

Praise for
Executable Specifications with Scrum

“This is a great book that demonstrates the value of putting effort behind re-
quirements in an Agile environment, including both the business and technical
value. The book is well-written and flows nicely, approachable for both the
manager and the developer. I am recommending this book to all Scrum teams
who need to integrate business analysts and architects as active teammates.”

—Stephen Forte, Chief Strategy Officer at Telerik and
Board Member at the Scrum Alliance

“Cardinal’s book brings to light one of the most important and neglected aspects
of Scrum: Having user stories that are ready to sprint. Teams often complain
about this, and the author offers practical advice on how to get it done right!”

—Steffan Surdek, co-author of A Practical Guide to Distributed Scrum

“Executable Specifications with Scrum doesn’t shine through its depth but its
breadth. This compendium of proven agile practices describes an overarching
process spike touching important aspects of product development in a cohesive
way. In this compact book, Mario Cardinal clearly explains how he achieves
a validated value stream by applying agile practices around executable
specifications.”

—Ralph Jocham, Founder of agile consulting company effective agile. and
Europe’s first Professional Scrum Master Trainer for Scrum.org

“Cardinal provides deep insights into techniques and practices that drive effec-
tive agile teams. As a practitioner of the craft Cardinal describes, I now have a
written guide to share with those who ask, ‘What is this [ATDD/BDD/TDD/
Executable Specification/etc] thing all about?’ Regardless of the name de jour,
Cardinal gives us what works.”

—David Starr, Senior Program Manager, Microsoft Visual Studio

“Scrum is barely a process, only a framework. It is a tool, and you have to provide many complemen-
tary practices to reach true business agility. This book is perfect for teams that are using Scrum and
want to learn about or get started with executable specifications.”

—Vincent Tencé and François Beauregard, Scrum Trainers at Pyxis Technologies

“This book maps out the important place of specifications in an agile landscape to the benefit of
agilists of all roles.”

—Erik LeBel, Technology and Development Consultant at Pyxis Technologies

Executable Specifications
with Scrum

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Executable
Specifications with
Scrum
A Practical Guide to
Agile Requirements Discovery

 Mario Cardinal

 Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

 The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013939927

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-32-178413-1

 ISBN-10: 0-32-178413-8

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

 First printing, July 2013

 Editor-in-Chief

Mark Taub

 Executive Editor

Chris Guzikowski

 Senior Development

Editor
Chris Zahn

 Marketing Manager

Stephane Nakib

 Managing Editor

Kristy Hart

Senior Project Editor

Lori Lyons

 Copy Editor

Apostrophe Editing
Services

 Senior Indexer

Cheryl Lenser

Proofreader

Paula Lowell

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Senior Compositor

Gloria Schurick

 To my four outstanding children:
Dominic, Lea-Marie, Romane, and Michael.

This page intentionally left blank

 Contents

Preface xvi

Chapter 1: Solving the Right Problem 1

 Chapter 2: Relying on a Stable Foundation 13

 Chapter 3: Discovering Through Short Feedback Loops and

Stakeholders’ Desirements 25

 Chapter 4: Expressing Desirements with User Stories 35

 Chapter 5: Refining User Stories by Grooming the Product Backlog 45

 Chapter 6: Confirming User Stories with Scenarios 73

 Chapter 7: Automating Confirmation with Acceptance Tests 97

 Chapter 8: Addressing Nonfunctional Requirements 123

 Chapter 9: Conclusion 145

Glossary 153

 Index 159

ix

 Contents

Preface xvi

Chapter 1 Solving the Right Problem 1

Distinguishing the Requirements from the Solution 4
Recognizing the Impact of Uncertainty 5
Tackling Uncertainty 7
Summary 10
References 10

Chapter 2 Relying on a Stable Foundation 13

Defining What Will Hardly Change 14
Creating a Healthy Team 14
Requiring the Involvement of All Stakeholders 16
Expressing a Shared Vision 17
Distinguishing a Meaningful Common Goal 20
Identifying a Set of High-Level Features 21
Validating the “Can-Exist” Assumption 22
Summary 23
References 23

Chapter 3 Discovering Through Short Feedback Loops and
Stakeholders’ Desirements 25

Applying the Trial-and-Error Method 25
Using Short Feedback Loops 29
Targeting Feedback Along the Expected Benefits 31
Focusing on the Stakeholders’ Desirements 31
Summary 34
References 34

Chapter 4 Expressing Desirements with User Stories 35

Describing Desirements by Using User Stories 35
Discovering Desirements by Exploring Roles and Benefits 38
Establishing a Ubiquitous Language 40
Recording Desirements by Using a Product Backlog 41

x

xiContents

Summary 43
References 44

Chapter 5 Refining User Stories by Grooming the Product Backlog 45

Managing the Product Backlog 46
Collaborating to Groom the Product Backlog 48
Ranking User Stories with a Dot Voting Method 49
Illustrating User Stories with Storyboards 52
Sizing User Stories Using Comparison 56
Splitting User Stories Along Business Values 60
Tracking User Stories with a Collaboration Board 62
Delivering a Coherent Set of User Stories 68
Planning Work with User Stories 70
Summary 71
References 72

Chapter 6 Confirming User Stories with Scenarios 73

Scripting User Stories with Scenarios 74
Expressing Scenarios with Formality 76
Scripting Scenarios Using the FIT Tabular Format 77
Scripting Scenarios Using Given-When-Then Syntax 79
Choosing Between FIT Tabular Format or

Given-When-Then Syntax 80
Formalizing a Ubiquitous Language 81
Splitting Scenarios into Commands or Queries 83

Confirming Collaboratively in a Two-Step Process 85
Removing Technical Considerations from Scenarios 89
Evolving Scenarios from Sprint to Sprint 91

Organizing Scenarios by Feature 92
Documenting Scenarios by Feature 93
Avoiding Duplication and Merging Conflicts 94

Summary 95
References 96

Chapter 7 Automating Confirmation with Acceptance Tests 97

Evolving Scenarios into Acceptance Tests 98
Automating Scenarios Using the Red-Green-Refactor Cycle 101

Executable Specifications with Scrumxii

Translating the Scenario into an Acceptance Test 104
Transposing Using an Internal DSL 104
Creating a Test 107
Coding the DSL into the Newly Created Test 108

Connecting the Newly Created Test with the Interface 110
Exercising the Interface 112
Chaining Context Between the Steps of the Scenario 113
Making the Test Fail 114

Implementing the Interface 115
Replacing Unit Testing with Context-Specification

Testing 116
Making the Test Pass 117

Evolving the Acceptance Test 117
Running Acceptance Tests Side-by-Side with Continuous
 Integration 118
Enhancing Scenarios with Test Results 119
Summary 121
References 122

Chapter 8 Addressing Nonfunctional Requirements 123

Improving External Quality Using Restrictions 125
Translating Nonfunctional Requirements into

Restrictions 127
Reducing the Functional Scope to a Single Scenario 129
Setting Measurable Quality Objectives 131
Testing Restrictions with Proven Practices 135

Ensuring Internal Quality Using Sound Engineering Practices 137
Improving Software Construction with Explicit Practices 137
Mastering Practices with Collaborative Construction 140

Summary 142
References 143

Chapter 9 Conclusion 145

Recapitulating the Book 146
Summarizing the Process 148
Drawing Attention to Individual Roles 149

Glossary 153

Index 159

xiii

Figure List

Figure 1.1: Usage of features in a typical system 3

Figure 1.2: Uncertainty diagram 5

Figure 1.3: Traditional engineering and uncertainty 7

Figure 1.4: R&D and uncertainty 8

Figure 1.5: Agile and uncertainty 9

Figure 3.1: Sprint 29

Figure 4.1: Product backlog is the list of desirements sorted by importance 41

Figure 4.2: Product backlog is like an iceberg 43

Figure 5.1: Grooming the backlog 49

Figure 5.2: An example of a storyboard for an animated film 53

Figure 5.3: An example of a paper prototype 54

Figure 5.4: A computerized low-fidelity storyboard 55

Figure 5.5: Deck of Fibonacci cards 59

Figure 5.6: The backlog grooming workflow 62

Figure 5.7: A collaboration board is a two-dimensional grid 63

Figure 5.8: A task board is a well-known example of a
collaboration board 64

Figure 5.9: A collaboration board with no signals 65

Figure 5.10: A collaboration board with “Done” signals 65

Executable Specifications with Scrumxiv

Figure 5.11: A collaboration board with “Ready” signals 66

Figure 5.12: A collaboration sticker has nine display areas 66

Figure 5.13: A collaboration sticker representing a user story 67

Figure 5.14: Planning sprints with story mapping 69

Figure 6.1: A state transition 75

Figure 6.2: A FIT table 77

Figure 6.3: A FIT table is a state transition 78

Figure 6.4: A FIT table is a test 78

Figure 6.5: Describing concepts using precondition and
consequence states 82

Figure 6.6: Formalizing a ubiquitous language 83

Figure 6.7: Differentiating between command and query 84

Figure 6.8: Querying a list of items 84

Figure 6.9: Confirming collaboratively using a two-step process 86

Figure 6.10: Specifying the scenarios 87

Figure 6.11: Scenarios work at many levels 90

Figure 6.12: Organizing the scenarios by feature 92

Figure 6.13: A scenario validates only one feature 93

Figure 6.14: Generating the specification with computer-based tools 94

Figure 7.1: The acceptance test is a copy of a scenario in a format
suitable for execution on a computer 98

xvFigure List

Figure 7.2: Turning scenarios into acceptance tests using a
three-stage process 102

Figure 7.3: Turning scenarios into acceptance tests is how an increment
is built 103

Figure 7.4: Coding the internal DSL inside the SpecFlow automation
framework 108

Figure 7.5: Coding the internal DSL inside the StoryQ automation
framework 109

Figure 7.6: Connecting the steps with the interface 112

Figure 7.7: Chaining context between the steps 114

Figure 7.8: Implementing the interface using TDD 116

Figure 7.9: Visualizing specifications conformance by identifying
failing tests 120

Figure 7.10: Tracing work completeness by measuring passing tests 121

Figure 8.1: Imposing restrictions using a concrete and specific
functional scope 129

Figure 8.2: Addressing a restriction side by side with its linked
functional scope 130

Figure 8.3: Avoid linking restrictions with a user story 130

Figure 8.4: Linking restrictions with scenarios is a process repeated
story after story 131

Figure 8.5: Enhancing a scenario with a restriction 132

Figure 8.6: Querying a list of items in a scenario 133

Figure 9.1: Summarizing the process 149

xvi

 Preface

 There is a wide range of books that have been written about specifications. Un-
fortunately, most of them are not useful for software development teams. These
books rely on traditional engineering practices. They assume requirements are
known upfront and, once specified, will not change for the duration of the pro-
ject. And if changes happen, they presume they will be minor, so they could be
tracked with a change management process. They promote a sequential process
starting with a distinct requirements phase that delivers a detailed requirements
specification before starting to design and build the product.

 Goal of This Book

 It is my belief that traditional engineering practices are not suitable for software
development. Central to the process of software specification is a high level
of uncertainty, which is not the case with traditional engineering. Fortunately,
with the growth of the agile community in the past decade, a body of knowledge
more suited to the reality of software development has emerged. Many books
explaining agility have become must-read books for anyone interested in soft-
ware development. A large majority of them contain at least a chapter or two
on requirements, some almost totally dedicated to this topic. Because I believe
these texts are important, I will include citations from them and reference them
throughout this book.

 I wrote this book to add to this body of knowledge. It is a compendium of
the agile practices related to executable specifications. Executable specifications
enable us to easily test the behavior of the software against the requirements.
Throughout this book, I will explain how you can specify software when prereq-
uisites are not clearly defined and when requirements are both difficult to grasp
and constantly evolving. Software development practitioners will learn how to
trawl requirements incrementally, step-by-step, using a vision-centric and an
emergent iterative practice. They will also learn how to specify as you go while
writing small chunks of requirements.

xviiPreface

 This book aims to explain the technical mechanisms needed to obtain the
benefits of executable specifications. It not only provides a sound case for itera-
tive discovery of requirements, it also goes one step further by teaching you how
to connect the specifications with the software under construction. This whole
process leads to the building of executable specifications.

 It is important to recognize that even with the best intentions you cannot
force agreement upon stakeholders. The following African proverb explains this
succinctly: “You can’t make grass grow faster by pulling on it.” When knowl-
edge is incomplete and needs are constantly changing, we cannot rely on ap-
proaches based on traditional engineering. Instead, it is critical that you empha-
size empirical techniques based on the iterative discovery of the requirements.
The objective sought is not only to solve the problem right, but also to solve the
right problem—this is the paramount challenge of software construction.

 This book is unique in that it teaches you how to connect requirements and
architecture using executable specifications. You learn how to specify require-
ments as well as how to automate the requirements verification with a Scrum
framework. As a result of reading this book, you can select a tool and start us-
ing executable specifications in future agile projects. Here are five advantages to
reading this book:

 • You can understand how the work of business analysts changes when
transitioning from traditional to agile practices.

 • You learn how to groom emergent requirements within the Scrum frame-
work.

 • You get insight about storyboarding and paper prototyping to improve
conversations with stakeholders.

 • You discover how to build an emergent design while ensuring implementa-
tion correctness at all times

 • You can understand that software architects who are adopting agile
practices are designing incrementally and concurrently with software
development.

Executable Specifications with Scrumxviii

 Who Should Read This Book?

 Readers of this book have already adopted the Scrum framework or are transi-
tioning to agile practices. They understand the fundamentals of agility but are
unfamiliar with executable specifications. They want to understand why the
executable specifications are useful and most important how to start with this
new practice.

 With the massive adoption of Scrum framework, the next major challenge
facing agile teams is to integrate business analysts and architects as active team-
mates. Anyone who is a Scrum master, manager or decision maker who faces
this challenge should read this book. In addition, all team members involved in
agile projects will benefit from this book. It goes without saying that business
analysts and software architects will be happy to find a book that directly ad-
dresses their concerns.

 Advanced or expert agilists will be interested in the book’s concise overview
of executable specifications. They could use this book to successfully guide their
teammates down this path. In addition, the terminology used throughout the
book can help leaders to communicate effectively with their peers.

 Road Map for This Book

 Executable specifications require a change in mindset. This book focuses on this
issue. Executable specifications help reduce the gap between what stakeholders
want the software to do (the “What”), and what the software really does (the
“How”). Executable specifications address requirements in a way that makes it
easy for the development team to verify the software against the specifications
and this as often as requirement changes occur.

 To facilitate this change in mindset, this book offers a unique approach to the
process that spans nine chapters:

 • Chapter 1 : Solving the Right Problem

 This chapter explains the need to respond efficiently to the constantly
changing requirements using iterative discovery and executable specifica-
tions.

xixPreface

 • Chapter 2 : Relying on a Stable Foundation

 This chapter explains how to identify what will hardly change: the core
certainties on which the team should rely. Those certainties are not re-
quirements. They are high-level guardrails that ensure a solution can be
built. They create a stable foundation to ensure that an iterative require-
ments discovery is possible.

 • Chapter 3 : Discovering Through Short Feedback Loops and Stakeholders’

Desirements

 This chapter shows that to tackle uncertainties, teams must discover stake-
holders’ desires and requirements (desirements) through short feedback
loops.

 • Chapter 4 : Expressing Desirements with User Stories

 This chapter teaches you how to express desirements with user stories and
how to record them using the product backlog.

 • Chapter 5 : Refining User Stories by Grooming the Product Backlog

 This chapter explains how to groom the product backlog so that you can
plan sprints that can increase the likelihood of success of the feedback
loops.

 • Chapter 6 : Confirming User Stories with Scenarios

 This chapter demonstrates how to confirm user stories by scripting behav-
iors with scenarios.

 • Chapter 7 : Automating Confirmation with Tests

 This chapter explains how to turn scenarios into automated tests so that
you can easily confirm the expected behavior of the software against the
evolving specifications.

 • Chapter 8 : Addressing Nonfunctional Requirements

 This chapter teaches you how to ensure quality software by specifying
nonfunctional requirements.

 • Chapter 9 : Conclusion

 This last chapter summarizes the key elements of the book.

