Fundamentals of

ActionScript 3.0

DEVELOP AND DESIGN

Doug Winnie

Fundamentals of

ActionScript 3.0

DEVELOP AND DESIGN

Doug Winnie

Peachpit
Pres's,

Fundamentals of ActionScript 3.0: Develop and Design
Doug Winnie

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education

Copyright © 2012 by R. Douglas Winnie

Editor: Nancy Peterson

Production editor: Myrna Vladic
Development editor: Robyn G. Thomas
Copyeditor: Liz Merfeld

Technical Editor: Christopher Coudron
Cover design: Aren Straiger

Cover production: Mimi Heft

Interior design: Mimi Heft
Compositor: Danielle Foster

Indexer: Jack Lewis

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

ActionScript and Flash are trademarks of Adobe Systems Inc., registered in the United States and other
countries. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit Press was aware of a
trademark claim, the designations appear as requested by the owner of the trademark. All other product
names and services identified throughout this book are used in editorial fashion only and for the benefit
of such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-77702-7
ISBN 10: 0-321-77702-6

987654321

Printed and bound in the United States of America

www.peachpit.com

This book is dedicated to Hoover. Hoover was a big part of my life,

and was always by my side while doing “tech-no” things. I miss you Hoover!

This book is also dedicated to my husband, Mike.

While not always into my “tech-no” things, he is my inspiration for doing

great things—*“tech-no” or not. Thanks, Groovy Dude!

ACKNOWLEDGEMENTS

With too many people to mention individually, I'm going to do a group acknowl-
edgement of all of the members of the Adobe Flash Professional, Flash Player, AIR,
and Flex teams that have inspired me to create great things, and to a platform that
overcomes amazing obstacles to give creative and web professionals the ability to
express themselves wherever they go.

I also want to acknowledge Chris Coudron, my tech reviewer and friend, for
his effort to make me look good in code and for reminding me that there is not a
NOR operator in ActionScript. D’oh!

IV FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

CONTENTS

Introduction xiii
Welcome to ActionScript 3.0 XVi
BN rART 1 GETTING THE FUNDAMENTALS
CHAPTER 1 ACCESSING AND MANIPULATING OBJECTS 2
Creating a New Project for ActionScript 3.0 4
Accessing Objects on the Stage 5
Sending Messages to the Output Panel 8
Working with Object Parameters 12
Wrapping Up 19
CHAPTER 2 DYNAMICALLY ADDING OBJECTS TO THE STAGE 20
Creating Named Library Assets 22
Introducing the Display Stack 25
Creating New Objects on the Stage 25
Messing with the Display Stack 29
Assigning Properties to Dynamically Created Instances 30
Working with Comments 31
Creating Comments 31
Working with Spaces 32
Wrapping Up 33
CHAPTER 3 WORKING WITH FUNCTIONS 34
Fundamentals of Functions 36
Accepting Values in Functions 39
Possible Errors when Working with Functions 42
Required Parameter Error 42
Type Mismatch Error 43
Returning Values from Functions 44
More about Parentheses (and Curly Braces) 46
Wrapping Up 47
cHapTER 4 ACTIONSCRIPT AND MATH 48
Mathematical Operators 50
Addition and Subtraction 50

CONTENTS V

Addition or Concatenation? 51

Multiplication and Division 53
Modulo, the Operator Formerly Known as Long Division
with Remainders 53
Variables and Combined Assignment Operators 55
Variables 56
Combined Assignment Operators 57
Increment and Decrement Operators 58
Order of Operations 60
Using Parentheses to Force Order 62
Summing up Math Operations 64
Wrapping Up 65
CHAPTER § CREATING EVENTS 66
Events: Explained 68
Creating a Mouse Event Handler 70
Adding Other Events 74
Wrapping Up 76
CHAPTER 6 USING TIMELINE SCRIPTING WITH MOUSE EVENTS 78
Explaining the Project 80
Controlling Timeline Playback 81
Stopping Playback 81
Seeking to a Specific Frame 83
Working with MovieClip Timelines 85
Using the Event Callback Object and Handling Scope 87
The Event Callback Object 87
Using the Event Callback Object 89
Shortcuts for gotoAndStop() 92
The Finished Example 92
Another e Example 94
Working with Simple Callback Functions 96
Wrapping Up 97
CHAPTER 7 CREATING TIMER AND FRAME EVENTS 98
Using the Timer Event 100
Stopping the Timer 102

VI FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

Using the Enter Frame Event 104
Removing Event Listeners 106
When to Use Frame vs. Timer Events 108
Wrapping Up 111
PROJECT 1 COUNTDOWN CLOCK 12
Project Specification: Countdown Clock 114
Visual Design Review 115
Kick-Off Meeting Notes: Countdown Clock 116
Solution and Walkthrough: Countdown Clock 117
Project Setup in Flash Professional 117
ActionScript Setup 119
Auto-Generated Imports 121
Display Objects 122
Event Listener for the Start Button 123
Timer and Timer Event Listeners 124
Callback Function for Starting the Timer 124
Callback Functions for Timer Events 125
Wrapping Up 127
BN rART 2 EXPLORING THE BASICS OF CLASSES
CHAPTER 8 WHAT IS A CLASS? 130
Overview of a Class 132
Variables Revealed 133
Creating a Class 134
Wrapping Up 138
CHAPTER 9 BUILDING OUT THE CLASS 140
Parts of a Class 142
Package Statement 142
Import Statement 142
Class Statement 143
Class Constructor 143
Creating a Class Instance 144

CONTENTS VII

Vil

Adding Constructor Parameters 146
Customizing the Button Label 146
Customizing Multiple Properties 148
Making Constructor Parameters Optional 150
Creating Methods 152
Accessing Methods from Outside the Class 153
Wrapping Up 154
cHapter 10 DOING MORE WITH CLASSES 156
What is the public Keyword for? 158
Restricting Access with private 161
Using Best Practices for Naming Private Members 163
Getters and Setters: Keeping Things Polite 164
Creating Getter and Setter Methods 165
Using the get and set Statements 166
Going Frame-Script-Free: Creating a Document Class 169
Creating an Initialization Method 171
Wrapping Up 173
cHapTER 11 ORGANIZING YOUR CLASSES 174
Your Package Has Been Delivered 176
Creating a Package Folder 176
Referring to All Classes in a Package 180
Creating Nested Packages 182
Changing the Source Path 183
Wrapping Up 187
I PART 3 RESPONDING TO CONDITIONS AND WORKING
WITH LOGIC
cauapter 12 CONDITIONALS 190
Boolean Variables and Equality 192
Testing for Equality 194
Testing for Inequality 195
Demonstrating Equality and Inequality 196

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

CHAPTER 13

CHAPTER 14

CHAPTER 15

Building Drag and Drop for the Mouse
Adding Feedback

Testing Conditions

The if Statement

The if...else Statement

The if...else if statement

Wrapping Up

ADVANCED BOOLEAN LOGIC AND RANDOM NUMBERS

Using Logic Operators

The AND Operator

The OR Operator

The NOT Operator

Building Complex Conditionals
Generating Random Numbers

Wrapping Up

WORKING WITH TEXT AND THE KEYBOARD
Working with Text Fields

Customizing the Text Style

Making Changes to Style Later on

Creating Your Own ActionScript Fonts

Creating the Quiz Layout

Working with Escape Sequences

Creating the KeyboardEvent Handler

Differences between Code Types: Key Codes versus
Character Codes

Recognizing Special Keys
Wrapping Up

CREATING GROUPS OF OBJECTS AND REPEATING
ACTIONS USING LOOPS

What Are Loops?

Using the for Loop

Controlling the Flow of Loops with break and continue
Nesting Loops

Another Style of Loops, the do Loop

198
200
202
204
206
209

213

214
216
217
218
218
219
221
225

226
228
231
233
234
238
241
246

250
251
254

256
258
258
261
262
264

CONTENTS

IX

X

Creating Groups of Items with Arrays 265
Modifying an Array 266
Using Loops to Create Arrays 269
Looping through an Array 274
Wrapping Up 277
PROJECT 2 DICEOUT! 278
Project Specification: DiceOut 280
Visual Design Review: DiceOut 281
Kick-Off Meeting Notes: DiceOut 283
Solution and Walkthrough: DiceOut 284
Overview of the Document Class 284
Walkthrough of the Document Class 288
Wrapping Up 297
I rART 4 GETTING CREATIVE WITH ACTIONSCRIPT
cHapTER 16 DRAWING WITH ACTIONSCRIPT 300
Drawing and Code 302
Sprites: MovieClips without Timelines 302
Your First Shape 303
Extending the Sprite Class 305
Drawing Lines and Working with Strokes 307
Drawing Ahead of the Curve 312
Drawing Shapes 315
Using Fills 318
Building Gradients 321
Looping with the Drawing API 326
Wrapping Up 330
cHapTER 17 ANIMATION USING ACTIONSCRIPT 332
ActionScript Animation = Location + Time 334
Moving an Object Using a Timer 336
Creating Random Animations 338
Animating Multiple Objects with Loops 343

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

Fine-Tuning Animations 348
Wrapping Up 366
cHapTER 18 WORKING WITH EXTERNAL MEDIA 368
Using Images 370
Playing Audio from the Web 373
Playing Video from the Web 376
Altering the Playback of Video 379
Pausing Video 382
Rewind and Seek 384
Wrapping Up 389
I rART 5 CREATING MULTI-SCREEN PROJECTS
cuapter 19 DESKTOP APPLICATIONS WITH ADOBE AIR 392
Getting Started 394
Working with Desktop Events 397
Minimize 397
Maximize 398
Drag 401
Close 404
Resize 406
Creating a Resizable Layout 411
Configuring Your AIR Project 419
Icons 419
Certificate 420
Publish and Install 422
Wrapping Up 425
cHapTer 20 MOBILE APPLICATIONS WITH ADOBE AIR 426
Getting Started 428
Setting Up Your Testing Devices 429
Creating a Mobile Project 431
Your First Android Application 431
Your First iOS Application 434

CONTENTS Xl

Creating Interactions for Devices 439

Tip, Tap—Basic Touch Interactions 439
Simple Dragging with Touch 442
Taking Your Time with Long Touches 445
Working with Gesture Events 450
Pinch to Zoom 450
Rotate 455
Debugging over USB 458
Debugging on Android 458
Debugging on iOS 460
Optimizing Content 463
Wrapping Up 465
PROJECT 3 FLIPR 466
Project Specification: Flipr 468
Visual Design Review: Flipr 469
Kick-Off Meeting Notes: Flipr 470
Solution and Walkthrough: Flipr 471
Review of the Flash Professional Project 471
Review of the Document Class 475
Display the Splash Screen 479
Display the Main Controls 480
Create the Game Logic 482
Create the Game Board 491
Set Up the Score and Timer Displays 493
Set Up the Player Controls and Game Rules 494
Wrapping Up 501
appenpix A CONFIGURING YOUR MOBILE ENVIRONMENT 502
Setting Up an Android Device for Testing 504
Setting Up an iOS Device for Testing 506
Index 512

XIl FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

INTRODUCTION

Welcome to ActionScript. Over the next several chapters, you'll be introduced to
one of the most versatile programming languages to create web applications for the
browser, desktop applications, and mobile apps for multiple platforms. For years
the Flash Platform has provided people with the most powerful set of technolo-
gies to creatively express themselves across multiple screens and platforms with
its combination of the Flash Player and AIR runtimes, tools like Flash Professional
CSs.5 and Flash Builder 4.5, and languages and frameworks like ActionScript 3.0
and Flex 4.5.

Over the last several years, I have taught people how to make their projects
interactive and how to captivate and engage users. During that time at San Francisco
State University, my series on Adobe TV, and conference appearances, have appre-
ciated the difficulty of learning scripting and coding. Learning programming is a
steep task, and there are many ways to teach it. What I have found is that combining
programming basics, simple examples, problem solving, and real-world projects has
been very effective, and it is what you have in your hands (or on your screen) now.

WHO THIS BOOK IS FOR

This book is crafted for people who are familiar with Flash Professional, the ani-
mation and interactive design tool from Adobe Systems that is part of Creative
Suite. The lessons and projects here assume that you have a basic understanding
of the Flash Professional product. This book is designed for people who are new
to coding or are struggling with the migration from ActionScript 2.0 to 3.0. Here
are some examples of what you should know and be able to do before attempting
to start with this book:

= Import graphical assets from Creative Suite design tools
= (Create timeline animations using tweens using keyframes
= (Create symbols using the Library panel

= Organize and rename timelines in the Timeline panel and symbols in the
Library panel

= Publish and build animations for the web browser

INTRODUCTION X1

XIv

With these basic skills, you can create very interesting web animations; however,
without ActionScript, the animations lacked any interaction with the user, and
there is no way to bring them to other platforms including mobile devices. That
is exactly what this book will teach you—how to make these projects interactive
and take them further.

The latest edition, Flash Professional CS5.5, has added a significant number of
new features to support mobile app creation that are covered at the end of the book.

WHO THIS BOOK IS NOT FOR

If you are already an intermediate or advanced coder, this book may be too basic
for your needs. There are a significant number of books that focus on advanced
ActionScript 3.0 concepts, including the adoption of best practices and code design
patterns that will make you a better and more proficient coder.

In addition, if you have never worked with Flash Professional, I recommend
you learn how to use the basic product before tackling the contents here. There are
excellent books available to help you learn how to get started with Flash Profes-
sional to create animations and how to master design workflows when working
with Creative Suite design applications like Photoshop, Illustrator, and Fireworks.

HOW YOU WILL LEARN

This book has a specific methodology for how the concepts are introduced. First
are the fundamentals of how to interact and work with objects that are on the
Stage. The examples that are in the book are simple—and this is intentional, to
help you understand how ActionScript works without getting into the weeds of
your project’s design or assets. You can adapt and expand these simple examples
for your own projects.

After you gather a sizable amount of new ActionScript know-how, it is time
to put it to work. There are three major projects in the book that pose real-world
situations for you to solve using the skills you have learned. The projects present
you with a programming challenge and ask you to solve it. You can compare your
finished projects with the examples in the book to discover how your approach
matches or differs.

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

WHAT YOU WILL LEARN

This book is divided into five major parts.

PART 1: GETTING THE FUNDAMENTALS

You’'ll learn general ActionScript concepts that you can use to make ActionScript
interact with objects on the Stage and in the Library of your project. You'll build
on this, understanding how to flow your code through reusable modules called
functions, and then how to respond to user interaction with event handlers.

PART 2: EXPLORING THE BASICS OF CLASSES

You'll jump into the basics of what is called object-oriented programming (OOP),
which is what separates the coders from the scripters. Through OOP you can unlock
alot of flexibility in how you create projects, learning how to make reusable objects
and containers that can extend the sophistication of your projects.

PART 3: RESPONDING TO CONDITIONALS AND WORKING WITH LOGIC
Adapting your project based on certain conditions then is the focus of the next
section, where through the use of conditionals, your project can adapt to different
interactions from the user or even to random events to begin introducing gaming
concepts to your project.

PART 4: GETTING CREATIVE WITH ACTIONSCRIPT

Although ActionScript is a programming language, it has its creative side. This is
covered in the fourth section, where you will learn how to draw, animate, and work
with external assets in your projects.

PART 5: CREATING MULTI-SCREEN PROJECTS

After you have mastered all the previous topics, it is time to take your projects
out of the browser and take advantage of the Flash Platform to create desktop
applications for Windows and Mac OS X operating systems and mobile apps for
the popular Android and iOS platforms.

You'll cover alot, but at the end, you’ll have a solid foundation on how Action-
Script works and the power that you have at your fingertips to express yourself
across screens and platforms.

So let’s get started!

INTRODUCTION XV

WELCOME TO ACTIONSCRIPT 3.0

ActionScript 3.0 is the programming language of the Adobe Flash Platform, a multi-screen

and mutli-device development platform for creating interactive and expressive content.

With the latest generation of the Adobe runtimes, Flash Player and AIR, you can take your

ideas and creative vision to the browser, desktop, mobile phones, tablets, and Internet-

enabled televisions. Let’s review some of the tools that you’ll be working with.

XVI

THE TOOLS AND RUNTIMES

In the course of this book, there are three main tools and runtimes that you’ll be

working with:

FLASH
PROFESSIONAL CS5.5

The latest generation

of the Flash authoring
tool combines powerful
animation capabilities,
library management, and
an integrated coding
environment designed for
ActionScript 3.0 coding.
Part of Creative Suite 5.5,
Flash Professional CSs.5
adds new support to work
with the latest generation
of Adobe AIR and Flash
Player 10.2 to create con-
tent and applications for
the popular Android and
iOS mobile platforms.

FUNDAMENTALS OF ACTIONSCRIPT 3.0: DEVELOP AND DESIGN

FLASH PLAYER 10.2

Flash Player is what
brings the web to life. It
is the Internet plug-in for
your desktop or mobile
phone that allows you to
play interactive content,
video, and games. The
latest version includes
enhanced support for
hardware acceleration,
better video playback, and
memory and processor

performance optimization.

ADOBE AIR 2.6

The Adobe AIR runtime is
what allows interactive
designers and developers
to take their applica-
tions outside the browser
and bring them to the
Windows and Mac OS X
operating systems as
desktop applications, or
to the Android and iOS
platforms as installable
mobile applications.

OTHER HELPFUL TOOLS

Although not part of this book, there are other tools that are helpful for working with
the Flash Platform, including:

ADOBE FLASH
BUILDER 4.5

Flash Builder is the profes-
sional coding IDE for the
Flash Platform. It includes
advanced programming
functionality to optimize
projects, and it makes
working with larger
projects and coordinat-
ing projects with teams
easier. Flash Builder also
supports working with
Flash Professional projects
and using the Adobe Flex
framework.

ADOBE FLEX 4.5

The Flex framework is
used specifically to create
data-driven applications
for the browser, desk-
top, and mobile devices.
Incorporating skinnable
components, declarative
layout, ActionScript logic,
and support for a growing
set of platforms, it is the
fastest way to create a
robust application for
multiple screens and
devices.

ADOBE FLASH
CATALYST CS5.5

Flash Catalyst is designed
to work in a team
environment when a
designer and a developer
are building an Internet
application using the

Flex framework. Interac-
tion designers can create
skins for Flex components
and craft the overall user
interface of a Flex appli-
cation as a wireframe,
prototype, or a finished
application. Flash Catalyst
CSs.5 introduces round-
trip functionality with
Flash Builder 4.5 to allow
designers and developers
to work collaboratively.

WELCOME TO ACTIONSCRIPT 3.0

XV

This page intentionally left blank

PART 1

GETTING THE
FUNDAMENTALS

L

ACCESSING AND
MANIPULATING
OBJECTS

ActionScript gives everyone the ability to add
interactivity to graphics, video, and other items
that are placed on the Stage. In order to add this functional-
ity, ActionScript needs a way to access the various objects that are
on the Stage. In this opening section, you’ll learn how to access

these objects so you can later add basic interactivity.

In this chapter, you’ll learn how to change the visual properties

of objects that you place on the Stage. To do this, you’ll discover
more about the importance of converting objects to symbols and
giving objects names, called instance names. You’ll create your
first ActionScript code to change how things look on the screen.
Along the way, you’ll learn some powerful tools to help Flash com-
municate back to you through the Output panel with messages

that can help you see how your code is working.

4

CHAPTER 1

FIGURE 1.1 New Project dialog
box in Flash Professional CSs.5 €18 New Document

CREATING A NEW PROJECT
FOR ACTIONSCRIPT 3.0

Care

Type:

Pl ActionsScript 3.0

Width: 550 px
Pl Actionscript 2.0

& Height: 400 px

g | (e T —
P 2rforios

Flash Lite 4 Frame rate: 24,00 fos
opd| | [T
| Pl ~dobe Device Central | |

3l | | | Actionscript 3.0 Class
| ActionScript 3.0 Interface Auto-Save:[] 10 minutes
i
[T AdbinsmbE Rl Make Derault
| ActionScript Communication File
| Flash Javascript File
= Description:
| Flash Project

Create = new FLA fie (,fla) in the Fiash Document window.
| The Publish Settings will be set for ActionScript 3.0. Use FLA
fles to setup the media and structure for SWF fles published
for Adobe Flash Player.

’IIE () (i

When you create a new file in Flash, you need to define which version of Action-
Script you're going to work with. In addition, if you're creating an application for a
mobile device, like a phone or tablet using the new AIR for Android or iOS feature,
you need to specify that when you start your project. You can alter your settings
later on, but knowing the ActionScript version and the deployment device ahead
of time will help your workflow when working with Flash Professional CS5.5.

1. Launch Flash Professional CS5.5.

2. Select New from the File menu.

You'll then be prompted with the New Project dialog box (Figure 1.1), where
you can define the new project type.

3. Choose ActionScript 3.0 as the Type.

The projects in this book use the ActionScript 3.0 language. You should also
choose ActionScript 3.0 if you are building a basic project for a web browser.

ACCESSING AND MANIPULATING OBJECTS

ACCESSING OBJECTS
ON THE STAGE

1_nharCecke

8 Scene 1 B & wow -

Convert to Symbol

Name: |B\ue Circle

Type: | Movie Clip | » | Registration:

Folder: Library root

Advanced P

ad|-..@=ﬁ£|ucn|a'sa

When you create a new file in Flash, you create objects, place them on the Stage, FIGURE 1.2 Convert to Symbol
and animate them using the timeline. You can access each of these items through ~ di2log box

ActionScript if you follow a couple of general rules.
FIGURE 1.3 Blue Circle

= Youmust convert the visual objects you want to access using ActionScriptto ~ MovieClip
a MovieClip. This is a special type of object in Flash that can be connected
to ActionScript commands.

= You must give each instance a unique name.
Let’s start with a simple example using a generic circle.
1. Draw a circle on the Stage using the Flash drawing tools.

To work with the circle on the timeline, or with ActionScript, you need to
convert it to a MovieClip.

2. Right-click the circle and select Convert to Symbol to convert it to a MovieClip.

All MovieClips must have a name, which you can define in the Convert to
Symbol dialog box (Figure 1.2).

3. Name the MovieClip Blue Circle. It will be listed as Blue Circle in the Library
(Figure 1.3).

ACCESSING OBJECTS ON THE STAGE 5

FIGURE 1.4 Sticky note “stacks”
as Library objects versus indi-
vidual notes as instances

Stack of “Blue Circle” Instance of Another instance
MovieClips “Blue Circle” of “Blue Circle”

A good way to think of this is to imagine that the Blue Circle in the Library
is an infinite stack of sticky notes, each looking exactly the same; in this
case a moderately large blue circle. When you want to put one of these
circles on the Stage, you peel off one of the sticky notes and place it on the
Stage. This is called an instance of the symbol. No matter how many sticky
notes you put on the Stage, they are all from the same sticky pad, looking
exactly the same (Figure 1.4).

When you place the sticky note on the Stage, you need to have some way of
referring to it. The name Blue Circle refers to the stack of sticky notes, not
the individual instances. To refer to each instance discretely, you need to
give it a unique instance name. The instance name is a special name that
refers to only that specific instance.

4. Select the instance on the Stage, and open the Properties panel. The field
at the top of the panel is where you enter the unique name for this instance
of the circle. Name it circle_1 (Figure 1.5).

Instance names can contain letters, numbers, and underscores, but no other
punctuation marks. They can never start with numbers. In addition, instance
names generally are not capitalized; capitalized words in ActionScript refer
to a different type of object that we’ll cover a bit later.

Now the instance of your circle (MovieClip) has a name, and you'’re ready
to access it using ActionScript.

6 CHAPTER1 ACCESSING AND MANIPULATING OBJECTS

1_blueCircie® (¥
% - i PROPERTIES
S 1 100% -
C st 000000 && > @ = | ®
| &

| Mavie Clip |v|

[FE
| | Instance of: Blue Circle SWap...
o T

{@ [> 3D POSITION AND VIEW

& | b cororerrecT

[> DISPLAY

=7 FILTERS

[property | Value |

m
L]

FIGURE 1.5 Instance name
RULES FOR NAMING INSTANCES USING CAMEL CASE defined as circle 1in the
Properties panel7
There is a best practice for naming instances. It is called camel case, and it
involves combining multiple words together in a format that is easy to read
but is also a legal name that ActionScript will accept.

Camel case rules specify that the first letter of the instance name is lower-
case, and then separate words are combined together without spaces, but
each word is capitalized.

For instance, if you have “red box”, camel case rules would make that
“redBox”. The first word, “red”, is not capitalized, and the second word,
“box”, is capitalized, and is added after “red” without a space.

You can use this for multiple words, and it is an established best practice
with developers that works in ActionScript and other languages.

ACCESSING OBJECTS ON THE STAGE 7

SENDING MESSAGES TO
THE OUTPUT PANEL

TS | |
ol Circle R
Al @ [t I>pl | (S @bl 1 240060 00s 1] Dl
FIGURE 1.6 Timeline layers Before you create any ActionScript, [want to point out that there is more than one
created and named way to create ActionScript in Flash Professional CS5.5. The type you are going to

use initially is a frame script, where you create some code that you place on the
timeline itself. The other method is a class-based script, which you’ll learn about
in a future chapter and will use for the rest of the book.

A frame script exists in the timeline on the keyframe of your choosing. Usually,
frame scripts exist on Frame 1, with other scripts on other frames for when you
want to stop or branch your animation or content. Frame scripts are usually on
their own timeline layer. These layers refer to the various rows of timelines you
can create in your project in the Timeline panel. Before you continue, name the
current layer and then create a new one.

1. Double-click the current layer name and rename it Circle.

2. Create a new layer by clicking the new layer button at the bottom of the
Timeline panel I3]

3. Label the new layer Script.

The new layer will have a blank keyframe denoted by a hollow circle on the
first keyframe; the layer containing the Blue Circle MovieClip has a filled
circle (Figure 1.6).

8 CHAPTER1 ACCESSING AND MANIPULATING OBJECTS

5 g2

@
11T

ActionScript 3.0 ~|| = @&
@] TopLevel
Language Elements |
[@] adobe.utis 15‘
air.desktop (4
(@] air.net

air.update

[#] air.update.events

Al.accessibiity

[@] fi.containers H

I »

@] fi.contrals

[@] fi.controls. dataGridClasses

il [@] fi.controls.istClasses

| ruwciine [IGTONESSORININN | (] 7. controks progressBarClasses
e fl.core

|| @) Adata =

a1
B A current Selection
o] script : Frame 1
B Scene 1

4 symbol Definition(s) -

= Seript
] Circle

| «
sl Script: 1|
Line 1 of 1, Col 1

e »

ACTIONS - FRAME

0

FIGURE 1.7 Frame 1selected
and the Actions panel open

(¥ Code Snippets 4, @

Now that you have created a layer for the scripts, you need to begin writ-
ing ActionScript using the Actions panel in Flash Professional CS5.5. The
Actions panel allows you to add ActionScript to frames on the timeline.
Before opening the Actions panel, you need to select where you want to

place the script before writing your code.

4. Select Frame 1in the Script layer on the timeline.

5. Open the Actions panel from the Window menu (Figure 1.7).

You're going to enter some code in the Actions panel that won’t make much
sense yet, but just follow along and everything will be explained fully in a bit.

NOTE: You won't be using the left side of the Actions panel. To collapse it,

click the disclosure icon to the right of the left column.

SENDING MESSAGES TO THE OUTPUT PANEL 9

6. Enter the following in the Actions panel (Figure 1.8):

trace("Hello ActionScript!");

You might see some tool tips pop up while you type. Don’t worry, you can
ignore them for now; just make sure that the line of code is typed and spelled
correctly. In code, spelling and capitalization count, and frequently the most
frustrating errors are caused by a typo, so make sure you pay attention to
your spelling and capitalization.

7. Open the Control menu and select Test Movie > Test, making sure that Flash
Professional is selected (Figure 1.9). You can also use the keyboard shortcut
Control-Enter (Windows) or Command-Enter (Mac).

8. Test the project. You will see a preview of the movie, with the circle, and
the Output panel will open (Figure 1.10).

The Output panel displays the message “Hello ActionScript.” The ActionScript
trace statement takes what’s in the parentheses and sends it to the Output panel.
In this case, it is the contents inside the quotation marks. Note that the quotation
marks aren’t displayed. The quotes let ActionScript know when a piece of text
begins and ends. Text is also known as a string in ActionScript.

The trace statement is helpful to send yourself messages that may help you
debug issues or monitor what is going on in your application. Statements sent to the
Output panel using trace do not appear when you publish to Flash Player or AIR;
they are used only when you're working within Flash and are testing your project.

Congratulations, you have successfully written and executed your first ActionScript
command! Now, if only everything were that easy, right?

10 CHAPTER1 ACCESSING AND MANIPULATING OBJECTS

S Eseeee
R A HY OO [H (F Code Snippets %, @

|1 trace (" -

FIGURE 1.8 ActionScript code added to the
Actions panel

LS
18 scrpt: 1
Line 1 of 1, Col 30

[iGntoll] Debug Window Help FIGURE 1.9 Menu command to test movie
Play Enter
Rewind Shift+,
GoToEnd Shift+.

Step Forward One Frame
Step Backward One Frame

Test Movie b | * inFlash Professional

Test Scene Ctrl+Alt+Enter in Device Central
in AIR Debug Launcher (Desktop)

Clear Publish Cache
in AIR Debug Launcher (Mobile)

Clear Publish Cache and Test Movie
on Device via USB

Loop Playback
Play All Scenes Sttt
7,
Enable Simple Frame Actions Ctrl+ Alt=F x4 s
Ensble Simple Buttons Chris Alt+B o2
V| Enable Live Preview 2,
Mute Sounds Chris Alt+ M .
@
5 1 poeCircle ™ [zl FIGURE 1.10 Publish preview with Output
Fir View Comtml Drbug — panel opened

QuTPUT q
Helln AccisnSeripr!

SENDING MESSAGES TO THE OUTPUT PANEL 11

WORKING WITH OBJECT

FIGURE 1.11 Properties of the
circle_1instance

FIGURE 112 Output panel
with x and y coordinate
locations

12 CHAPTER1

PARAMETERS
LA DwE BERETDOO D & tods Sropen &, @
|cirde_1 | @ fmii
| Movie Clip || % =1
Instance of: Blue Circle i o
« POSITION AND SIZE
x 720400 Y 13200
& w1310 He 131,00 | =
5 Eﬁ'

Now that you have the basics down, you’ll start writing some ActionScript that
will manipulate the blue circle that you have on the Stage.

Every object, symbol, graphic, and animation has properties, or attributes,
that define certain parts or values. For example, the circle on the Stage has a few
obvious properties right off the bat.

Based on the Properties panel, you know that the circle has a value for its width,
height, and its position on the x and y axes (Figure 1.11).

You can access these properties using ActionScript to read their current value
or to send new values that overwrite the existing ones.

To access these, you need to identify the object you are working with, which is
why you need to give all the instances unique instance names.

1. With Frame 1 selected in the Script layer, delete the trace statement that
you placed earlier and enter in the following:

trace(circle 1.x);

trace(circle 1.y);

2. Runthe movie from the Control menu again. You'll see the same movie, but
you'll see two numbers appear in the Qutput panel (Figure 1.12).

These two lines are accessing the circle_1instance on the Stage, accessing

the location of the object on the x axis, and sending that to the trace state-
ment, which sends the value to the Output panel. It repeats the process

again but for the location of the instance on the y axis.

ACCESSING AND MANIPULATING OBJECTS

ACTIONS - FRAME

w B Gw EER TG
' 1 trace ("circle 1.x"};
2 trace (circle_ 1.y} ;

= 1 blueCirde
File View Cortrol Debug

circle 1.=x
11

r——mT

So you have successfully accessed the x and y properties of the instance of ~ FIGURE 1.13 Output panel with

the circle on the Stage. x- and y-coordinate locations
after moving on the Stage

3. Move thelocation of the circle on the Stage and run the movie again. You'll
see that the values sent to the Output panel change to reflect the x and y
properties of the new location (Figure 1.13).

FIGURE 114 Output panel
with string and y coordinate

Notice that unlike the first time you used the trace statement, there are
no quotation marks before or after the contents in the parentheses. If you
remember, the quotation marks indicate the begin and end points of a
sequence of text. Instead of a discrete set of text, or string, you are accessing
a stored value for the x and y coordinates. These are also called variables.

Variables are containers that store data. They can be accessed or modified
through ActionScript. When you refer to variables, or variable properties of
instances, you don’t use quotation marks. Change the first line to illustrate this.

4. Insert quotation marks before and after the contents of the parentheses so
your code looks like this:

trace("circle 1.x");

trace(circle 1.y);

5. Run the movie. Notice that the first line of the Output panel contains the
text “circle_1” and then the next line contains a number (Figure 1.14). That
isbecause you told the trace statement to use the string identified with the

WORKING WITH OBJECT PARAMETERS 13

FIGURE 1.15 Circle repositioned
at the 0,0 coordinate

14 CHAPTER1

1_blueCircle* (x|
% Scene 1

E [drde_1 | @
[Movie clip []
Instance of: Blue Cirde

=7 POSITION AND SIZE

% 000 ¥: .09

= W: 131,00 H: 13100

quotation marks instead of accessing the x coordinate variable property of
the circle_1instance.

So now that you are able to access the instance’s properties, you can change
them using ActionScript. Before continuing though, move the object to the
upper-left corner of the Stage.

Using the Properties panel, enter o for the x coordinate and o for the y
coordinate (Figure 1.15).

Next, yowll overwrite the values that are stored in the Properties panel
with values you’ll define in ActionScript. When you run the movie, the
ActionScript code will run and immediately replace the x and y values of
the circle_1instance.

When accessing values of objects, you use their names as placeholders, and
ActionScript finds the values that they hold and then replaces the names with
the actual values. All MovieClips have a set of properties. In this example,
you have been working with the x and y properties of the object. These map
to the x and y coordinates on the Stage.

When you want to change a value in a variable, you need to assign a value
to it by using the assignment operator, which is an equals sign (=).

ACCESSING AND MANIPULATING OBJECTS

Zow FIGURE 116 Circle repositioned
= at coordinate 100,200 using
ActionScript

7. Inthe Actions panel, replace the contents with the following code:
circle 1.x = 100;

circle 1.y = 200;

This code accesses the x and y properties of the circle_1 instance and
assigns the values on the right side of the assignment operator to them. So
for the x coordinate, the x property value is 100, for the y coordinate, the
y property value is 200.

The period between circle_1 and x and y indicates that you are accessing
the x and y properties of the instance named before the period, in this case
circle_1. This is called dot notation, where you can select properties of
objects by chaining them together using periods.

Ishould also point out the semicolons at the end of each line. The semicolons
atthe end of the line tell ActionScript when you have finished with a specific
action. Consider them the “periods” of your ActionScript “sentences.” They
are required, so be sure you include them!

8. Run the movie. Notice that even though the circle was positioned at the
upper-left corner of the Stage (at coordinate 0,0), the ActionScript over-
wrote those settings and placed the object at a new location (Figure 1.16).

To prove that ActionScript is overwriting the manual settings for the instance,
add some more code to track the values of the coordinates.

WORKING WITH OBJECT PARAMETERS 15

1_bleeCace =
% ficana 1 " G oo

FIGURE 117 Displaying the
before and after positions of
the object

1...“ e i
G@povE &R IE]

sarmi ||
Before:

Aftes:

7! [

9. Update the Actions panel with the highlighted lines in the following code:

trace("Before:");
trace(circle_1.x);
trace(circle_2.y);
circle 1.x = 100;
circle 1.y = 200;
trace("After:");
trace(circle_1.x);
trace(circle_2.y);
10. Run the movie. Notice that the Output panel shows the values are still 0
and o when the movie starts, but the assignment operator overwrites the

initial values with the new coordinates. The Flash runtime then shows them
at the desired location (Figure 1.17).

You might ask why you didn’t see the circle at the first 0,0 coordinate when
the project ran. The simplest explanation is that the operation ran so fast
that Flash Player didn’t have a chance to display it at the first location. As
you continue to work with ActionScript, you’ll learn how you can time the
changes to properties to display them like an animation.

16 CHAPTER1 ACCESSING AND MANIPULATING OBJECTS

There are a lot of properties that you can modify using ActionScript. Some
of the more popular ones are listed in Table 1.1.

There are some properties listed in Table 1.1 that use property values that
are either “true” or “false.” To use these, you need to assign the value true
or falseto the property. Take alook at the visible property as an example.

TABLE 1.1 Common MovieClip properties

PROPERTY

.alpha

.width
.height

X

.scaleX

.scaleY

.rotation

.visible

DESCRIPTION

Sets the transparency level of an object. A low value makes the
object more transparent, a high value makes it more opaque.

Defines the width of an object in pixels.
Defines the height of an object in pixels.

Defines the x coordinate of an object, based on its registration
point, in pixels.

Defines the y coordinate of an object, based on its registration
point, in pixels.

Widens an object based on a percentage value. A value of 1
(100%) keeps an object at its natural size. A value of .5 (50%)
scales the width down 50%. To double the width, use a value
of 2 (200%).

Changes the height of an object based on a percentage value.
A value of 1 (100%) keeps an object at its natural size. A value

of .5 (50%) scales the height down 50%. To double the height,
use a value of 2 (200%).

Rotates the object, in degrees, in a clockwise direction.

Determines if an object is visible or not.

VALUES

o (Invisible) through 1 (fully opaque)

Decimal number greater than o
Decimal number greater than o

Decimal number, positive or negative

Decimal number, positive or negative

Decimal number greater than o

Decimal number greater than o

Decimal number, positive or negative

true (visible), false (not visible)

WORKING WITH OBJECT PARAMETERS 17

1_blueCirde* [/ T
é Scene 1 é. @. 100% B @

FIGURE 1.18 Visibility set ‘e
-

to false

.
| 1 blucCircle

File View Control Debug

=L OVvEGERE TEY D

1 | circle_l.visible = false:

11. Add the following code to the end of your ActionScript:

circle 1.visible = false;

Notice that the value falseisn’t placed in quotation marks. This is a special
value type called Boolean that youw’ll learn about in a future chapter.

12. Run the movie. Notice that the object is no longer visible. The instance
is still there, but you told Flash Player to hide it by changing the visible
property to be false (Figure 1.18).

18 CHAPTER1 ACCESSING AND MANIPULATING OBJECTS

WRAPPING UP

Using basic ActionScript commands, you can get and set common properties of
MovieClips that you have on the Stage. To do this successfully you need to keep
the following in mind:

= Give your object an instance name using the Properties panel while the
object is selected on the Stage.

= Refer to the instance name when getting or assigning a property value.
= Use dot notation to work with properties that are part of instances.

= Use the assignment operator (=) when you want to assign a value to a
property of an object.

= Place semicolons at the end of each ActionScript statement to signal the
end of an action to ActionScript.

= Remember to use quotation marks when displaying text, or strings, but not
around instance names.

With these general rules, you can start playing with the properties for objects
you have on the Stage. In the next chapter, you’ll learn how to add objects to the
Stage exclusively with ActionScript.

WRAPPING UP 19

2

DYNAMICALLY
ADDING OBJECTS
TO THE STAGE

Now that you know how to access and manipu-
late objects that are already on the Stage, youll
learn how to add objects dynamically from the Library using

ActionScript.

The difference with this method is that the objects you are going
to manipulate are not placed on the Stage in the Flash application,
also called at authortime. Instead, you'll use objects that are in the
Library, and after the application is compiled into a SWF, you’ll
dynamically update the Stage using ActionScript with objects in

the Library.

21

CREATING NAMED
LIBRARY ASSETS

If you remember, in order to access the properties or attributes of items on the
Stage, you needed to have an instance name that ActionScript could reference.
When you place objects on the Stage from the Library, you need unique instance
names as well. You need to give a name to the “stack of sticky notes” in the Library
to let ActionScript take an instance of the stack and place it on the Stage.

1. Create a new ActionScript 3.0 project in Flash Professional CS5.5.

2. Onthe Stage, create a simple circle and convert it to a symbol.

3. Name the symbol Blue Circle and make sure MovieClip is selected as the

symbol type.

Generally in Flash, objects that you dynamically place on the Stage need to
be MovieClips. Before you click OK though, you need to give ActionScript a

name it can use to place an instance of the circle on the Stage.

WHAT IS THE DIFFERENCE BETWEEN A MOVIECLIP AND A GRAPHIC?

When you create a symbol, you'll notice that you have a choice of three
symbol types: MovieClip, Graphic, and Button. When working with Action-
Script, only MovieClips can be targeted using ActionScript. When you use the
Graphic type, you cannot control it with ActionScript. Graphic symbols are
for use in animations or designs that need to be encapsulated in a reusable
symbol format, but aren’t intended to be controlled with ActionScript.

Button is an object type as well, but it is a pared down version of a MovieClip
that was commonly used in earlier versions of ActionScript. You can continue
to use it, but it is far less flexible than a MovieClip, and as a best practice you
should use MovieClips instead of Buttons.

22 CHAPTER2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

L

it namer

4. Access the Advanced portion of the window.

With this view open, you’ll see an ActionScript Linkage section in the
middle. This section is used to give the object a name that you can use to
place it on the Stage.

5. Select the Export for ActionScript check box.

The Class and Base Class fields will auto fill with BlueCircle and
flash.display.MovieClip.

When you're finished, your Convert to Symbol dialog box should look like
the one in Figure 2.1.

Unlike names given to objects in the Library, names used for ActionScript
cannot contain spaces. That is why the Class field doesn’t have a space. A
Class is the way that ActionScript represents the “stack.” The “stack” of blue
circles is called the BlueCircle class. You can see this analogy if you look
again at the diagram from Chapter 1 (Figure 2.2).

In order for Flash to know what type of object it is, it needs to have a base
class defined; in this case it’s flash.display.MovieClip. You can ignore the items
before “MovieClip” for now; you'll learn about those in future chapters. Just
know that the stack of blue circles is now referred to as the BlueCircle class.

BlueCircle Class circle_1instance circle_2instance
T of BlueCircle class of BlueCircle class

FIGURE 2.1 Convert to Symbol
dialog box, Advanced mode
section

FIGURE 2.2 Another look at
the stack and instances with
ActionScript names

CREATING NAMED LIBRARY ASSETS 23

ActionScript Class Warning

1\
LI

A& definition for this class could not befound inthe classpath, so one will be
automatically generated in the SWF file upon export.

[] Don't show again.

] 0K | ‘ Cancel

FIGURE 2.3 Error message that
can be ignored, for now

FIGURE 2.4 Library panel dis-
playing the Blue Circle object,
linked to the BlueCircle class

24

| Untitled-1 lv]| 44 G

Lt B |

Mame | 85 Linkage
Blue Circle BlueCircle

6. Click OK. You'll get an error message (Figure 2.3).

You can ignore this error message for now. In the future, you’ll be creating
a special ActionScript file that will define how the BlueCircle class works

and behaves.

In the Linkage column of the Library, you'll see that the Blue Circle item is linked
to BlueCircle, the class name you’ll be using in ActionScript to create instances of

the Blue Circle (Figure 2.4).

NOTE: The error message that displays is notifying you that a special
ActionScript file called a Class hasn’t been defined for this object. Later
in the book, you'll learn how to create these files.

CHAPTER 2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

INTRODUCING THE
DISPLAY STACK

]
In Flash, there are some rules that define how items are displayed in the window.
All displayed items are part of a special group called the display stack. The display
stack is a list from which you can remove or add objects. As you create instances
of objects using ActionScript, they won’t be displayed until you add them to this
special group.

So why have the display stack? At times, you may want to create an object and
be able to modify it, but not actually display it for the user. It could be an item that
isn’t ready for use quite yet, or something that needs to be hidden from time to
time. The object is still there, but just can’t be seen.

In the past, Flash users would set the .visible property to false to hide anitem,
or they would set the .alpha value to zero. Either property setting has the same
effect, but if you have a significant number of items, it can slow down playback.

CREATING NEW OBJECTS ON THE STAGE

So now that you know about the display stack, it’s time to write some code. Creat-
ing objects in ActionScript from the Library is pretty straightforward now that you
know about classes and the display stack.

Since you are going to place the circle using just code, you need to remove any
objects you have on the Stage.

1. Select the circle on the Stage in Flash and delete it.

2. Create a new timeline for your ActionScript code in your now-empty
ActionScript 3.0 project.

3. Name the timeline scripts.
4. Select the empty frame in the new scripts timeline.

5. Open the Actions panel.

INTRODUCING THE DISPLAY STACK 25

o scrpte:1
L 4 of 4. Cul 1

T
7 BurCircieRedon et =g M

Fir Wiew Cestrol Debug

FIGURE 2.5 Actions and
Timeline panels with new
code added

FIGURE 2.6 Dynamically
placed BlueCircle object

6. Inthe Actions panel, type in the following code:
var myCircle:BlueCircle = new BlueCircle();
addChild(myCircle);

trace(myCircle);

When you’re finished, your project should look like the one shown in
Figure 2.5:

7. Run the code.

You'll see that part of your blue circle is in the upper-left corner of the
display (Figure 2.6). This is because the registration point for the circle is
in the upper-right corner, and the Flash runtime positions the circle based
on the coordinate 0,0, which is the default location for objects when you
create them.

So let’s step through the code to see how it all works. The first line

var myCircle:BlueCircle = new BlueCircle();

can be read like this: A new object named myCircle has been created, which is
an instance of the BlueCircle class. That object is assigned a new instance of the
BlueCircle class. The process is shown in Figure 2.7.

26 CHAPTER2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

FIGURE 2.7 Creating a
new object instance using
ActionScript

L - = = 4
A new empty object Library containing
called myCircle BlueCircle class
r— - = - - b
| |
| |
| |
| |
| |
L - = = 4
A new empty object A new, unnamed Library containing
called myCircle instanceof the BlueCircle class
BlueCircle class
r— - === 1 is created
| |
| |
| |
| |
| |
L - = = 4
The unnamed instance Library containing
is assigned to the BlueCircle class

object myCircle

INTRODUCING THE DISPLAY STACK 27

28

In this illustration, the first row shows that you are creating a new named
object called myCircle. You'll learn more about the var statement in an upcoming
chapter, but just remember that the name of the new instance you created is called
myCircle. You also have the BlueCircle “stack of sticky notes,” or class, available
in the Library to use.

The second step says that you are “tearing off a sticky note” from the stack using
the new statement, creating a new instance of the BlueCircle class. At this point,
the instance doesn’t have a name, but it exists in your program.

The third step takes that unnamed instance of the BlueCircle class and assigns
it to the named object myCircle. You need to do this in order to send any actions
or make property changes on the object since it requires an instance name before
you can work with it.

This process is the same as dragging an object from the Library, placing it on
the Stage, and giving it an instance name of myCircle.

Take a look at the second line of code:

addChild(myCircle);

This line of code adds the shiny new blue circle to the display stack so it can
be visible to the user. The addChild statement takes the item referenced in the
parentheses, and adds it to the list of items that are displayed.

When the Flash runtime plays, it continually checks the contents of the display
stack and renders the objects within it on the screen. Now that the blue circle is in
the display stack, you can see it on the screen.

Take alook at the last line and the unusual text that appears in the Qutput panel:

trace(myCircle);

The last line traces the entire object to the Output panel. Notice that the panel
displays the following:

[object BlueCircle]

Since the object itself doesn’t have any meaningful textual or numerical value,
thisline of code is sending a statement that the object being referenced is an object
of the BlueCircle class. The trace statement then sends that to the Output panel.

CHAPTER 2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

ACTIONS - FRAME

WG R R

var myCircle:BlueCircle = new BlueCircle () 2
'/ addChild o 3 tecelm

trace (myCircle) ;

&) Code Supets 'y, O

{

P OYERBR HEY OO E ¢pOvIERBHT

-

r‘g Blue Cede

=¥ biueCircleRedux

File Wiew Contrel Dabug

oy)

o] serpts:1 o
Une 2 of 4, Col4

MESSING WITH THE DISPLAY STACK

Now, you’ll update the code to show what the display stack does.

1.

Change the code to read like this:

var myCircle:BlueCircle = new BlueCircle();
// addChild(myCircle);

trace(myCircle);

When you add the two slashes before the second line, you are doing what
programmers call “commenting out.” You'll learn more about using comments
in the next section, but for now just know that the two forward slashes hide
the code from Flash, so it skips it, ignoring any commands or actions on
that line. Notice that the code in Flash turns grey. That is the default color
for showing comments (Figure 2.8).

Without the addChild statement, the myCircle object is not added to the
display stack.

Run this code. You'll see an empty page.

Check the Output panel. You’'ll see that the trace statement still works
as expected because the object is still there; it just isn’t part of the display
stack (Figure 2.9).

FIGURE 2.8 Showing com-
ment coloring in the Actions
panel

FIGURE 2.9 Result when
removing addChild from
the code

INTRODUCING THE DISPLAY STACK 29

ACTIONS - FRAME

R P ovERREIEY DD E {7l Code Snippets %, @
e 5

FIGURE 2.10 Change of loca-
tion after modifying the x and

wvar myCircle:BlueCircle = new BlueCircle():

myCircle.x = 150;

5
5
3 myCircle.y = 100; em
y properties 4 addcnndu!uycucle); e
5 trace(myCircle): Blue Cirde
&
% blueCircleRedux [E=EE

File View Centrol Debug

o scl:ipts:_l-ﬂ

lne4 o‘f-ﬁ-. Col1

«

outpPuT i
[object BlueCircle]

This is acommon mistake that a lot of new coders make: creating an instance
of an object and forgetting to add it to the display stack. You'll see that you
get no errors when you run the project, because the object is there, but you
haven’t specifically told Flash to render it on the screen.

3. Addthe addChild statement back in by removing the leading double slashes.

4. Run the program again. You'll see that you restored the object.

ASSIGNING PROPERTIES TO DYNAMICALLY CREATED INSTANCES

If you want to position the object at a certain location when you place it, you can
assign values to the instance properties x and y after the object is created.

1. Update the code to assign values to these properties after the line that cre-
ates the initial instance with the new statement:

var myCircle:BlueCircle = new BlueCircle();
myCircle.x = 150;

myCircle.y = 100;

addChild(myCircle);

trace(myCircle);

2. Display the object. Its location will be at the coordinate 150,100 (Figure 2.10).

30 CHAPTER2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

WORKING WITH COMMENTS

Comments are a huge part of your programming, and are critical for you and your
team members to understand the code that you are writing. Comments allow
programmers to add notes, hints, and explanations within their code, so they or
others can understand it.

Even if you are working alone, comments are extremely important to help you
understand your code after you stop working on a project for a while and need
to get back to it. Many developers wrestle with confusing code that made perfect
sense when they originally wrote it, but can’t remember how it worked when they
went back to it months later.

CREATING COMMENTS

You have two basic ways to comment in Flash. The first is a single-line comment.
To create one, start the line of code with a double forward slash, //. Any contents
after these, on that line only, are hidden by Flash and aren’t executed. For example:
// This code creates a blue circle on the screen

var myCircle:BlueCircle = new BlueCircle();

addChild(myCircle);

trace(myCircle);

In this example, the first line is a comment, and is ignored by Flash when it
runs the code.

The second type of comment is a multi-line comment. To create this type, you
need to mark the beginning and ending of the comment using two special two-
character sequences: /* and */. You'll wrap the text you want to hide from Flash
using these two sequences. Here is an example:

/* This code creates a blue circle
on the screen at 150,100 */
var myCircle:BlueCircle = new BlueCircle();
myCircle.x = 150;
myCircle.y = 100
addChild(myCircle);

trace(myCircle);

WORKING WITH COMMENTS 31

The contents inside the opening /* and the closing */ are hidden from Flash,
and the contents between them can be as long as you want. You might see some
code use these opening and closing symbols in various ways, but they always do
the same thing: start and end a multi-line comment.

WORKING WITH SPACES

Generally, you can add whitespace characters (spaces, tabs, and carriage returns) in
your code. Sometimes these are helpful to segment related pieces of code together,
usually with a comment above the segment to identify what the code does. There
are some best practice rules for using tabs in your ActionScript, which you’ll learn
later in the book.

The blue circle example could be expanded to make the code’s function very
clear and explicit:
/* This code creates a blue circle

on the screen at 150,100 */

// Create a new instance of the BlueCircle class
var myCircle:BlueCircle = new BlueCircle();

// Position the myCircle on the screen

myCircle.x = 150;

myCircle.y = 100

// Add myCircle to the display stack

addChild(myCircle);

// Send myCircle to the Output panel to confirm it is there

trace(myCircle);

32 CHAPTER2 DYNAMICALLY ADDING OBJECTS TO THE STAGE

WRAPPING UP

Using a few new ActionScript commands, you are able to dynamically add objects
to the Stage. When working with object instances using ActionScript, make sure
you do the following:

= Make sure that the object in your Library is named and has been config-
ured for “Export to ActionScript” using the Advanced mode section of the
Convert to Symbol dialog box.

= (Create a named object to hold your new instance using the var statement.

= Generate a new instance of the object from the Library using the newstatement,
assigning the object to the named object using the = assignment operator.

= Add the object to the Flash display stack using addChild to render the
object on the screen.

= Remember to add comments using single-line or multi-line comments
to document what your code does for others to understand, or for you to
understand when you return to your project later.

WRAPPING UP 33

3

WORKING WITH
FUNCTIONS

When you work with ActionScript, there are
sequences of code that you may want to execute
multiple times. To do this, you need a way to group the code
into a logical block and give it a name that will tell the Flash run-

time to execute the code.

Functions are the way to do exactly that. Using functions, you can
group commonly used commands for repetitive use throughout
your application. In this chapter, you’ll learn the commands and
syntax to create a basic function, and then learn how you can
extend the use of your functions to send and receive data in and

out of them.

35

FUNDAMENTALS OF FUNCTIONS

_ HENONS. Bran~

RIE G EIE RS 5 50m 3 a4
1 function runMe () :void

FIGURE 3.1 Results from your £

i

. 3
first function i
3 runMe () ;

trace ("The function runMe was exec

1 |

OUTPUT

The function runMe was executed.

To get started with functions, let’s look at the following example.

1. Create a new ActionScript 3.0 Flash file and enter the following code into
the frame script on the timeline:

function runMe():void

{

trace("The function runMe was executed.");
}
runMe();

2. Run the code. The phrase “The function runMe was executed” appears in
the Output panel in Flash (Figure 3.1).

36 CHAPTER3 WORKING WITH FUNCTIONS

