning of a string.

1.3 Regexes and Python 27

>>> m = re.search('^The', 'The end.') # match
>>> if m is not None: m.group()
...
'The'
>>> m = re.search('^The', 'end. The') # not at beginning
>>> if m is not None: m.group()
...
>>> m = re.search(r'\bthe', 'bite the dog') # at a boundary
>>> if m is not None: m.group()
...
'the'
>>> m = re.search(r'\bthe', 'bitethe dog') # no boundary
>>> if m is not None: m.group()
...
>>> m = re.search(r'\Bthe', 'bitethe dog') # no boundary
>>> if m is not None: m.group()
...
'the'

You will notice the appearance of raw strings here. You might want to
take a look at the Core Note, “Using Python raw strings,” toward the end
of this chapter for clarification on why they are here. In general, it is a
good idea to use raw strings with regular expressions.

There are four other re module functions and regex object methods that
we think you should be aware of: findall(), sub(), subn(), and split().

1.3.11 Finding Every Occurrence with findall()
and finditer()

findall() looks for all non-overlapping occurrences of a regex pattern in a
string. It is similar to search() in that it performs a string search, but it dif-
fers from match() and search() in that findall() always returns a list. The
list will be empty if no occurrences are found, but if successful, the list will
consist of all matches found (grouped in left-to-right order of occurrence).

>>> re.findall('car', 'car')
['car']
>>> re.findall('car', 'scary')
['car']
>>> re.findall('car', 'carry the barcardi to the car')
['car', 'car', 'car']

Subgroup searches result in a more complex list returned, and that makes
sense, because subgroups are a mechanism with which you can extract
specific patterns from within your single regular expression, such as
matching an area code that is part of a complete telephone number, or a
login name that is part of an entire e-mail address.

28 Chapter 1 • Regular Expressions

For a single successful match, each subgroup match is a single element
of the resulting list returned by findall(); for multiple successful matches,
each subgroup match is a single element in a tuple, and such tuples (one
for each successful match) are the elements of the resulting list. This part
might sound confusing at first, but if you try different examples, it will
help to clarify things.

The finditer() function, which was added back in Python 2.2, is a sim-
ilar, more memory-friendly alternative to findall(). The main difference
between it and its cousin, other than the return of an iterator versus a list
(obviously), is that rather than returning matching strings, finditer()
iterates over match objects. The following are the differences between the
two with different groups in a single string:

>>> s = 'This and that.'
>>> re.findall(r'(th\w+) and (th\w+)', s, re.I)
[('This', 'that')]
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().groups()
('This', 'that')
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().group(1)
'This'
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().group(2)
'that'
>>> [g.groups() for g in re.finditer(r'(th\w+) and (th\w+)',
... s, re.I)]
[('This', 'that')]

In the example that follows, we have multiple matches of a single group
in a single string:

>>> re.findall(r'(th\w+)', s, re.I)
['This', 'that']
>>> it = re.finditer(r'(th\w+)', s, re.I)
>>> g = it.next()
>>> g.groups()
('This',)
>>> g.group(1)
'This'
>>> g = it.next()
>>> g.groups()
('that',)
>>> g.group(1)
'that'
>>> [g.group(1) for g in re.finditer(r'(th\w+)', s, re.I)]
['This', 'that']

Note all the additional work that we had to do using finditer() to get
its output to match that of findall().

2.2

1.3 Regexes and Python 29

Finally, like match() and search(), the method versions of findall()
and finditer() support the optional pos and endpos parameters that con-
trol the search boundaries of the target string, as described earlier in this
chapter.

1.3.12 Searching and Replacing with sub()
and subn()

There are two functions/methods for search-and-replace functionality: sub()
and subn(). They are almost identical and replace all matched occur-
rences of the regex pattern in a string with some sort of replacement. The
replacement is usually a string, but it can also be a function that returns a
replacement string. subn() is exactly the same as sub(), but it also returns
the total number of substitutions made—both the newly substituted string
and the substitution count are returned as a 2-tuple.

>>> re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
'attn: Mr. Smith\012\012Dear Mr. Smith,\012'
>>>
>>> re.subn('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
('attn: Mr. Smith\012\012Dear Mr. Smith,\012', 2)
>>>
>>> print re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
attn: Mr. Smith

Dear Mr. Smith,

>>> re.sub('[ae]', 'X', 'abcdef')
'XbcdXf'
>>> re.subn('[ae]', 'X’, 'abcdef')
('XbcdXf', 2)

As we saw in an earlier section, in addition to being able to pull out the
matching group number using the match object’s group() method, you can
use \N, where N is the group number to use in the replacement string.
Below, we’re just converting the American style of date presentation, MM/
DD/YY{,YY} to the format used by all other countries, DD/MM/YY{,YY}:

>>> re.sub(r'(\d{1,2})/(\d{1,2})/(\d{2}|\d{4})',
... r'\2/\1/\3', '2/20/91') # Yes, Python is...
'20/2/91'
>>> re.sub(r'(\d{1,2})/(\d{1,2})/(\d{2}|\d{4})',
... r'\2/\1/\3', '2/20/1991') # ... 20+ years old!
'20/2/1991'

30 Chapter 1 • Regular Expressions

1.3.13 Splitting (on Delimiting Pattern) with
split()

The re module and regex object method split() work similarly to its
string counterpart, but rather than splitting on a fixed string, they split a
string based on a regex pattern, adding some significant power to string
splitting capabilities. If you do not want the string split for every occur-
rence of the pattern, you can specify the maximum number of splits by set-
ting a value (other than zero) to the max argument.

If the delimiter given is not a regular expression that uses special sym-
bols to match multiple patterns, then re.split() works in exactly the
same manner as str.split(), as illustrated in the example that follows
(which splits on a single colon):

>>> re.split(':', 'str1:str2:str3')
['str1', 'str2', 'str3']

That’s a simple example. What if we have a more complex example,
such as a simple parser for a Web site like Google or Yahoo! Maps? Users
can enter city and state, or city plus ZIP code, or all three? This requires
more powerful processing than just a plain ’ol string split:

>>> import re
>>> DATA = (
... 'Mountain View, CA 94040',
... 'Sunnyvale, CA',
... 'Los Altos, 94023',
... 'Cupertino 95014',
... 'Palo Alto CA',
...)
>>> for datum in DATA:
... print re.split(', |(?= (?:\d{5}|[A-Z]{2})) ', datum)
...
['Mountain View', 'CA', '94040']
['Sunnyvale', 'CA']
['Los Altos', '94023']
['Cupertino', '95014']
['Palo Alto', 'CA']

The preceding regex has a simple component, split on comma-space
(“, “). The harder part is the last regex, which previews some of the exten-
sion notations that you’ll learn in the next subsection. In plain English, this
is what it says: also split on a single space if that space is immediately fol-
lowed by five digits (ZIP code) or two capital letters (US state abbrevia-
tion). This allows us to keep together city names that have spaces in them.

Naturally, this is just a simplistic regex that could be a starting point for
an application that parses location information. It doesn’t process (or fails)

1.3 Regexes and Python 31

lowercase states or their full spellings, street addresses, country codes,
ZIP+4 (nine-digit ZIP codes), latitude-longitude, multiple spaces, etc. It’s
just meant as a simple demonstration of re.split() doing something
str.split() can’t do.

As we just demonstrated, you benefit from much more power with a
regular expression split; however, remember to always use the best tool
for the job. If a string split is good enough, there’s no need to bring in the
additional complexity and performance impact of regexes.

1.3.14 Extension Notations (?...)
There are a variety of extension notations supported by Python regular
expressions. Let’s take a look at some of them now and provide some
usage examples.

With the (?iLmsux) set of options, users can specify one or more flags
directly into a regular expression rather than via compile() or other re
module functions. Below are several examples that use re.I/IGNORECASE,
with the last mixing in re.M/MULTILINE:

>>> re.findall(r'(?i)yes', 'yes? Yes. YES!!')
['yes', 'Yes', 'YES']
>>> re.findall(r'(?i)th\w+', 'The quickest way is through this
tunnel.')
['The', 'through', 'this']
>>> re.findall(r'(?im)(^th[\w]+)', """
... This line is the first,
... another line,
... that line, it's the best
... """)
['This line is the first', 'that line']

For the previous examples, the case-insensitivity should be fairly
straightforward. In the last example, by using “multiline” we can perform
the search across multiple lines of the target string rather than treating the
entire string as a single entity. Notice that the instances of “the” are
skipped because they do not appear at the beginning of their respective
lines.

The next pair demonstrates the use of re.S/DOTALL. This flag indicates
that the dot (.) can be used to represent \n characters (whereas normally it
represents all characters except \n):

>>> re.findall(r'th.+', '''
... The first line
... the second line
... the third line

32 Chapter 1 • Regular Expressions

... ''')
['the second line', 'the third line']
>>> re.findall(r'(?s)th.+', '''
... The first line
... the second line
... the third line
... ''')
['the second line\nthe third line\n']

The re.X/VERBOSE flag is quite interesting; it lets users create more
human-readable regular expressions by suppressing whitespace charac-
ters within regexes (except those in character classes or those that are
backslash-escaped). Furthermore, hash/comment/octothorpe symbols (#)
can also be used to start a comment, also as long as they’re not within a
character class backslash-escaped:

>>> re.search(r'''(?x)
... \((\d{3})\) # area code
... [] # space
... (\d{3}) # prefix
... - # dash
... (\d{4}) # endpoint number
... ''', '(800) 555-1212').groups()
('800', '555', '1212')

The (?:...) notation should be fairly popular; with it, you can group
parts of a regex, but it does not save them for future retrieval or use. This
comes in handy when you don’t want superfluous matches that are saved
and never used:

>>> re.findall(r'http://(?:\w+\.)*(\w+\.com)',
... 'http://google.com http://www.google.com http://
code.google.com')
['google.com', 'google.com', 'google.com']
>>> re.search(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-(?:\d{4})',
... '(800) 555-1212').groupdict()
{'areacode': '800', 'prefix': '555'}

You can use the (?P<name>) and (?P=name) notations together. The for-
mer saves matches by using a name identifier rather than using increasing
numbers, starting at one and going through N, which are then retrieved
later by using \1, \2, ... \N. You can retrieve them in a similar manner
using \g<name>:

>>> re.sub(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-(?:\d{4})',
... '(\g<areacode>) \g<prefix>-xxxx', '(800) 555-1212')
'(800) 555-xxxx'

Using the latter, you can reuse patterns in the same regex without spec-
ifying the same pattern again later on in the (same) regex, such as in this
example, which presumably lets you validate normalization of phone

1.3 Regexes and Python 33

numbers. Here are the ugly and compressed versions followed by a good
use of (?x) to make things (slightly) more readable:

>>> bool(re.match(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-
(?P<number>\d{4}) (?P=areacode)-(?P=prefix)-(?P=number)
1(?P=areacode)(?P=prefix)(?P=number)',
... '(800) 555-1212 800-555-1212 18005551212'))
True
>>> bool(re.match(r'''(?x)
...
... # match (800) 555-1212, save areacode, prefix, no.
... \((?P<areacode>\d{3})\)[](?P<prefix>\d{3})-(?P<number>\d{4})
...
... # space
... []
...
... # match 800-555-1212
... (?P=areacode)-(?P=prefix)-(?P=number)
...
... # space
... []
...
... # match 18005551212
... 1(?P=areacode)(?P=prefix)(?P=number)
...
... ''', '(800) 555-1212 800-555-1212 18005551212'))
True

You use the (?=...) and (?!...) notations to perform a lookahead in
the target string without actually consuming those characters. The first is
the positive lookahead assertion, while the latter is the negative. In the
examples that follow, we are only interested in the first names of the per-
sons who have a last name of “van Rossum,” and the next example let’s us
ignore e-mail addresses that begin with “noreply” or “postmaster.”

The third snippet is another demonstration of the difference between
findall() and finditer(); we use the latter to build a list of e-mail
addresses (in a more memory-friendly way by skipping the creation of the
intermediary list that would be thrown away) using the same login names
but on a different domain.

>>> re.findall(r'\w+(?= van Rossum)',
... '''
... Guido van Rossum
... Tim Peters
... Alex Martelli
... Just van Rossum
... Raymond Hettinger
... ''')
['Guido', 'Just']
>>> re.findall(r'(?m)^\s+(?!noreply|postmaster)(\w+)',

34 Chapter 1 • Regular Expressions

... '''

... sales@phptr.com

... postmaster@phptr.com

... eng@phptr.com

... noreply@phptr.com

... admin@phptr.com

... ''')
['sales', 'eng', 'admin']
>>> ['%s@aw.com' % e.group(1) for e in \
re.finditer(r'(?m)^\s+(?!noreply|postmaster)(\w+)',
... '''
... sales@phptr.com
... postmaster@phptr.com
... eng@phptr.com
... noreply@phptr.com
... admin@phptr.com
... ''')]
['sales@aw.com', 'eng@aw.com', 'admin@aw.com']

The last examples demonstrate the use of conditional regular expres-
sion matching. Suppose that we have another specialized alphabet consist-
ing only of the characters ‘x’ and ‘y,’ where we only want to restrict the
string in such a way that two-letter strings must consist of one character
followed by the other. In other words, you can’t have both letters be the
same; either it’s an ‘x’ followed by a ‘y’ or vice versa:

>>> bool(re.search(r'(?:(x)|y)(?(1)y|x)', 'xy'))
True
>>> bool(re.search(r'(?:(x)|y)(?(1)y|x)', 'xx'))
False

1.3.15 Miscellaneous
There can be confusion between regular expression special characters and
special ASCII symbols. We can use \n to represent a NEWLINE character,
but we can use \d meaning a regular expression match of a single numeric
digit.

Problems can occur if there is a symbol used by both ASCII and regular
expressions, so in the following Core Note, we recommend the use of
Python raw strings to prevent any problems. One more caution: the \w and
\W alphanumeric character sets are affected by the re.L/LOCALE and Unicode
(re.U/UNICODE) flags.

1.3 Regexes and Python 35

CORE NOTE: Using Python raw strings

You might have seen the use of raw strings in some of the previous examples.
Regular expressions were a strong motivation for the advent of raw strings. The
reason lies in the conflicts between ASCII characters and regular expression spe-
cial characters. As a special symbol, \b represents the ASCII character for back-
space, but \b is also a regular expression special symbol, meaning “match” on a
word boundary. For the regex compiler to see the two characters \b as your string
and not a (single) backspace, you need to escape the backslash in the string by
using another backslash, resulting in \\b.

This can get messy, especially if you have a lot of special characters in your
string, adding to the confusion. We were introduced to raw strings in the
Sequences chapter of Core Python Programming or Core Python Language
Fundamentals, and they can be (and are often) used to help keep regexes looking
somewhat manageable. In fact, many Python programmers swear by these and
only use raw strings when defining regular expressions.

Here are some examples of differentiating between the backspace \b and the
regular expression \b, with and without raw strings:

>>> m = re.match('\bblow', 'blow') # backspace, no match
>>> if m: m.group()
...
>>> m = re.match('\\bblow', 'blow') # escaped \, now it works
>>> if m: m.group()
...
'blow'
>>> m = re.match(r'\bblow', 'blow') # use raw string instead
>>> if m: m.group()
...
'blow'

You might have recalled that we had no trouble using \d in our regular expres-
sions without using raw strings. That is because there is no ASCII equivalent
special character, so the regular expression compiler knew that you meant a
decimal digit.

36 Chapter 1 • Regular Expressions

1.4 Some Regex Examples
Let’s look at a few examples of some Python regex code that takes us a step
closer to something that you would actually use in practice. Take, for
example, the output from the POSIX (Unix-flavored systems like Linux,
Mac OS X, etc.) who command, which lists all the users logged in to a system:

$ who
wesley console Jun 20 20:33
wesley pts/9 Jun 22 01:38 (192.168.0.6)
wesley pts/1 Jun 20 20:33 (:0.0)
wesley pts/2 Jun 20 20:33 (:0.0)
wesley pts/4 Jun 20 20:33 (:0.0)
wesley pts/3 Jun 20 20:33 (:0.0)
wesley pts/5 Jun 20 20:33 (:0.0)
wesley pts/6 Jun 20 20:33 (:0.0)
wesley pts/7 Jun 20 20:33 (:0.0)
wesley pts/8 Jun 20 20:33 (:0.0)

Perhaps we want to save some user login information such as login
name, the teletype at which the user logged in, when the user logged in,
and from where. Using str.split() on the preceding example would not
be effective because the spacing is erratic and inconsistent. The other prob-
lem is that there is a space between the month, day, and time for the login
timestamps. We would probably want to keep these fields together.

You need some way to describe a pattern such as “split on two or more
spaces.” This is easily done with regular expressions. In no time, we whip up
the regex pattern \s\s+, which means at least two whitespace characters.

Let’s create a program called rewho.py that reads the output of the who
command, presumably saved into a file called whodata.txt. Our rewho.py
script initially looks something like this:

import re
f = open('whodata.txt', 'r')
for eachLine in f:
 print re.split(r'\s\s+', eachLine)
f.close()

The preceding code also uses raw strings (leading “r” or “R” in front of
the opening quotes). The main idea is to avoid translating special string
characters like \n, which is not a special regex pattern. For regex patterns
that do have backslashes, you want them treated verbatim; otherwise,
you’d have to double-backslash them to keep them safe.

We will now execute the who command, saving the output into whodata.txt,
and then call rewho.py to take a look at the results:

1.4 Some Regex Examples 37

$ who > whodata.txt
$ rewho.py
['wesley', 'console', 'Jun 20 20:33\012']
['wesley', 'pts/9', 'Jun 22 01:38\011(192.168.0.6)\012']
['wesley', 'pts/1', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/2', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/4', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/3', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/5', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/6', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/7', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/8', 'Jun 20 20:33\011(:0.0)\012']

It was a good first try, but not quite correct. For one thing, we did not
anticipate a single TAB (ASCII \011) as part of the output (which looked
like at least two spaces, right?), and perhaps we aren’t really keen on saving
the \n (ASCII \012), which terminates each line. We are now going to fix
those problems as well as improve the overall quality of our application by
making a few more changes.

First, we would rather run the who command from within the script
instead of doing it externally and saving the output to a whodata.txt
file—doing this repeatedly gets tiring rather quickly. To accomplish invok-
ing another program from within ours, we call upon the os.popen() com-
mand. Although os.popen() has now been made obsolete by the subprocess
module, it’s still simpler to use, and the main point is to illustrate the func-
tionality of re.split().

We get rid of the trailing \ns (with str.rstrip()) and add the detection of a
single TAB as an additional, alternative re.split() delimiter. Example 1-1
presents the final Python 2 version of our rewho.py script:

Example 1-2 presents rewho3.py, which is the Python 3 version with an
additional twist. The main difference from the Python 2 version is the

Example 1-1 Split Output of the POSIX who Command (rewho.py)

This script calls the who command and parses the input by splitting up its data
along various types of whitespace characters.

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 f = os.popen('who', 'r')
7 for eachLine in f:
8 print re.split(r'\s\s+|\t', eachLine.rstrip())
9 f.close()

3.x

38 Chapter 1 • Regular Expressions

print() ��������	
��	�	����������	����	������	����	��	����������	��	��������
��������	 ������	 �	 ������	 �	 �����������	 ��� with ����������	 ���������	 ��
������������	��	�������	� �	���	��������	��	�������	�!�	"��#�	"���	��$����
�����	��	�������	��

%�$����	����	����	�������	����&���	�����������	���	����	��#��	����
���&����	��	��	����	"���	with	'��	����	��	���	with	���������	���	�������
����&������	������	�����"	���	()�����	���)���������*	�������	��	����
���	�
���������
�	��	��������	�
��
�������
���
���	+��,�	���&��	���
������	�������	
rewho.py or rewho3.py)	����	���	who	�������	��	����	�����-
����	��	�%./0	�������	������	���,��	����&	1�&"��	��	�	2����"�-�����
��������	'��	�1�	������&	3��������	2����"��	��� tasklist	��������	���
�����,�	��	����������	�"��#	���	����	��	��	4���	������&	��	���	�	������
���������	����&	�	�	�������

)������	 5-�	 ���&��	 ��&�����	 ����	 rewho.py	 ���	 rewho3.py	 ����
rewhoU.py�	"���	���	����	������&	(rewho	���������*	/�	����	�����	����
������	 �	 ���	 �	 ������������	 2�	 �����	 ���	 �����	 ���	 ���	 ��	 print	 ��
print()	��	����&	�	����	����	�����-��������	��������	����	������	��	����	���-
����	 ��	 ���	 �������	 ��6	 distutils.log.warn()	 /�,�	 �	 ���-�����&	 ������
���������	 ��	 ��	 ����	 �������	 ��	 ����	 �������	 ����	 �����	 ���,��	 ����	 ��
���&�	��	���	����	�	���&��	�����&�	���	����	��#�	���	����	��	��������	���	���
"�����	���	�������	"�,��	����	��	printf()	

2�	����	����	��	���	with	���������	�����	���	����	�����	����	���	����	��
�����	�������	�!	��	���	����	2����	����,�	���	7����	����	2�	���������	���-
����	 ����	 ��,�	 ������������	 ��	 �������	 � 	 ����	 �����	 ����	 ���	 ����	 ��
�������	 ����	����������	 ���������	 ��	���	"���	 ��	���	 ��6	from __future__
import	with_statement	/�	���,��	�����	����&	�������	�8	��	������	���	����
��	������	��	����	������	���	����	���	����	����	��	����	��)������	5-5

Example 1-2 Python 3 Version of rewho.py Script (rewho3.py)

����	������	�	�7��������	��	rewho.py	������	��������	���	print	���������	"���	
���	print()	��������	2���	����&	���	with	���������	
���������	�������&	��	
������	� ��	#���	��	����	����	���	file	
������	��	��	io	
������	��	��$���,�	
�������	����&��	"���	�������������	����	f.close()	���	���	

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 with os.popen('who', 'r') as f:
7 for eachLine in f:
8 print(re.split(r'\s\s+|\t', eachLine.rstrip()))

2.5-2.6

1.4 Some Regex Examples 39

The creation of rewhoU.py is one example of how you can create a uni-
versal script that helps avoid the need to maintain two versions of the
same script for both Python 2 and 3.

Executing any of these scripts with the appropriate interpreter yields
the corrected, cleaner output:

$ rewho.py
['wesley', 'console', 'Feb 22 14:12']
['wesley', 'ttys000', 'Feb 22 14:18']
['wesley', 'ttys001', 'Feb 22 14:49']
['wesley', 'ttys002', 'Feb 25 00:13', '(192.168.0.20)']
['wesley', 'ttys003', 'Feb 24 23:49', '(192.168.0.20)']

Also don’t forget that the re.split() function also takes the optional
flags parameter described earlier in this chapter.

A similar exercise can be achieved on Windows-based computers by
using the tasklist command in place of who. Let’s take a look at its output
on the following page.

C:\WINDOWS\system32>tasklist

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
System Idle Process 0 Console 0 28 K
System 4 Console 0 240 K
smss.exe 708 Console 0 420 K
csrss.exe 764 Console 0 4,876 K
winlogon.exe 788 Console 0 3,268 K
services.exe 836 Console 0 3,932 K
. . .

As you can see, the output contains different information than that of
who, but the format is similar, so we can consider our previous solution by
performing an re.split() on one or more spaces (no TAB issue here).

Example 1-3 Universal Version of rewho.py Script (rewhoU.py)

This script runs under both Python 2 and 3 by proxying out the print statement
and the print() function with a cheap substitute. It also includes the with
statement available starting in Python 2.5.

1 #!/usr/bin/env python
2
3 import os
4 from distutils.log import warn as printf
5 import re
6
7 with os.popen('who', 'r') as f:
8 for eachLine in f:
9 printf(re.split(r'\s\s+|\t', eachLine.strip()))

40 Chapter 1 • Regular Expressions

The problem is that the command name might have a space, and we
(should) prefer to keep the entire command name together. The same is
true of the memory usage, which is given by “NNN K,” where NNN is the
amount of memory K designates kilobytes. We want to keep this together,
too, so we’d better split off of at least one space, right?

Nope, no can do. Notice that the process ID (PID) and Session Name
columns are delimited only by a single space. This means that if we split
off at least one space, the PID and Session Name would be kept together
as a single result. If we copied one of the preceding scripts and call it
retasklist.py, change the command from who to tasklist /nh (the /nh
option suppresses the column headers), and use a regex of \s\s+, we get
output that looks like this:

Z:\corepython\ch1>python retasklist.py
['']
['System Idle Process', '0 Console', '0', '28 K']
['System', '4 Console', '0', '240 K']
['smss.exe', '708 Console', '0', '420 K']
['csrss.exe', '764 Console', '0', '5,028 K']
['winlogon.exe', '788 Console', '0', '3,284 K']
['services.exe', '836 Console', '0', '3,924 K']
. . .

We have confirmed that although we’ve kept the command name and
memory usage strings together, we’ve inadvertently put the PID and Ses-
sion Name together. We have to discard our use of split and just do a regular
expression match. Let’s do that and filter out both the Session Name and
Number because neither add value to our output. Example 1-4 shows the
final version of our Python 2 retasklist.py:

Example 1-4 Processing the DOS tasklist Command Output
(retasklist.py)

This script uses a regex and findall() to parse the output of the DOS tasklist
command, displaying only the data that’s interesting to us. Porting this script to
Python 3 merely requires a switch to the print() function.

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 f = os.popen('tasklist /nh', 'r')
7 for eachLine in f:
8 print re.findall(
9 r'([\w.]+(?: [\w.]+)*)\s\s+(\d+) \w+\s\s+\d+\s\s+([\d,]+ K)',
10 eachLine.rstrip())
11 f.close()

1.5 A Longer Regex Example 41

If we run this script, we get our desired (truncated) output:
Z:\corepython\ch1>python retasklist.py
[]
[('System Idle Process', '0', '28 K')]
[('System', '4', '240 K')]
[('smss.exe', '708', '420 K')]
[('csrss.exe', '764', '5,016 K')]
[('winlogon.exe', '788', '3,284 K')]
[('services.exe', '836', '3,932 K')]
. . .

The meticulous regex used goes through all five columns of the output
string, grouping together only those values that matter to us: the com-
mand name, its PID, and how much memory it takes. It uses many regex
features that we’ve already read about in this chapter.

Naturally, all of the scripts we’ve done in this subsection merely display
output to the user. In practice, you’re likely to be processing this data,
instead, saving it to a database, using the output to generate reports to
management, etc.

1.5 A Longer Regex Example
We will now run through an in-depth example of the different ways to use
regular expressions for string manipulation. The first step is to come up
with some code that actually generates random (but not too random) data
on which to operate. In Example 1-5, we present gendata.py, a script that
generates a data set. Although this program simply displays the generated
set of strings to standard output, this output could very well be redirected
to a test file.

Example 1-5 Data Generator for Regex Exercises (gendata.py)

This script creates random data for regular expressions practice and outputs
the generated data to the screen. To port this to Python 3, just convert print to
a function, switch from xrange() back to range(), and change from using
sys.maxint to sys.maxsize.

1 #!/usr/bin/env python
2
3 from random import randrange, choice
4 from string import ascii_lowercase as lc
5 from sys import maxint
6 from time import ctime
7

(Continued)

42 Chapter 1 • Regular Expressions

This script generates strings with three fields, delimited by a pair of
colons, or a double-colon. The first field is a random (32-bit) integer, which
is converted to a date. The next field is a randomly generated e-mail
address, and the final field is a set of integers separated by a single dash (-).

Running this code, we get the following output (your mileage will defi-
nitely vary) and store it locally as the file redata.txt:

Thu Jul 22 19:21:19 2004::izsp@dicqdhytvhv.edu::1090549279-4-11
Sun Jul 13 22:42:11 2008::zqeu@dxaibjgkniy.com::1216014131-4-11
Sat May 5 16:36:23 1990::fclihw@alwdbzpsdg.edu::641950583-6-10
Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8
Thu Jun 26 19:08:59 2036::ugxfugt@jkhuqhs.net::2098145339-7-7
Tue Apr 10 01:04:45 2012::zkwaq@rpxwmtikse.com::1334045085-5-10

You might or might not be able to tell, but the output from this program
is ripe for regular expression processing. Following our line-by-line expla-
nation, we will implement several regexes to operate on this data as well
as leave plenty for the end-of-chapter exercises.

Line-by-Line Explanation

Lines 1–6
In our example script, we require the use of multiple modules. Although
we caution against the use of from-import because of various reasons (e.g.,
it’s easier to determine where a function comes from, possible local mod-
ule conflict, etc.), we choose to import only specific attributes from these
modules to help you focus on those attributes only as well as shortening
each line of code.

Example 1-5 Data Generator for Regex Exercises (gendata.py)
(Continued)

8 tlds = ('com', 'edu', 'net', 'org', 'gov')
9
10 for i in xrange(randrange(5, 11)):
11 dtint = randrange(maxint) # pick date
12 dtstr = ctime(dtint) # date string
13 llen = randrange(4, 8) # login is shorter
14 login = ''.join(choice(lc) for j in range(llen))
15 dlen = randrange(llen, 13) # domain is longer
16 dom = ''.join(choice(lc) for j in xrange(dlen))
17 print '%s::%s@%s.%s::%d-%d-%d' % (dtstr, login,
18 dom, choice(tlds), dtint, llen, dlen)

1.5 A Longer Regex Example 43

Line 8
tlds is simply a set of higher-level domain names from which we will ran-
domly pick for each randomly generated e-mail address.

Lines 10–12
Each time gendata.py executes, between 5 and 10 lines of output are gen-
erated. (Our script uses the random.randrange() function for all cases for
which we desire a random integer.) For each line, we choose a random
integer from the entire possible range (0 to 231 – 1 [sys.maxint]), and then
convert that integer to a date by using time.ctime(). System time in
Python and most POSIX-based computers is based on the number of sec-
onds that have elapsed since the “epoch,” which is midnight UTC/GMT
on January 1, 1970. If we choose a 32-bit integer, that represents one
moment in time from the epoch to the maximum possible time, 232 seconds
after the epoch.

Lines 13–16
The login name for the fake e-mail address should be between 4 and 7
characters in length (thus randrange(4, 8)). To put it together, we randomly
choose between 4 and 7 random lowercase letters, concatenating each letter
to our string, one at a time. The functionality of the random.choice() func-
tion is to accept a sequence, and then return a random element of that
sequence. In our case, the sequence is the set of all 26 lowercase letters of
the alphabet, string.ascii_lowercase.

We decided that the main domain name for the fake e-mail address
should be no more than 12 characters in length, but at least as long as the
login name. Again, we use random lowercase letters to put this name
together, letter by letter.

Lines 17–18
The key component of our script puts together all of the random data into
the output line. The date string comes first, followed by the delimiter. We
then put together the random e-mail address by concatenating the login
name, the “@” symbol, the domain name, and a randomly chosen high-
level domain. After the final double-colon, we put together a random integer
string using the original time chosen (for the date string), followed by the
lengths of the login and domain names, all separated by a single hyphen.

44 Chapter 1 • Regular Expressions

1.5.1 Matching a String
For the following exercises, create both permissive and restrictive versions
of your regexes. We recommend that you test these regexes in a short
application that utilizes our sample redata.txt, presented earlier (or use
your own generated data from running gendata.py). You will need to use
it again when you do the exercises.

To test the regex before putting it into our little application, we will import
the re module and assign one sample line from redata.txt to a string variable
data. These statements are constant across both illustrated examples.

>>> import re
>>> data = 'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8'

In our first example, we will create a regular expression to extract (only)
the days of the week from the timestamps from each line of the data file
redata.txt. We will use the following regex:

“^Mon|^Tue|^Wed|^Thu|^Fri|^Sat|^Sun”

This example requires that the string start with (“^” regex operator) any
of the seven strings listed. If we were to “translate” the above regex to
English, it would read something like, “the string should start with
“Mon,” “Tue,”. . . , “Sat,” or “Sun.”

Alternatively, we can bypass all the caret operators with a single caret if
we group the day strings like this:

“^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)”

The parentheses around the set of strings mean that one of these strings
must be encountered for a match to succeed. This is a “friendlier” version
of the original regex we came up with, which did not have the parenthe-
ses. Using our modified regex, we can take advantage of the fact that we
can access the matched string as a subgroup:

>>> patt = '^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)'
>>> m = re.match(patt, data)
>>> m.group() # entire match
'Thu'
>>> m.group(1) # subgroup 1
'Thu'
>>> m.groups() # all subgroups
('Thu',)

This feature might not seem as revolutionary as we have made it out to
be for this example, but it is definitely advantageous in the next example
or anywhere you provide extra data as part of the regex to help in the

1.5 A Longer Regex Example 45

string matching process, even though those characters might not be part of
the string you are interested in.

Both of the above regexes are the most restrictive, specifically requiring
a set number of strings. This might not work well in an internationaliza-
tion environment, where localized days and abbreviations are used. A
looser regex would be: ^\w{3}. This one requires only that a string begin
with three consecutive alphanumeric characters. Again, to translate the
regex into English, the caret indicates “begins with,” the \w means any
single alphanumeric character, and the {3} means that there should be 3
consecutive copies of the regex which the {3} embellishes. Again, if you
want grouping, parentheses should be used, such as ^(\w{3}):

>>> patt = '^(\w{3})'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'Thu'

Note that a regex of ^(\w){3} is not correct. When the {3} was inside the
parentheses, the match for three consecutive alphanumeric characters was
made first, and then represented as a group. But by moving the {3} outside,
it is now equivalent to three consecutive single alphanumeric characters:

>>> patt = '^(\w){3}'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'u'

The reason why only the “u” shows up when accessing subgroup 1 is
that subgroup 1 was being continually replaced by the next character. In
other words, m.group(1) started out as “T,” then changed to “h,” and then
finally was replaced by “u.” These are three individual (and overlapping)
groups of a single alphanumeric character, as opposed to a single group
consisting of three consecutive alphanumeric characters.

In our next (and final) example, we will create a regular expression to
extract the numeric fields found at the end of each line of redata.txt.

46 Chapter 1 • Regular Expressions

1.5.2 Search versus Match... and Greediness, too
Before we create any regexes, however, we realize that these integer data
items are at the end of the data strings. This means that we have a choice
of using either search or match. Initiating a search makes more sense
because we know exactly what we are looking for (a set of three integers),
that what we seek is not at the beginning of the string, and that it does
not make up the entire string. If we were to perform a match, we would
have to create a regex to match the entire line and use subgroups to save
the data we are interested in. To illustrate the differences, we will perform
a search first, and then do a match to show you that searching is more
appropriate.

Because we are looking for three integers delimited by hyphens, we cre-
ate our regex to indicate as such: \d+-\d+-\d+. This regular expression
means, “any number of digits (at least one, though) followed by a hyphen,
then more digits, another hyphen, and finally, a final set of digits.” We test
our regex now by using search():

>>> patt = '\d+-\d+-\d+'
>>> re.search(patt, data).group() # entire match
'1171590364-6-8'

A match attempt, however, would fail. Why? Because matches start at
the beginning of the string, the numeric strings are at the end. We would
have to create another regex to match the entire string. We can be lazy,
though, by using .+ to indicate just an arbitrary set of characters followed
by what we are really interested in:

patt = '.+\d+-\d+-\d+'
>>> re.match(patt, data).group() # entire match
'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8'

This works great, but we really want the number fields at the end, not
the entire string, so we have to use parentheses to group what we want:

>>> patt = '.+(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'4-6-8'

What happened? We should have extracted 1171590364-6-8, not just
4-6-8. Where is the rest of the first integer? The problem is that regular
expressions are inherently greedy. This means that with wildcard patterns,
regular expressions are evaluated in left-to-right order and try to “grab” as
many characters as possible that match the pattern. In the preceding case,
the .+ grabbed every single character from the beginning of the string,
including most of the first integer field that we wanted. The \d+ needed only

1.5 A Longer Regex Example 47

a single digit, so it got “4,” whereas the .+ matched everything from the
beginning of the string up to that first digit: “Thu Feb 15 17:46:04
2007::uzifzf@dpyivihw.gov::117159036,” as indicated in Figure 1–2.

One solution is to use the “don’t be greedy” operator: ?. You can use this
operator after *, +, or ?. It directs the regular expression engine to match as
few characters as possible. So if we place a ? after the .+, we obtain the
desired result, as illustrated in Figure 1–3.

>>> patt = '.+?(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'1171590364-6-8'

Another solution, which is actually easier, is to recognize that “::” is our
field separator. You can then just use the regular string strip('::')
method to get all the parts, and then take another split on the dash with
strip('-') to obtain the three integers you were originally seeking. Now,
we did not choose this solution first because this is how we put the strings
together to begin with using gendata.py!

���������	��
���������
�������������������������
�	��� ����

� !� �!� �!�

 is a greedy operator

Figure 1-2 Why our match went awry: + is a greedy operator.

� requests non-greedy operation

��������	
�	���������������������������������		�	
�������

�!�� "�!�"�!�"�!

Figure 1-3 Solving the greedy problem: ? requests non-greediness.

48 Chapter 1 • Regular Expressions

One final example: suppose that we want to pull out only the middle
integer of the three-integer field. Here is how we would do it (using a
search so that we don’t have to match the entire string): -(\d+)-. Trying
out this pattern, we get:

>>> patt = '-(\d+)-'
>>> m = re.search(patt, data)
>>> m.group() # entire match
'-6-'
>>> m.group(1) # subgroup 1
'6'

We barely touched upon the power of regular expressions, and in this
limited space we have not been able to do them justice. However, we hope
that we have given an informative introduction so that you can add this
powerful tool to your programming skills. We suggest that you refer to the
documentation for more details on how to use regexes with Python. For a
more complete immersion into the world of regular expressions, we rec-
ommend Mastering Regular Expressions by Jeffrey E. F. Friedl.

1.6 Exercises
Regular Expressions. Create regular expressions in Exercises 1-1 to1-12 that:

1-1. Recognize the following strings: “bat,” “bit,” “but,” “hat,”
“hit,” or “hut.”

1-2. Match any pair of words separated by a single space, that is,
first and last names.

1-3. Match any word and single letter separated by a comma and
single space, as in last name, first initial.

1-4. Match the set of all valid Python identifiers.
1-5. Match a street address according to your local format (keep

your regex general enough to match any number of street
words, including the type designation). For example, American
street addresses use the format: 1180 Bordeaux Drive. Make
your regex flexible enough to support multi-word street
names such as: 3120 De la Cruz Boulevard.

1-6. Match simple Web domain names that begin with “www.”
and end with a “.com” suffix; for example, www.yahoo.com.
Extra Credit: If your regex also supports other high-level
domain names, such as .edu, .net, etc. (for example,
www.foothill.edu).

www.yahoo.com
www.foothill.edu

1.6 Exercises 49

1-7. Match the set of the string representations of all Python
integers.

1-8. Match the set of the string representations of all Python longs.
1-9. Match the set of the string representations of all Python floats.

1-10. Match the set of the string representations of all Python com-
plex numbers.

1-11. Match the set of all valid e-mail addresses (start with a loose
regex, and then try to tighten it as much as you can, yet
maintain correct functionality).

1-12. Match the set of all valid Web site addresses (URLs) (start
with a loose regex, and then try to tighten it as much as you
can, yet maintain correct functionality).

1-13. type(). The type() built-in function returns a type object,
which is displayed as the following Pythonic-looking string:
>>> type(0)
<type 'int'>
>>> type(.34)
<type 'float'>
>>> type(dir)
<type 'builtin_function_or_method'>

Create a regex that would extract the actual type name from
the string. Your function should take a string like this <type
'int'> and return int. (Ditto for all other types, such as
‘float’, ‘builtin_function_or_method’, etc.) Note: You
are implementing the value that is stored in the __name__
attribute for classes and some built-in types.

1-14. Processing Dates. In Section 1.2, we gave you the regex pattern
that matched the single or double-digit string representations of
the months January to September (0?[1-9]). Create the regex
that represents the remaining three months in the standard
calendar.

1-15. Processing Credit Card Numbers. Also in Section 1.2, we gave
you the regex pattern that matched credit card (CC) numbers
([0-9]{15,16}). However, this pattern does not allow for
hyphens separating blocks of numbers. Create the regex that
allows hyphens, but only in the correct locations. For exam-
ple, 15-digit CC numbers have a pattern of 4-6-5, indicating
four digits-hyphen-six digits-hyphen-five digits; and 16-digit
CC numbers have a 4-4-4-4 pattern. Remember to “balloon”

50 Chapter 1 • Regular Expressions

the size of the entire string correctly. Extra Credit: There is a
standard algorithm for determining whether a CC number is
valid. Write some code that not only recognizes a correctly
formatted CC number, but also a valid one.

Playing with gendata.py. The next set of Exercises (1-16 through 1-27) deal
specifically with the data that is generated by gendata.py. Before approach-
ing Exercises 1-17 and 1-18, you might want to do 1-16 and all the regular
expressions first.

1-16. Update the code for gendata.py so that the data is written
directly to redata.txt rather than output to the screen.

1-17. Determine how many times each day of the week shows up
for any incarnation of redata.txt. (Alternatively, you can
also count how many times each month of the year was
chosen.)

1-18. Ensure that there is no data corruption in redata.txt by con-
firming that the first integer of the integer field matches the
timestamp given at the beginning of each output line.

Create Regular Expressions That:

1-19. Extract the complete timestamps from each line.
1-20. Extract the complete e-mail address from each line.
1-21. Extract only the months from the timestamps.
1-22. Extract only the years from the timestamps.
1-23. Extract only the time (HH:MM:SS) from the timestamps.
1-24. Extract only the login and domain names (both the main

domain name and the high-level domain together) from the
e-mail address.

1-25. Extract only the login and domain names (both the main
domain name and the high-level domain) from the e-mail
address.

1-26. Replace the e-mail address from each line of data with your
e-mail address.

1-27. Extract the months, days, and years from the timestamps and
output them in “Mon, Day, Year” format, iterating over each
line only once.

1.6 Exercises 51

Processing Telephone Numbers. For Exercises 1-28 and 1-29, recall the regular
expression introduced in Section 1.2, which matched telephone numbers
but allowed for an optional area code prefix: \d{3}-\d{3}-\d{4}. Update
this regular expression so that:

1-28. Area codes (the first set of three-digits and the accompany-
ing hyphen) are optional, that is, your regex should match
both 800-555-1212 as well as just 555-1212.

1-29. Either parenthesized or hyphenated area codes are sup-
ported, not to mention optional; make your regex match
800-555-1212, 555-1212, and also (800) 555-1212.

Regex Utilities. The final set of exercises make useful utility scripts when
processing online data:

1-30. HTML Generation. Given a list of links (and optional short
description), whether user-provided on command-line, via
input from another script, or from a database, generate a
Web page (.html) that includes all links as hypertext anchors,
which upon viewing in a Web browser, allows users to click
those links and visit the corresponding site. If the short
description is provided, use that as the hypertext instead of
the URL.

1-31. Tweet Scrub. Sometimes all you want to see is the plain text of
a tweet as posted to the Twitter service by users. Create a
function that takes a tweet and an optional “meta” flag
defaulted False, and then returns a string of the scrubbed
tweet, removing all the extraneous information, such as an
“RT” notation for “retweet”, a leading ., and all “#hashtags”.
If the meta flag is True, then also return a dict containing the
metadata. This can include a key “RT,” whose value is a
tuple of strings of users who retweeted the message, and/or
a key “hashtags” with a tuple of the hashtags. If the values
don’t exist (empty tuples), then don’t even bother creating a
key-value entry for them.

52 Chapter 1 • Regular Expressions

1-32. Amazon Screenscraper. Create a script that helps you to keep
track of your favorite books and how they’re doing on Amazon
(or any other online bookseller that tracks book rankings).
For example, the Amazon link for any book is of the format,
http://amazon.com/dp/ISBN (for example, http://amazon.com/
dp/0132678209). You can then change the domain name to
check out the equivalent rankings on Amazon sites in other
countries, such as Germany (.de), France (.fr), Japan (.jp),
China (.cn), and the UK (.co.uk). Use regular expressions or a
markup parser, such as BeautifulSoup, lxml, or html5lib to
parse the ranking, and then let the user pass in a command-
line argument that specifies whether the output should be in
plain text, perhaps for inclusion in an e-mail body, or format-
ted in HTML for Web consumption.

http://amazon.com/dp/ISBN
http://amazon.com/dp/0132678209
http://amazon.com/dp/0132678209

53

CHAPTER

Network Programming

So, IPv6. You all know that we are almost out of IPv4 address space. I
am a little embarrassed about that because I was the guy who decided
that 32-bit was enough for the Internet experiment. My only defense

is that that choice was made in 1977, and I thought it was an
experiment. The problem is the experiment didn't end, so here we are.

—Vint Cerf, January 20111

(verbally at linux.conf.au conference)

In this chapter...

• Introduction
• What Is Client/Server

Architecture?
• Sockets: Communication

Endpoints
• Network Programming in Python

1. Dates back to 2004 via http://www.educause.edu/EDUCAUSE+Review/
EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/
157899

• *The SocketServer Module
• *Introduction to the Twisted

Framework
• Related Modules

http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899

54 Chapter 2 • Network Programming

2.1 Introduction
In this section, we will take a brief look at network programming using
sockets. But before we delve into that, we will present some background
information on network programming, how sockets apply to Python, and
then show you how to use some of Python’s modules to build networked
applications.

2.2 What Is Client/Server Architecture?
What is client/server architecture? It means different things to different peo-
ple, depending on whom you ask as well as whether you are describing a
software or a hardware system. In either case, the premise is simple: the
server—a piece of hardware or software—provides a “service” that is
needed by one or more clients (users of the service). Its sole purpose of
existence is to wait for (client) requests, respond to those clients (provide
the service), and then wait for more requests.

Clients, on the other hand, contact a server for a particular request, send
over any necessary data, and then wait for the server to reply, either com-
pleting the request or indicating the cause of failure. The server runs indef-
initely, continually processing requests; clients make a one-time request for
service, receive that service, and thus conclude their transaction. A client
might make additional requests at some later time, but these are consid-
ered separate transactions.

The most common notion of the client/server architecture today is illustrated
in Figure 2-1, which depicts a user or client computer retrieving information
from a server across the Internet. Although such a system is indeed an example
of a client/server architecture, it isn’t the only one. Furthermore, client/server
architecture can be applied to computer hardware as well as software.

The Internet

Client Server

Figure 2-1 Typical conception of a client/server system on the Internet.

2.2 What Is Client/Server Architecture? 55

2.2.1 Hardware Client/Server Architecture
Print(er) servers are examples of hardware servers. They process incoming
print jobs and send them to a printer (or some other printing device)
attached to such a system. Such a computer is generally network-accessible
and client computers would send it print requests.

Another example of a hardware server is a file server. These are typically
computers with large, generalized storage capacity, which is remotely
accessible to clients. Client computers mount the disks from the server
computer as if the disk itself were on the local computer. One of the most
popular network operating systems that support file servers is Sun Micro-
systems’ Network File System (NFS). If you are accessing a networked disk
drive and cannot tell whether it is local or on the network, then the client/
server system has done its job. The goal is for the user experience to be
exactly the same as that of a local disk—the abstraction is normal disk
access. It is up to the programmed implementation to make it behave in
such a manner.

2.2.2 Software Client/Server Architecture
Software servers also run on a piece of hardware but do not have dedi-
cated peripheral devices as hardware servers do (i.e., printers, disk drives,
etc.). The primary services provided by software servers include program
execution, data transfer retrieval, aggregation, update, or other types of
programmed or data manipulation.

One of the more common software servers today is the Web server. Indi-
viduals or companies desiring to run their own Web server will get one or
more computers, install the Web pages and or Web applications they wish
to provide to users, and then start the Web server. The job of such a server
is to accept client requests, send back Web pages to (Web) clients, that is,
browsers on users’ computers, and then wait for the next client request.
These servers are started with the expectation of running forever.
Although they do not achieve that goal, they go for as long as possible
unless stopped by some external force such as being shut down, either
explicitly or catastrophically (due to hardware failure).

Database servers are another kind of software server. They take client
requests for either storage or retrieval, act upon that request, and then wait
for more business. They are also designed to run forever.

The last type of software server we will discuss are windows servers.
These servers can almost be considered hardware servers. They run on a

56 Chapter 2 • Network Programming

computer with an attached display, such as a monitor of some sort. Windows
clients are actually programs that require a windowing environment in
which to execute. These are generally considered graphical user interface
(GUI) applications. If they are executed without a window server, meaning, in
a text-based environment such as a DOS window or a Unix shell, they are
unable to start. Once a windows server is accessible, then things are fine.

Such an environment becomes even more interesting when networking
comes into play. The usual display for a windows client is the server on
the local computer, but it is possible in some networked windowing envi-
ronments, such as the X Window system, to choose another computer’s
window server as a display. In such situations, you can be running a GUI
program on one computer, but have it displayed at another!

2.2.3 Bank Tellers as Servers?
One way to imagine how client/server architecture works is to create in your
mind the image of a bank teller who neither eats, sleeps, nor rests, serving
one customer after another in a line that never seems to end (see Figure 2-2).
The line might be long or it might be empty on occasion, but at any given
moment, a customer might show up. Of course, such a teller was fantasy
years ago, but automated teller machines (ATMs) seem to come close to
such a model now.

The teller is, of course, the server that runs in an infinite loop. Each cus-
tomer is a client with a need that must be addressed. Customers arrive
and are handled by the teller in a first-come-first-served manner. Once a
transaction has been completed, the client goes away while the server
either serves the next customer or sits and waits until one comes along.

Why is all this important? The reason is that this style of execution is
how client/server architecture works in a general sense. Now that you
have the basic idea, let’s adapt it to network programming, which follows
the software client/server architecture model.

2.2.4 Client/Server Network Programming
Before a server can respond to client requests, some preliminary setup
procedures must be performed to prepare it for the work that lies ahead. A
communication endpoint is created which allows a server to listen for
requests. One can liken our server to a company receptionist or switch-
board operator who answers calls on the main corporate line. Once the
phone number and equipment are installed and the operator arrives,
the service can begin.

