


Praise for 
Executable Specifications with Scrum

“This is a great book that demonstrates the value of putting effort behind re-
quirements in an Agile environment, including both the business and technical 
value. The book is well-written and flows nicely, approachable for both the 
manager and the developer. I am recommending this book to all Scrum teams 
who need to integrate business analysts and architects as active teammates.”

—Stephen Forte, Chief Strategy Officer at Telerik and 
Board Member at the Scrum Alliance

“Cardinal’s book brings to light one of the most important and neglected aspects 
of Scrum: Having user stories that are ready to sprint. Teams often complain 
about this, and the author offers practical advice on how to get it done right!”

—Steffan Surdek, co-author of A Practical Guide to Distributed Scrum

“Executable Specifications with Scrum doesn’t shine through its depth but its 
breadth. This compendium of proven agile practices describes an overarching 
process spike touching important aspects of product development in a cohesive 
way. In this compact book, Mario Cardinal clearly explains how he achieves 
a validated value stream by applying agile practices around executable 
specifications.”

—Ralph Jocham, Founder of agile consulting company effective agile. and 
Europe’s first Professional Scrum Master Trainer for Scrum.org

“Cardinal provides deep insights into techniques and practices that drive effec-
tive agile teams. As a practitioner of the craft Cardinal describes, I now have a 
written guide to share with those who ask, ‘What is this [ATDD/BDD/TDD/
Executable Specification/etc] thing all about?’ Regardless of the name de jour, 
Cardinal gives us what works.”

—David Starr, Senior Program Manager, Microsoft Visual Studio



“Scrum is barely a process, only a framework. It is a tool, and you have to provide many complemen-
tary practices to reach true business agility. This book is perfect for teams that are using Scrum and 
want to learn about or get started with executable specifications.”

—Vincent Tencé and François Beauregard, Scrum Trainers at Pyxis Technologies

“This book maps out the important place of specifications in an agile landscape to the benefit of 
agilists of all roles.”

—Erik LeBel, Technology and Development Consultant at Pyxis Technologies   
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     Preface  

 There is a wide range of books that have been written about specifications. Un-
fortunately, most of them are not useful for software development teams. These 
books rely on traditional engineering practices. They assume requirements are 
known upfront and, once specified, will not change for the duration of the pro-
ject. And if changes happen, they presume they will be minor, so they could be 
tracked with a change management process. They promote a sequential process 
starting with a distinct requirements phase that delivers a detailed requirements 
specification before starting to design and build the product.  

  Goal of This Book  

 It is my belief that traditional engineering practices are not suitable for software 
development. Central to the process of software specification is a high level 
of uncertainty, which is not the case with traditional engineering. Fortunately, 
with the growth of the agile community in the past decade, a body of knowledge 
more suited to the reality of software development has emerged. Many books 
explaining agility have become must-read books for anyone interested in soft-
ware development. A large majority of them contain at least a chapter or two 
on requirements, some almost totally dedicated to this topic. Because I believe 
these  texts are important, I will include citations from them and reference them 
throughout this book.  

 I wrote this book to add to this body of knowledge. It is a compendium of 
the agile practices related to executable specifications. Executable specifications 
enable us to easily test the behavior of the software against the requirements. 
Throughout this book, I will explain how you can specify software when prereq-
uisites are not clearly defined and when requirements are both difficult to grasp 
and constantly evolving. Software development practitioners will learn how to 
trawl requirements incrementally, step-by-step, using a vision-centric and an 
emergent iterative practice. They will also learn how to specify as you go while 
writing small chunks of  requirements.  
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 This book aims to explain the technical mechanisms needed to obtain the 
benefits of executable specifications. It not only provides a sound case for itera-
tive discovery of requirements, it also goes one step further by teaching you how 
to connect the specifications with the software under construction. This whole 
process leads to the building of executable specifications.  

 It is important to recognize that even with the best intentions you cannot 
force agreement upon stakeholders. The following African proverb explains this 
succinctly: “You can’t make grass grow faster by pulling on it.” When knowl-
edge is incomplete and needs are constantly changing, we cannot rely on ap-
proaches based on traditional engineering. Instead, it is critical that you empha-
size empirical techniques based on the iterative discovery of the requirements. 
The objective sought is not only to solve the problem right, but also to solve the 
right problem—this is the paramount challenge of software construction.  

 This book is unique in that it teaches you how to connect requirements and 
architecture using executable specifications. You learn how to specify require-
ments as well as how to automate the requirements verification with a Scrum 
framework. As a result of reading this book, you can select a tool and start us-
ing executable specifications in future agile projects. Here are five advantages to 
reading this book:  

   •    You can understand how the work of business analysts changes when 
transitioning from traditional to agile practices.   

  •    You learn how to groom emergent requirements within the Scrum frame-
work.   

  •    You get insight about storyboarding and paper prototyping to improve 
conversations with stakeholders.   

  •    You discover how to build an emergent design while ensuring implementa-
tion correctness at all times   

  •    You can understand that software architects who are adopting agile 
practices are designing incrementally and concurrently with software 
development.     
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  Who Should Read This Book?  

 Readers of this book have already adopted the Scrum framework or are transi-
tioning to agile practices. They understand the fundamentals of agility but are 
unfamiliar with executable specifications. They want to understand why the 
executable specifications are useful and most important how to start with this 
new practice.  

 With the massive adoption of Scrum framework, the next major challenge 
facing agile teams is to integrate business analysts and architects as active team-
mates. Anyone who is a Scrum master, manager or decision maker who faces 
this challenge should read this book. In addition, all team members involved in 
agile projects will benefit from this book. It goes without saying that business 
analysts and software architects will be happy to find a book that directly ad-
dresses their concerns.  

 Advanced or expert agilists will be interested in the book’s concise overview 
of executable specifications. They could use this book to successfully guide their 
teammates down this path. In addition, the terminology used throughout the 
book can help leaders to communicate effectively with their peers.   

  Road Map for This Book  

 Executable specifications require a change in mindset. This book focuses on this 
issue. Executable specifications help reduce the gap between what stakeholders 
want the software to do (the “What”), and what the software really does (the 
“How”). Executable specifications address requirements in a way that makes it 
easy for the development team to verify the software against the specifications 
and this as often as requirement changes occur.  

 To facilitate this change in mindset, this book offers a unique approach to the 
process that spans nine chapters:  

   •     Chapter   1   : Solving the Right Problem   

 This chapter explains the need to respond efficiently to the constantly 
changing requirements using iterative discovery and executable specifica-
tions.   
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  •     Chapter   2   : Relying on a Stable Foundation   

 This chapter explains how to identify what will hardly change: the core 
certainties on which the team should rely. Those certainties are not re-
quirements. They are high-level guardrails that ensure a solution can be 
built. They create a stable foundation to ensure that an iterative require-
ments discovery is possible.   

  •      Chapter   3   : Discovering Through Short Feedback Loops and Stakeholders’ 

Desirements   

 This chapter shows that to tackle uncertainties, teams must discover stake-
holders’ desires and requirements (desirements) through short feedback 
loops.   

  •     Chapter   4   : Expressing Desirements with User Stories   

 This chapter teaches you how to express desirements with user stories and 
how to record them using the product backlog.   

  •     Chapter   5   : Refining User Stories by Grooming the Product Backlog   

 This chapter explains how to groom the product backlog so that you can 
plan sprints that can increase the likelihood of success of the feedback 
loops.   

  •     Chapter   6   : Confirming User Stories with Scenarios   

 This chapter demonstrates how to confirm user stories by scripting behav-
iors with scenarios.   

  •     Chapter   7   : Automating Confirmation with Tests   

 This chapter explains how to turn scenarios into automated tests so that 
you can easily confirm the expected behavior of the software against the 
evolving specifications.   

  •     Chapter   8   : Addressing Nonfunctional Requirements   

 This chapter teaches you how to ensure quality software by specifying 
nonfunctional requirements.   

  •     Chapter   9   : Conclusion   

 This last chapter summarizes the key elements of the book.        


