

Learning HTML5
Game

Programming

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning HTML5
Game

Programming

A Hands-on Guide to Building Online
Games Using Canvas, SVG, and WebGL

James L. Williams

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Williams, James L. (James Lamar), 1981-
Learning HTML5 game programming : a hands-on guide to building online games using

Canvas, SVG, and WebGL / James L. Williams.
p. cm.

ISBN 978-0-321-76736-3 (pbk. : alk. paper) 1. Computer games—Programming. 2.
HTML (Document markup language) I. Title.

QA76.76.C672W546 2011
794.8’1526—dc23

2011027527

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-76736-3
ISBN-10: 0-321-76736-5

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.

First printing September 2011

Associate
Publisher
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Sheri Cain

Technical
Reviewers
Romin Irani
Pascal Rettig
Robert Schwentker

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

❖

To Inspiration

Came over for a midnight rendezvous

And is gone by morning as if by cue

—Author

❖

Table of Contents

Chapter 1 Introducing HTML5 1
Beyond Basic HTML 1

JavaScript 1

AJAX 2

Bridging the Divide 2

Google Gears 3

Chrome Frame 3

Getting Things Done with WebSockets and
Web Workers 4

WebSockets 4

Web Workers 4

Application Cache 5

Database API 6

WebSQL API 6

IndexedDB API 7

Web Storage 7

Geolocation 8

Getting Users’ Attention with Notifications 10

Requesting Permission to Display Notifications 11

Creating Notifications 11

Interacting with Notifications 12

Media Elements 13

Controlling Media 13

Handling Unsupported Formats 14

HTML5 Drawing APIs 15

Canvas 15

SVG 16

WebGL 16

Conveying Information with Microdata 16

Chapter 2 Setting Up Your Development
Environment 19

Development Tools 19

Installing Java 19

viiContents

Installing the Eclipse IDE and Google Plugin 20

Google Web Toolkit 22

Web Server Tools and Options 23

Google App Engine 23

Opera Unite 23

Node.js and RingoJS 23

Browser Tools 24

Inside the Chrome Developer Tools 24

Chrome Extensions 25

Safari Developer Tools 26

Firebug 26

HTML5 Tools 27

ProcessingJS 27

Inkscape 27

SVG-edit 27

Raphaël 28

3D Modeling Tools 29

Blender 29

Chapter 3 Learning JavaScript 31
What Is JavaScript? 31

JavaScript’s Basic Types 31

Understanding Arithmetic Operators 32

Understanding JavaScript Functions 32

Functions as First-class Objects 33

Comparison Operators 34

Conditional Loops and Statements 35

Controlling Program Flow with Loops 36

Delayed Execution with setTimeout and setInterval 38

Creating Complex Objects with Inheritance and
Polymorphism 38

Making Inheritance Easier with the Prototype
Library 39

Learning JQuery 41

Manipulating the DOM with Selectors 42

JQuery Events 43

AJAX with JQuery 43

Cross-Site Scripting 44

viii Contents

JSON: The Other JavaScript Format 44

JavaScript Outside of the Browser 45

Mobile Platforms 45

JavaScript as an Intermediary Language 45

JavaScript on the Desktop 46

Server-Side JavaScript 48

Chapter 4 How Games Work 51
Designing a Game 51

Writing a Basic Design Document 51

Deciding on a Game Genre 52

The Game Loop 53

Getting Input from the User 53

Representing Game Objects with Advanced
Data Structures 54

Making Unique Lists of Data with Sets 54

Creating Object Graphs with Linked Lists 56

Understanding the APIs in Simple Game Framework 57

Core API 57

Components API 58

Resources API and Networking APIs 58

Building Pong with the Simple Game Framework 59

Setting Up the Application 59

Drawing the Game Pieces 61

Making Worlds Collide with Collision Detection and
Response 63

Understanding Newton’s Three Laws 63

Making the Ball Move 64

Advanced Collision Detection and Particle Systems
with Asteroids 66

Creating Competitive Opponents with Artificial
Intelligence 67

Adding AI to Pong 68

Advanced Computer AI with Tic-Tac-Toe 68

Chapter 5 Creating Games with the Canvas Tag 71
Getting Started with the Canvas 71

Drawing Your First Paths 72

Drawing Game Sprites for Tic-Tac-Toe 73

ixContents

Drawing Objects on the Canvas with Transformations 75

Ordering Your Transformations 76

Saving and Restoring the Canvas Drawing State 77

Using Images with the Canvas 78

Serving Images with Data URLs 78

Serving Images with Spritesheets 78

Drawing Images on the Canvas 78

Animating Objects with Trident.js 79

Creating Timelines 80

Animating with Keyframes 81

Creating Nonlinear Timelines with Easing 81

Animating Game Objects with Spritesheets 83

Simulating 3D in 2D Space 84

Perspective Projection 84

Parallaxing 85

Creating a Parallax Effect with JavaScript 85

Creating Copy Me 87

Drawing Our Game Objects 87

Making the Game Tones 88

Playing MIDI Files in the Browser 89

Playing Multiple Sounds at Once 90

Playing Sounds Sequentially 91

Drawing Our Game Text 91

Styling Text with CSS Fonts 92

Chapter 6 Creating Games with SVG and
RaphaëlJS 95

Introduction to SVG 95

First Steps with RaphaëlJS 97

Setting Up Our Development Environment 97

Drawing the Game Board 98

Drawing Game Text 99

Custom Fonts 100

Specifying Color 103

Loading Game Assets 104

Converting SVG Files to Bitmap Images 105

x Contents

Creating Our Game Classes 105

Shuffling Cards 107

Drawing and Animating Cards 107

Creating Advanced Animations 110

Paths 110

moveto and lineto 110

curveto 111

Exporting Paths from an SVG File 112

Animating Along Paths 113

Extending Raphaël with Plugins 113

Adding Functions 113

SVG Filters 113

Speed Considerations 114

Chapter 7 Creating Games with WebGL and
Three.js 117

Moving to Three Dimensions 118

Giving Your Objects Some Swagger with Materials and
Lighting 119

Understanding Lighting 120

Using Materials and Shaders 120

Creating Your First Three.js Scene 122

Setting Up the View 123

Viewing the World 128

Loading 3D Models with Three.js 129

Programming Shaders and Textures 131

Using Textures 134

Creating a Game with Three.js 136

Simulating the Real World with Game Physics 137

Revisiting Particle Systems 140

Creating Scenes 141

Selecting Objects in a Scene 142

Animating Models 142

Sourcing 3D Models 143

Benchmarking Your Games 144

Checking Frame Rate with Stats.js 144

Using the WebGL Inspector 145

xiContents

Chapter 8 Creating Games Without JavaScript 147
Google Web Toolkit 147

Understanding GWT Widgets and Layout 148

Exposing JavaScript Libraries to GWT with JSNI 149

RaphaëlGWT 150

Adding Sound with gwt-html5-media 151

Accessing the Drawing APIs with GWT 151

CoffeeScript 153

Installing CoffeeScript 153

Compiling CoffeeScript Files 153

A Quick Guide to CoffeeScript 154

Basics 154

Functions and Invocation 154

Aliases, Conditionals, and Loops 156

Enhanced for Loop and Maps 156

Classes and Inheritance 157

Alternate Technologies 158

Cappuccino 158

Pyjamas 158

Chapter 9 Building a Multiplayer Game Server 161
Introduction to Node.js 161

Extending Node with the Node Package Manager 162

Managing Multiple Node Versions 162

Making Web Apps Simpler with ExpressJS 163

Serving Requests with URL Routing 163

Managing Sessions 165

Understanding the ExpressJS Application
Structure 165

Templating HTML with CoffeeKup 166

Persisting Data with Caching 168

Managing Client/Server Communication 169

Communicating with Socket.IO 169

Setting Up a Simple Socket.IO Application with
Express 170

Making Web Sockets Simpler with NowJS 171

Debugging Node Applications 172

xii Contents

Creating a Game Server 173

Making the Game Lobby 173

Creating Game Rooms with NowJS Groups 174

Managing Game Participants and Moving Between
Game Rooms 175

Managing Game Play 175

Chapter 10 Developing Mobile Games 179
Choosing a Mobile Platform 179

iOS 179

Android 180

WebOS 180

Windows Phone 7 180

Flick, Tap, and Swipe: A Quick Guide to Mobile
Gestures 181

Deciding Between an Application and a Website 181

Storing Data on Mobile Devices 183

Relaxing in Your Lawnchair: An Easier Way to
Store Data 183

Getting Started with Lawnchair 184

Client-Side Scripting Simplified with JQuery and
Zepto 185

Using JQuery Variants 185

Using Zepto.js 187

Architecting Your Applications with JoApp 187

Choosing an Application Framework 188

PhoneGap 188

Diving into the PhoneGap APIs 189

Appcelerator Titanium 191

Diving into the Appcelerator Titanium APIs 191

Packaging Android Applications with Titanium and
PhoneGap 191

Packaging an Application with Titanium 193

Packaging an Application with PhoneGap 195

xiiiContents

Chapter 11 Publishing Your Games 199
Optimizing Your Game’s Assets 199

Minification with Google Closure Compiler 199

Running Applications Offline with Application
Cache 201

Hosting Your Own Server 203

Deploying Applications on Hosted Node.js Services 204

Publishing Applications on the Chrome Web Store 205

Describing Your Application’s Metadata 206

Deploying a Hosted Application 207

Deploying a Packaged Application 208

Testing Your Applications Locally 208

Uploading Your Application to the Chrome Web
Store 208

Configuring Your Application 210

Deciding Between Packaged and Hosted
Chrome Apps 212

Publishing Applications with TapJS 212

Creating a TapJS Application 213

Packaging an Application for TapJS 215

Publishing a TapJS Application to Facebook 215

Publishing Games with Kongregate 217

Publishing HTML5 Applications to the Desktop 217

Index 219

Preface
I wrote this book to scratch an itch, but also because I could see the potential in the (at
the time) nascent HTML5 gaming community. I wanted to help developers navigate the
wilderness of HTML5 and learn about Canvas,WebGL, and SVG, along with best prac-
tices for each.

It sometimes took a bit of discussion to convince developers that HTML5 wasn’t just
a plaything.They were surprised to learn they could have rich content with all the
niceties of a desktop application—such as double buffering, hardware acceleration, and
caching inside the confines of the browser without a plugin. Many of them considered
Flash as the sole option. It was interesting to watch the tides turn from “Flash for every-
thing” to “Use Flash only where there are HTML5 gaps.”

During my writing of this book, the ecosystem around HTML5 game programming
has rapidly evolved and matured. I am sure the technologies will continue to evolve, and
I look forward to the advances the next year brings.

Key Features of This Book
This book covers areas contained in the “loose” definition of HTML5, meaning the
HTML5 specification,WebGL, SVG, and JavaScript as they pertain to game program-
ming. It includes sections on the math behind popular game effects, teaching you the
hard way before providing the one to two lines of code solution. For those who are still
getting accustomed to JavaScript, there is a chapter on alternative languages that can be
used to produce games.These include languages that run directly in the JavaScript
engine, those that compile to JavaScript, or those that are a combination of the two.
Server-side JavaScript has taken the programming world by storm in recent months. For
games, it presents an extra level of flexibility to structure games. Logic can start in a self-
contained client instance and then progress to a scalable server instance with few changes
in code.The book closes with a discussion of how and where you might publish your
games.You have a multitude of choices for game engines and libraries.All the libraries
used in this book are unobtrusive in their handling of data, and you could easily take the
lessons learned and apply them to other libraries.This book does not discuss the low-
level details of WebGL, instead opting for the use of a high-level library that permits
low-level API access when needed.The goal of this book is to get you quickly up and
running, not to teach you all there is to know about WebGL, which could be a book all
by itself.

Target Audience for This Book
This book is intended for application developers who use or would like to learn how to
use HTML5 and associated web technologies to create interactive games. It assumes
knowledge of some programming languages and some basic math skills.

Code Examples and Exercises for This Book
The code listings as well as the answers for the exercises included in this book are avail-
able on the book’s website.You can download chapter code and answers to the chapter
exercises (if they are included in the chapter) at http://www.informit.com/title/
9780321767363.The code listings are also available on Github at https://github.com/
jwill/html5-game-book.

http://www.informit.com/title/9780321767363
http://www.informit.com/title/9780321767363
https://github.com/jwill/html5-game-book
https://github.com/jwill/html5-game-book

Acknowledgments
I have several people to thank for this book.The Pearson team (including Trina
MacDonald, Songlin Qiu, and Olivia Basegio) has been invaluable during the project.
Their goal is to make one’s work that much more awesome, and I think they succeeded.
Writing a book on a topic that’s evolving rapidly involves a certain measure of guessing
where the market will go. I’m glad to have had technical reviewers (Romin Irani, Pascal
Rettig, and Robert Schwentker) who shared my passion for the subject matter, gave me
speedy and precise feedback, and validated my predictions when I was right, yet got me
back on track when I veered slightly off course.And lastly, to my family and friends who
listened patiently without judgment, let me off easy when I flaked, and other times
forced me to take a break; thanks, I needed that.

About the Author
James L.Williams is a developer based in Silicon Valley and frequent conference speak-
er, domestically and internationally. He was a successful participant in the 2007 Google
Summer of Code, working to bring easy access to SwingLabs UI components to
Groovy. He is a co-creator of the Griffon project, a rich desktop framework for Java
applications. He and his team,WalkIN, created a product on a coach bus while riding to
SXSW and were crowned winners of StartupBus 2011. His first video game was Buck
Rogers: Planet of Zoom on the Coleco Adam, a beast of a machine with a blistering
3.58MHz CPU, a high-speed tape drive, and a propensity to erase floppy disks at bootup.
He blogs at http://jameswilliams.be/blog and tweets as @ecspike.

http://jameswilliams.be/blog

This page intentionally left blank

1
Introducing HTML5

HTML5 is a draft specification for the next major iteration of HTML. It represents a
break from its predecessors, HTML4 and XHTML. Some elements have been removed
and it is no longer based on SGML, an older standard for document markup. HTML5
also has more allowances for incorrect syntax than were present in HTML4. It has rules
for parsing to allow different browsers to display the same incorrectly formatted docu-
ment in the same fashion.There are many notable additions to HTML, such as native
drawing support and audiovisual elements. In this chapter, we discuss the features added
by HTML5 and the associated JavaScript APIs.

Beyond Basic HTML
HTML (Hypertext Markup Language), invented by Tim Berners-Lee, has come a long
way since its inception in 1990. Figure 1-1 shows an abbreviated timeline of HTML from
the HTML5Rocks slides (http://slides.html5rocks.com/#slide3).

Although all the advancements were critical in pushing standards forward, of particular
interest to our pursuits is the introduction of JavaScript in 1996 and AJAX in 2005.Those
additions transformed the Web from a medium that presented static unidirectional data,
like a newspaper or book, to a bidirectional medium allowing communication in both
directions.

JavaScript
JavaScript (née LiveScript and formally known as ECMAScript) started as a scripting lan-
guage for the browser from Netscape Communications. It is a loosely typed scripting
language that is prototype-based and can be object-oriented or functional. Despite the
name, JavaScript is most similar to the C programming language, although it does inherit
some aspects from Java.

The language was renamed JavaScript as part of a marketing agreement between Sun
Microsystems (now Oracle Corporation) and Netscape to promote the scripting language
alongside Sun’s Java applet technology. It become widely used for scripting client-side

http://slides.html5rocks.com/#slide3

2 Chapter 1 Introducing HTML5

Figure 1-1 HTML timeline

web pages, and Microsoft released a compatible version named JScript, with some addi-
tions and changes, because Sun held the trademark on the name “JavaScript.”

AJAX
AJAX (Asynchronous JavaScript and XML) started a new wave of interest in JavaScript
programming. Once regarded as a toy for amateurs and script kiddies,AJAX helped
developers solve more complex problems.

At the epicenter of AJAX is the XMLHttpRequest object invented by Microsoft in the
late 1990s. XMLHttpRequest allows a website to connect to a remote server and receive
structured data.As opposed to creating a set of static pages, a developer was empowered to
create highly dynamic applications. Gmail,Twitter, and Facebook are examples of these
types of applications.

We are currently in the midst of another JavaScript renaissance, as the major browser
makers have been using the speed of their JavaScript engines as a benchmark for compar-
ison. JavaScript as a primary programming language has found its way into server-side
web components, such as Node.js, and mobile application frameworks, such as WebOS
and PhoneGap.

Bridging the Divide
Even the best of standards takes a while to gain uptake.As a means to not let the lack of
features limit innovation, Google created Chrome Frame and Google Gears (later, simply
Gears) to bring advanced features to older browsers.

3Bridging the Divide

Google Gears
Google Gears, which was initially released in May 2007, has come to define some of the
advanced features of the HTML5 draft specification. Before the advent of HTML5, many
applications used Gears in some way, including Google properties (Gmail,YouTube, Doc,
Reader, and so on), MySpace, Remember the Milk, and WordPress, among others. Gears
is composed of several modules that add functionality more typical of desktop applica-
tions to the browser. Let’s take a moment and talk about some of its features.

In its first release, Gears introduced the Database, LocalServer, and WorkerPool mod-
ules. Gears’ Database API uses an SQLite-like syntax to create relational data storage for
web applications.The data is localized to the specific application and complies with gen-
eralized cross-site scripting rules in that an application cannot access data outside its
domain.The LocalServer module enables web applications to save and retrieve assets to a
local cache even if an Internet connection is not present.The assets to serve from local
cache are specified in a site manifest file.When an asset matching a URL in the manifest
file is requested, the LocalServer module intercepts the request and serves it from the
local store.

The WorkerPool module helps address one of the prevalent problems with JavaScript-
intensive websites: long-running scripts that block website interaction.A website by
default has a single thread to do its work.This is generally not a problem for very short,
bursty actions (such as simple DOM manipulation) that return quickly.Any long-running
task, such as file input/output or trying to retrieve assets from a slow server, can block
interaction and convince the browser that the script is unresponsive and should be force-
fully ended.The WorkerPool module brought the concept of multithreading computing
to the browser by letting your WorkerPool create “workers” that can execute arbitrary
JavaScript.Workers can send and receive messages to and from each other, provided they
are in the same WorkerPool, so they can cooperate on tasks.Workers can work cross-
origin but inherit the policy from where they are retrieved.To account for the fact that
several properties such as Timer and HttpRequest are exposed by the window object,
which is not accessible to workers, Gears provides its own implementations.

Another API of interest is the Geolocation API.The Geolocation API attempts to get a
fix on a visitor by using available data such as the IP address, available Wi-Fi routers with
a known location, cell towers, and other associated data.

Google ceased principal development of Gears in November 2009 and has since
shifted focus to getting the features into HTML5.Thankfully, all these features we’ve dis-
cussed found their way into HTML5 in some shape or form.

Chrome Frame
Chrome Frame is a project that embeds Google Chrome as a plugin for Internet Explorer
6 and higher versions, which have weak HTML5 support. Chrome Frame is activated
upon recognition of a meta tag. Chrome Frame currently does not require admin rights
to be installed, thus opening opportunities on systems that are otherwise locked down.

4 Chapter 1 Introducing HTML5

You can find more information about Chrome Frame at http://code.google.com/
chrome/chromeframe/.

Getting Things Done with WebSockets and Web
Workers
One of the additions to HTML5 is APIs that help the web application communicate and
do work.WebSockets allow web applications to open a channel to interact with web
services.Web Workers permit them to run nontrivial tasks without locking the browser.

WebSockets
WebSockets allow applications to have a bidirectional channel to a URI endpoint. Sock-
ets can send and receive messages and respond to opening or closing a WebSocket.
Although not part of the specification, two-way communication can be achieved in sev-
eral other ways, including Comet (AJAX with long polling), Bayeux, and BOSH.

Listing 1-1 shows the code to create a WebSocket that talks to the echo server end-
point.After creating the socket, we set up the functions to be executed when the socket is
opened, closed, receives a message, or throws an error. Next, a “Hello World!” message is
sent, and the browser displays “Hello World!” upon receipt of the return message.

Listing 1-1 WebSocket Code for Echoing a Message

var socket = new WebSocket(ws://websockets.org:8787/echo);

socket.onopen = function(evt) { console.log("Socket opened");};

socket.onclose = function(evt) {console.log("Socket closed");};

socket.onmessage = function(evt){console.log(evt.data);};

socket.onerror = function(evt) {console.log("Error: "+evt.data);};

socket.send("Hello World!");

Web Workers
Web Workers are the HTML5 incarnation of WorkerPools in Google Gears. Unlike
WorkerPools, we don’t have to create a pool to house our Web Workers. Listing 1-2 shows
the code to create a simple worker and set a function for it to execute upon receipt of a
message. Listings 1-2 and 1-3 show the HTML code for creating a web page with a Web
Worker that displays the current date and time on two-second intervals.

Listing 1-2 Web Page for Requesting the Time

<!DOCTYPE HTML>

<html>

<head>

<title>Web Worker example</title>

http://code.google.com/chrome/chromeframe/
http://code.google.com/chrome/chromeframe/

5Application Cache

</head>

<body>

<p>The time is now: </p>

<script>

var worker = new Worker('worker.js');

worker.onmessage = function (event) {

document.getElementById('result').innerText = event.data;

};

</script>

</body>

</html>

The associated JavaScript worker.js file is shown in Listing 1-3.

Listing 1-3 Worker.js File for Getting a Date and Time

setInterval(function() {w

postMessage(new Date());

}, 2000);

In the two listings, we see that workers can send messages using postMessage() and
can listen for messages on the closure onmessage.We can also respond to errors and termi-
nate workers by passing a function to onerror and executing terminate(), respectively.

Workers can be shared and send messages on MessagePorts.As with other aspects of
the Web Worker spec, this portion is in a state of flux and somewhat outside the needs of
the examples in this book.Therefore, using SharedWorkers is left as an exercise for the
reader to investigate.

Application Cache
Application Cache provides a method of running applications while offline, much like the
LocalServer feature in Gears.A point of distinction between the two features is that
Application Cache doesn’t use a JSON file, using a flat file instead to specify which files
to cache.A simple manifest file to cache assets is shown in Listing 1-4.

Listing 1-4 Sample Application Manifest

CACHE MANIFEST

above line is required, this line is a comment

mygame/game.html

mygame/images/image1.png

mygame/assets/sound2.ogg

The Application Cache has several events it can respond to: onchecking, error,
cached, noupdate, progress, updateready, and obsolete.You can use these events to

6 Chapter 1 Introducing HTML5

keep your users informed about the application’s status. Using the Application Cache can
make your game more tolerant to connectivity outages, and it can make your users happy
by letting them start game play quicker (after the assets are cached).Also, if you choose,
Application Cache can be used to allow users to play your game offline. Don’t worry too
much about it right now. In Chapter 11,“Publishing Your Games,” we discuss using the
Application Cache in more detail.

Database API
At present, there are multiple ways to store structured data using HTML5, including the
WebSQL API implemented by Webkit browsers and the competing IndexedDB API
spearheaded by Firefox.

WebSQL API
WebSQL provides structured data storage by implementing an SQL-like syntax. Currently,
implementations have centralized around SQLite, but that isn’t a specific requirement.

There isn’t a “createDatabase” function in WebSQL.The function openDatabase opti-
mistically creates a database with the given parameters if one doesn’t already exist.To cre-
ate a database name myDB, we would need to make a call in the form

var db = openDatabase("myDB", "1.0", "myDB Database", 100000);

where we pass "myDB" as the name, assign the version "1.0", specify a display name of
"myDB Database", and give it an estimated size of 100KB.We could have optionally spec-
ified a callback to be executed upon creation. Figure 1-2 shows the content of the
Chrome Developer Tools Storage tab, which we will cover in more detail in Chapter 2,
“Setting Up Your Development Environment,” after executing the preceding line of code.

In the window to the right, we can run arbitrary SQL code, as shown in Figure 1-3,
where we created a table, inserted some information, and ran a query.

Figure 1-2 Storage tab showing a created database

Figure 1-3 Storage tab showing SQL statements

7Web Storage

Although not universally supported, the specification does call out the existence of
both asynchronous and synchronous database connections and transactions. Our current
example creates an asynchronous connection; to create a synchronous one, we would call
openDatabaseSync with the same parameters.After the initial connection, there is no dis-
tinction when it comes to database transactions besides calling transaction(...) for
read/write transactions and readTransaction for read-only transactions.

A word of caution: Synchronous connections are not well supported and, in general,
you should structure your code to run asynchronously.

IndexedDB API
IndexedDB stores objects directly in object stores.This makes it easier to implement
JavaScript versions of NoSQL databases, like those of the object databases MongoDB,
CouchDB, and SimpleDB.At the time of this writing, the implementations of the APIs
weren’t synchronized and used different naming schemes and strictness to the specifica-
tion.The Internet Explorer implementation requires an ActiveX plugin. I encourage you
to check out http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/
all.html to see some examples in action on Firefox, Chrome, and Internet Explorer.The
Chrome code in most cases will work seamlessly on Safari.

Web Storage
Web Storage provides several APIs for saving data on the client in a fashion similar to
browser cookies.There is a Storage object for data that needs to persist between restarts
named localStorage and one for data that will be purged once the session ends named
sessionStorage.The data is stored as key/value pairs.These two objects implement the
functions listed in Table 1-1.

Each Storage object also has a length property indicating the number of present
key/value pairs.

Table 1-1 Web Storage Functions

Function Name Description

setItem(key:String, value) Creates a key/value pair given the specified values.
Some implementations require the value to be a string.

getItem(key:String) Returns the item specified by the given key.

removeItem(key:String) Removes the item identified by the given key.

clear() Clears all key/value pairs from the Storage object.

key(index:long) Returns the key for the specific index.

http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html

