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Preface
I wrote this book to scratch an itch, but also because I could see the potential in the (at
the time) nascent HTML5 gaming community. I wanted to help developers navigate the
wilderness of HTML5 and learn about Canvas,WebGL, and SVG, along with best prac-
tices for each.

It sometimes took a bit of discussion to convince developers that HTML5 wasn’t just
a plaything.They were surprised to learn they could have rich content with all the
niceties of a desktop application—such as double buffering, hardware acceleration, and
caching inside the confines of the browser without a plugin. Many of them considered
Flash as the sole option. It was interesting to watch the tides turn from “Flash for every-
thing” to “Use Flash only where there are HTML5 gaps.”

During my writing of this book, the ecosystem around HTML5 game programming
has rapidly evolved and matured. I am sure the technologies will continue to evolve, and
I look forward to the advances the next year brings.

Key Features of This Book
This book covers areas contained in the “loose” definition of HTML5, meaning the
HTML5 specification,WebGL, SVG, and JavaScript as they pertain to game program-
ming. It includes sections on the math behind popular game effects, teaching you the
hard way before providing the one to two lines of code solution. For those who are still
getting accustomed to JavaScript, there is a chapter on alternative languages that can be
used to produce games.These include languages that run directly in the JavaScript
engine, those that compile to JavaScript, or those that are a combination of the two.
Server-side JavaScript has taken the programming world by storm in recent months. For
games, it presents an extra level of flexibility to structure games. Logic can start in a self-
contained client instance and then progress to a scalable server instance with few changes
in code.The book closes with a discussion of how and where you might publish your
games.You have a multitude of choices for game engines and libraries.All the libraries
used in this book are unobtrusive in their handling of data, and you could easily take the
lessons learned and apply them to other libraries.This book does not discuss the low-
level details of WebGL, instead opting for the use of a high-level library that permits
low-level API access when needed.The goal of this book is to get you quickly up and
running, not to teach you all there is to know about WebGL, which could be a book all
by itself.

Target Audience for This Book
This book is intended for application developers who use or would like to learn how to
use HTML5 and associated web technologies to create interactive games. It assumes
knowledge of some programming languages and some basic math skills.



Code Examples and Exercises for This Book
The code listings as well as the answers for the exercises included in this book are avail-
able on the book’s website.You can download chapter code and answers to the chapter
exercises (if they are included in the chapter) at http://www.informit.com/title/
9780321767363.The code listings are also available on Github at https://github.com/
jwill/html5-game-book.

http://www.informit.com/title/9780321767363
http://www.informit.com/title/9780321767363
https://github.com/jwill/html5-game-book
https://github.com/jwill/html5-game-book
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1
Introducing HTML5

HTML5 is a draft specification for the next major iteration of HTML. It represents a
break from its predecessors, HTML4 and XHTML. Some elements have been removed
and it is no longer based on SGML, an older standard for document markup. HTML5
also has more allowances for incorrect syntax than were present in HTML4. It has rules
for parsing to allow different browsers to display the same incorrectly formatted docu-
ment in the same fashion.There are many notable additions to HTML, such as native
drawing support and audiovisual elements. In this chapter, we discuss the features added
by HTML5 and the associated JavaScript APIs.

Beyond Basic HTML
HTML (Hypertext Markup Language), invented by Tim Berners-Lee, has come a long
way since its inception in 1990. Figure 1-1 shows an abbreviated timeline of HTML from
the HTML5Rocks slides (http://slides.html5rocks.com/#slide3).

Although all the advancements were critical in pushing standards forward, of particular
interest to our pursuits is the introduction of JavaScript in 1996 and AJAX in 2005.Those
additions transformed the Web from a medium that presented static unidirectional data,
like a newspaper or book, to a bidirectional medium allowing communication in both
directions.

JavaScript
JavaScript (née LiveScript and formally known as ECMAScript) started as a scripting lan-
guage for the browser from Netscape Communications. It is a loosely typed scripting 
language that is prototype-based and can be object-oriented or functional. Despite the
name, JavaScript is most similar to the C programming language, although it does inherit
some aspects from Java.

The language was renamed JavaScript as part of a marketing agreement between Sun
Microsystems (now Oracle Corporation) and Netscape to promote the scripting language
alongside Sun’s Java applet technology. It become widely used for scripting client-side

http://slides.html5rocks.com/#slide3
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Figure 1-1 HTML timeline

web pages, and Microsoft released a compatible version named JScript, with some addi-
tions and changes, because Sun held the trademark on the name “JavaScript.”

AJAX
AJAX (Asynchronous JavaScript and XML) started a new wave of interest in JavaScript
programming. Once regarded as a toy for amateurs and script kiddies,AJAX helped
developers solve more complex problems.

At the epicenter of AJAX is the XMLHttpRequest object invented by Microsoft in the
late 1990s. XMLHttpRequest allows a website to connect to a remote server and receive
structured data.As opposed to creating a set of static pages, a developer was empowered to
create highly dynamic applications. Gmail,Twitter, and Facebook are examples of these
types of applications.

We are currently in the midst of another JavaScript renaissance, as the major browser
makers have been using the speed of their JavaScript engines as a benchmark for compar-
ison. JavaScript as a primary programming language has found its way into server-side
web components, such as Node.js, and mobile application frameworks, such as WebOS
and PhoneGap.

Bridging the Divide
Even the best of standards takes a while to gain uptake.As a means to not let the lack of
features limit innovation, Google created Chrome Frame and Google Gears (later, simply
Gears) to bring advanced features to older browsers.
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Google Gears
Google Gears, which was initially released in May 2007, has come to define some of the
advanced features of the HTML5 draft specification. Before the advent of HTML5, many
applications used Gears in some way, including Google properties (Gmail,YouTube, Doc,
Reader, and so on), MySpace, Remember the Milk, and WordPress, among others. Gears
is composed of several modules that add functionality more typical of desktop applica-
tions to the browser. Let’s take a moment and talk about some of its features.

In its first release, Gears introduced the Database, LocalServer, and WorkerPool mod-
ules. Gears’ Database API uses an SQLite-like syntax to create relational data storage for
web applications.The data is localized to the specific application and complies with gen-
eralized cross-site scripting rules in that an application cannot access data outside its
domain.The LocalServer module enables web applications to save and retrieve assets to a
local cache even if an Internet connection is not present.The assets to serve from local
cache are specified in a site manifest file.When an asset matching a URL in the manifest
file is requested, the LocalServer module intercepts the request and serves it from the
local store.

The WorkerPool module helps address one of the prevalent problems with JavaScript-
intensive websites: long-running scripts that block website interaction.A website by
default has a single thread to do its work.This is generally not a problem for very short,
bursty actions (such as simple DOM manipulation) that return quickly.Any long-running
task, such as file input/output or trying to retrieve assets from a slow server, can block
interaction and convince the browser that the script is unresponsive and should be force-
fully ended.The WorkerPool module brought the concept of multithreading computing
to the browser by letting your WorkerPool create “workers” that can execute arbitrary
JavaScript.Workers can send and receive messages to and from each other, provided they
are in the same WorkerPool, so they can cooperate on tasks.Workers can work cross-
origin but inherit the policy from where they are retrieved.To account for the fact that
several properties such as Timer and HttpRequest are exposed by the window object,
which is not accessible to workers, Gears provides its own implementations.

Another API of interest is the Geolocation API.The Geolocation API attempts to get a
fix on a visitor by using available data such as the IP address, available Wi-Fi routers with
a known location, cell towers, and other associated data.

Google ceased principal development of Gears in November 2009 and has since
shifted focus to getting the features into HTML5.Thankfully, all these features we’ve dis-
cussed found their way into HTML5 in some shape or form.

Chrome Frame
Chrome Frame is a project that embeds Google Chrome as a plugin for Internet Explorer
6 and higher versions, which have weak HTML5 support. Chrome Frame is activated
upon recognition of a meta tag. Chrome Frame currently does not require admin rights
to be installed, thus opening opportunities on systems that are otherwise locked down.
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You can find more information about Chrome Frame at http://code.google.com/
chrome/chromeframe/.

Getting Things Done with WebSockets and Web
Workers
One of the additions to HTML5 is APIs that help the web application communicate and
do work.WebSockets allow web applications to open a channel to interact with web
services.Web Workers permit them to run nontrivial tasks without locking the browser.

WebSockets
WebSockets allow applications to have a bidirectional channel to a URI endpoint. Sock-
ets can send and receive messages and respond to opening or closing a WebSocket.
Although not part of the specification, two-way communication can be achieved in sev-
eral other ways, including Comet (AJAX with long polling), Bayeux, and BOSH.

Listing 1-1 shows the code to create a WebSocket that talks to the echo server end-
point.After creating the socket, we set up the functions to be executed when the socket is
opened, closed, receives a message, or throws an error. Next, a “Hello World!” message is
sent, and the browser displays “Hello World!” upon receipt of the return message.

Listing 1-1 WebSocket Code for Echoing a Message

var socket = new WebSocket(ws://websockets.org:8787/echo);

socket.onopen = function(evt) { console.log("Socket opened");};

socket.onclose = function(evt) {console.log("Socket closed");};

socket.onmessage = function(evt){console.log(evt.data);};

socket.onerror = function(evt) {console.log("Error: "+evt.data);};

socket.send("Hello World!");

Web Workers
Web Workers are the HTML5 incarnation of WorkerPools in Google Gears. Unlike
WorkerPools, we don’t have to create a pool to house our Web Workers. Listing 1-2 shows
the code to create a simple worker and set a function for it to execute upon receipt of a
message. Listings 1-2 and 1-3 show the HTML code for creating a web page with a Web
Worker that displays the current date and time on two-second intervals.

Listing 1-2 Web Page for Requesting the Time

<!DOCTYPE HTML>

<html>

<head>

<title>Web Worker example</title>

http://code.google.com/chrome/chromeframe/
http://code.google.com/chrome/chromeframe/
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</head>

<body>

<p>The time is now: <span id="result" /></p>

<script>

var worker = new Worker('worker.js');

worker.onmessage = function (event) {

document.getElementById('result').innerText = event.data;

};

</script>

</body>

</html>

The associated JavaScript worker.js file is shown in Listing 1-3.

Listing 1-3 Worker.js File for Getting a Date and Time

setInterval(function() {w

postMessage(new Date());

}, 2000);

In the two listings, we see that workers can send messages using postMessage() and
can listen for messages on the closure onmessage.We can also respond to errors and termi-
nate workers by passing a function to onerror and executing terminate(), respectively.

Workers can be shared and send messages on MessagePorts.As with other aspects of
the Web Worker spec, this portion is in a state of flux and somewhat outside the needs of
the examples in this book.Therefore, using SharedWorkers is left as an exercise for the
reader to investigate.

Application Cache
Application Cache provides a method of running applications while offline, much like the
LocalServer feature in Gears.A point of distinction between the two features is that
Application Cache doesn’t use a JSON file, using a flat file instead to specify which files
to cache.A simple manifest file to cache assets is shown in Listing 1-4.

Listing 1-4 Sample Application Manifest

CACHE MANIFEST

# above line is required, this line is a comment

mygame/game.html

mygame/images/image1.png

mygame/assets/sound2.ogg

The Application Cache has several events it can respond to: onchecking, error,
cached, noupdate, progress, updateready, and obsolete.You can use these events to
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keep your users informed about the application’s status. Using the Application Cache can
make your game more tolerant to connectivity outages, and it can make your users happy
by letting them start game play quicker (after the assets are cached).Also, if you choose,
Application Cache can be used to allow users to play your game offline. Don’t worry too
much about it right now. In Chapter 11,“Publishing Your Games,” we discuss using the
Application Cache in more detail.

Database API
At present, there are multiple ways to store structured data using HTML5, including the
WebSQL API implemented by Webkit browsers and the competing IndexedDB API
spearheaded by Firefox.

WebSQL API
WebSQL provides structured data storage by implementing an SQL-like syntax. Currently,
implementations have centralized around SQLite, but that isn’t a specific requirement.

There isn’t a “createDatabase” function in WebSQL.The function openDatabase opti-
mistically creates a database with the given parameters if one doesn’t already exist.To cre-
ate a database name myDB, we would need to make a call in the form

var db = openDatabase("myDB", "1.0", "myDB Database", 100000);

where we pass "myDB" as the name, assign the version "1.0", specify a display name of
"myDB Database", and give it an estimated size of 100KB.We could have optionally spec-
ified a callback to be executed upon creation. Figure 1-2 shows the content of the
Chrome Developer Tools Storage tab, which we will cover in more detail in Chapter 2,
“Setting Up Your Development Environment,” after executing the preceding line of code.

In the window to the right, we can run arbitrary SQL code, as shown in Figure 1-3,
where we created a table, inserted some information, and ran a query.

Figure 1-2 Storage tab showing a created database

Figure 1-3 Storage tab showing SQL statements
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Although not universally supported, the specification does call out the existence of
both asynchronous and synchronous database connections and transactions. Our current
example creates an asynchronous connection; to create a synchronous one, we would call
openDatabaseSync with the same parameters.After the initial connection, there is no dis-
tinction when it comes to database transactions besides calling transaction(...) for
read/write transactions and readTransaction for read-only transactions.

A word of caution: Synchronous connections are not well supported and, in general,
you should structure your code to run asynchronously.

IndexedDB API
IndexedDB stores objects directly in object stores.This makes it easier to implement
JavaScript versions of NoSQL databases, like those of the object databases MongoDB,
CouchDB, and SimpleDB.At the time of this writing, the implementations of the APIs
weren’t synchronized and used different naming schemes and strictness to the specifica-
tion.The Internet Explorer implementation requires an ActiveX plugin. I encourage you
to check out http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/
all.html to see some examples in action on Firefox, Chrome, and Internet Explorer.The
Chrome code in most cases will work seamlessly on Safari.

Web Storage
Web Storage provides several APIs for saving data on the client in a fashion similar to
browser cookies.There is a Storage object for data that needs to persist between restarts
named localStorage and one for data that will be purged once the session ends named
sessionStorage.The data is stored as key/value pairs.These two objects implement the
functions listed in Table 1-1.

Each Storage object also has a length property indicating the number of present
key/value pairs.

Table 1-1 Web Storage Functions

Function Name Description

setItem(key:String, value) Creates a key/value pair given the specified values.
Some implementations require the value to be a string.

getItem(key:String) Returns the item specified by the given key.

removeItem(key:String) Removes the item identified by the given key.

clear() Clears all key/value pairs from the Storage object.

key(index:long) Returns the key for the specific index.

http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html

