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Preface
“If popular culture has taught us anything, it is that someday mankind must face and
destroy the growing robot menace.”

Daniel H. Wilson, How to Survive a Robot Uprising

The past several years have seen huge strides in computer security, particularly in
the field of software vulnerabilities. It seems as though every stop at the bookstore
introduces a new title on topics such as secure development or exploiting software. 

Books that cover application security tend to do so from the perspective of 
software designers and developers and focus on techniques to prevent software 
vulnerabilities from occurring in applications. These techniques start with solid
security design principles and threat modeling and carry all the way through to
implementation best practices and defensive programming strategies. Although
they serve as strong defensive foundations for application development, these
resources tend to give little treatment to the nature of vulnerabilities; instead, they
focus on how to avoid them. What’s more, every development team can’t start
rebuilding a secure application from the ground up. Real people have to deal with
huge existing codebases, in-place applications, and limited time and budget. 
Meanwhile, the secure coding mantra seems to be “If it smells bad, throw it out.”
That’s certainly necessary in some cases, but often it’s too expensive and time 
consuming to be reasonable. So you might turn your attention to penetration testing
and ethical hacking instead. A wide range of information on this topic is available,
and it’s certainly useful for the acid test of a software system. However, even the
most technically detailed resources have a strong focus on exploit development and
little to no treatment on how to find vulnerabilities in the first place. This still leaves
the hanging question of how to find issues in an existing application and how to get
a reasonable degree of assurance that a piece of software is safe.
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This problem is exactly the one faced by those in the field of professional 
software security assessment. People are growing more concerned with building
and testing secure systems, but very few resources address the practice of finding
vulnerabilities. After all, this process requires a deep technical understanding of
some very complex issues and must include a systematic approach to analyzing an
application. Without formally addressing how to find vulnerabilities, the software
security industry has no way of establishing the quality of a software security
assessment or training the next generation in the craft. We have written this book in
the hope of answering these questions and to help bridge the gap between secure
software development and practical post-implementation reviews. Although this
book is aimed primarily at consultants and other security professionals, much of
the material will have value to the rest of the IT community as well. Developers can
gain insight into the subtleties and nuances of how languages and operating 
systems work and how those features can introduce vulnerabilities into an application
that otherwise appears secure. Quality assurance (QA) personnel can use some of
the guidelines in this book to ensure the integrity of in-house software and cut
down on the likelihood of their applications being stung by a major vulnerability.
Administrators can find helpful guidelines for evaluating the security impact of
applications on their networks and use this knowledge to make better decisions
about future deployments. Finally, hobbyists who are simply interested in learning
more about how to assess applications will find this book an invaluable resource
(we hope!) for getting started in application security review or advancing their cur-
rent skill sets. 

Prerequisites
The majority of this book has been targeted at a level that any moderately experienced
developer should find approachable. This means you need to be fairly comfortable
with at least one programming language, and ideally, you should be familiar with
basic C/C++ programming. At several stages throughout the book, we use Intel
assembly examples, but we have attempted to keep them to a minimum and translate
them into approximate C code when possible. We have also put a lot of effort into
making the material as platform neutral as possible, although we do cover platform
specifics for the most common operating systems. When necessary, we have tried to
include references to additional resources that provide background for material that
can’t be covered adequately in this book. 

How to Use This Book
Before we discuss the use of this book, we need to introduce its basic structure. The
book is divided into three different parts:
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• Part I: Introduction to Software Security Assessment (Chapters 1–4)—These 
chapters introduce the practice of code auditing and explain how it fits into
the software development process. You learn about the function of design
review, threat modeling, and operational review—tools that are useful for 
evaluating an application as a whole, and not just the code. Finally, you learn
some generic high-level methods for performing a code review on any 
application, regardless of its function or size.

• Part II: Software Vulnerabilities (Chapters 5–13)—These chapters shift the focus of
the book toward practical implementation review and address how to find
specific vulnerabilities in an application’s codebase. Major software 
vulnerability classes are described, and you learn how to discover high-risk
security flaws in an application. Numerous real-world examples of security
vulnerabilities are given to help you get a feel for what software bugs look like
in real code.

• Part III: Software Vulnerabilities in Practice (Chapters 14–18)—The final portion of
the book turns your attention toward practical uses of lessons learned from
the earlier chapters. These chapters describe a number of common application
classes and the types of bugs they tend to be vulnerable to. They also show
you how to apply the technical knowledge gained from Part II to real-world
applications. Specifically, you look at networking, firewalling technologies,
and Web technologies. Each chapter in this section introduces the common
frameworks and designs of each application class and identifies where flaws
typically occur. 

You’ll get the most value if you read this book straight through at least once so that
you can get a feel for the material. This approach is best because we have tried to
use each section as an opportunity to highlight techniques and tools that help you
in performing application assessments. In particular, you should pay attention to
the sidebars and notes we use to sum up the more important concepts in a section. 

Of course, busy schedules and impending deadlines can have a serious impact
on your time. To that end, we want to lay out a few tracks of focus for different types
of reviews. However, you should start with Part 1 (Chapters 1–4) because it estab-
lishes a foundation for the rest of the book. After that, you can branch out to the fol-
lowing chapters:

• UNIX track (Chapters 5–10, 13)—This chapter track starts off by covering common
software vulnerability classes, such as memory corruption, program control
flow, and specially formatted data. Then UNIX-centered security problems that
arise because of quirks in the various UNIX operating systems are addressed.
Finally, this track ends with coverage of synchronization vulnerabilities 
common to most platforms.



xx

• Windows track (Chapters 5–8, 11–13)—This track starts off similarly to the UNIX
track, by covering platform-neutral security problems. Then two chapters specif-
ically address Windows APIs and their related vulnerabilities. Finally, this track
finishes with coverage of common synchronization vulnerabilities.

• Web track (Chapters 8, 13, 17, 18)—Web auditing requires understanding 
common security vulnerabilities as well as Web-based frameworks and 
languages. This track discusses the common vulnerability classes that pertain
to Web-based languages, and then finishes off with the Web-specific chapters.
Although the UNIX and Windows chapters aren’t listed here, reading them
might be necessary depending on the Web application’s deployment 
environment.

• Network application track (Chapters 5–8, 13, 16)—This sequence of chapters best
addresses the types of vulnerabilities you’re likely to encounter with network
client/server applications. Notice that even though Chapter 16 is targeted at
selected application protocols, it has a section for generic application protocol
auditing methods. Like the previous track, UNIX or Windows chapters might
also be relevant, depending on the deployment environment.

• Network analysis track (Chapters 5–8, 13–16)—This track is aimed at analyzing 
network analysis applications, such as firewalls, IPSs, sniffers, routing software,
and so on. Coverage includes standard vulnerability classes along with popular
network-based technologies and the common vulnerabilities in these products.
Again, the UNIX and Windows chapters would be a good addition to this track,
if applicable.

Preface
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3

Chapter 1
Software Vulnerability 

Fundamentals

“Any sufficiently advanced technology is indistinguishable from magic.”
Arthur C. Clarke

Introduction
The average person tends to think of software as a form of technological wizardry simply
beyond understanding. A piece of software might have complexity that rivals any physical
hardware, but most people never see its wheels spin, hear the hum of its engine, or take
apart the nuts and bolts to see what makes it tick. Yet computer software has become such
an integral part of society that it affects almost every aspect of people’s daily lives. This
wide-reaching effect inevitably raises questions about the security of systems that people
have become so dependent on. You can’t help but wonder whether the software you use is
really secure. How can you verify that it is? What are the implications of a failure in soft-
ware security? 

Over the course of this book, you’ll learn about the tools you need to understand
and assess software security. You’ll see how to apply the theory and practice of code
auditing; this process includes learning how to dissect an application, discover security



vulnerabilities, and assess the danger each vulnerability presents. You also learn
how to maximize your time, focusing on the most security-relevant elements of
an application and prioritizing your efforts to help identify the most critical vul-
nerabilities first. This knowledge provides the foundation you need to perform a
comprehensive security assessment of an application. 

This chapter introduces the elements of a software vulnerability and explains
what it means to violate the security of a software system. You also learn about the
elements of software assessment, including motivation, types of auditing, and how
an audit fits in with the development process. Finally, some distinctions are pointed
out to help you classify software vulnerabilities and address the common causes of
these security issues. 

Vulnerabilities
There’s almost an air of magic when you first see a modern remote software exploit
deployed. It’s amazing to think that a complex program, written by a team of
experts and deployed around the world for more than a decade, can suddenly be 
co-opted by attackers for their own means. At first glance, it’s easy to consider the
process as some form of digital voodoo because it simply shouldn’t be possible. Like
any magic trick, however, this sense of wonder fades when you peek behind the
curtain and see how it works. After all, software vulnerabilities are simply weak-
nesses in a system that attackers can leverage to their advantage. In the context of
software security, vulnerabilities are specific flaws or oversights in a piece of 
software that allow attackers to do something malicious—expose or alter sensitive
information, disrupt or destroy a system, or take control of a computer system or
program.

You’re no doubt familiar with software bugs; they are errors, mistakes, or over-
sights in programs that result in unexpected and typically undesirable behavior.
Almost every computer user has lost an important piece of work because of a soft-
ware bug. In general, software vulnerabilities can be thought of as a subset of the
larger phenomenon of software bugs. Security vulnerabilities are bugs that pack an
extra hidden surprise: A malicious user can leverage them to launch attacks against
the software and supporting systems. Almost all security vulnerabilities are software
bugs, but only some software bugs turn out to be security vulnerabilities. A bug must
have some security-relevant impact or properties to be considered a security issue; in
other words, it has to allow attackers to do something they normally wouldn’t be
able to do. (This topic is revisited in later chapters, as it’s a common mistake to mis-
characterize a major security flaw as an innocuous bug.)

There’s a common saying that security is a subset of reliability. This saying
might not pass muster as a universal truth, but it does draw a useful comparison. 
A reliable program is one that’s relatively free of software bugs: It rarely fails on
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users, and it handles exceptional conditions gracefully. It’s written “defensively” so
that it can handle uncertain execution environments and malformed inputs. A
secure program is similar to a robust program: It can repel a focused attack by
intruders who are attempting to manipulate its environment and input so that they
can leverage it to achieve some nefarious end. Software security and reliability also
share similar goals, in that they both necessitate development strategies that focus
on exterminating software bugs.

Note
Although the comparison of security flaws to software bugs is 
useful, some vulnerabilities don’t map so cleanly. For example, a
program that allows you to edit a critical system file you shouldn’t
have access to might be operating completely correctly according 
to its specifications and design. So it probably wouldn’t fall under
most people’s definition of a software bug, but it’s definitely a 
security vulnerability.

The process of attacking a vulnerability in a program is called exploiting.
Attackers might exploit a vulnerability by running the program in a clever way,
altering or monitoring the program’s environment while it runs, or if the program is
inherently insecure, simply using the program for its intended purpose. When
attackers use an external program or script to perform an attack, this attacking 
program is often called an exploit or exploit script.

Security Policies
As mentioned, attackers can exploit a vulnerability to violate the security of a system.
One useful way to conceptualize the “security of a system” is to think of a system’s
security as being defined by a security policy. From this perspective, a violation of a
software system’s security occurs when the system’s security policy is violated.

Note
Matt Bishop, a computer science professor at University of 
California–Davis, is an accomplished security researcher who has
been researching and studying computer vulnerabilities for many
years. Needless to say, he’s put a lot of thought into computer 
security from a formal academic perspective as well as a technical
perspective. If these topics interest you, check out his book, 
Computer Security: Art and Science (Addison-Wesley, 2003), and the
resources at his home page: http://nob.cs.ucdavis.edu/~bishop/.
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For a system composed of software, users, and resources, you have a security 
policy, which is simply a list of what’s allowed and what’s forbidden. This policy
might state, for example, “Unauthenticated users are forbidden from using the calen-
dar service on the staging machine.” A problem that allows unauthenticated users to
access the staging machine’s calendar service would clearly violate the security policy. 

Every software system can be considered to have a security policy. It might be a
formal policy consisting of written documents, or it might be an informal loose collec-
tion of expectations that the software’s users have about what constitutes reasonable
behavior for that system. For most software systems, people usually understand what
behavior constitutes a violation of security, even if it hasn’t been stated explicitly.
Therefore, the term “security policy” often means the user community’s consensus on
what system behavior is allowed and what system behavior is forbidden. This policy
could take a few different forms, as described in the following list:

■ For a particularly sensitive and tightly scoped system, a security policy could
be a formal specification of constraints that can be verified against the pro-
gram code by mathematical proof. This approach is often expensive and appli-
cable only to an extremely controlled software environment. You would hope
that embedded systems in devices such as traffic lights, elevators, airplanes,
and life support equipment go through this kind of verification. Unfortu-
nately, this approach is prohibitively expensive or unwieldy, even for many of
those applications.

■ A security policy could be a formal, written document with clauses such as
“C.2. Credit card information (A.1.13) should never be disclosed to a third
party (as defined in A.1.3) or transferred across any transmission media with-
out sufficient encryption, as specified in Addendum Q.” This clause could
come from a policy written about the software, perhaps one created during
the development process. It could also come from policies related to resources
the software uses, such as a site security policy, an operating system (OS) pol-
icy, or a database security policy.

■ The security policy could be composed solely of an informal, slightly ambigu-
ous collection of people’s expectations of reasonable program security behav-
ior, such as “Yeah, giving a criminal organization access to our credit card
database is probably bad.”

Note
The Java Virtual Machine (JVM) and .NET Common Language
Runtime (CLR) have varying degrees of code access security
(CAS). CAS provides a means of extensively validating a package
at both load time and runtime. These validations include the
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integrity of the bytecode, the software’s originator, and the appli-
cation of code access restrictions. The most obvious applications
of these technologies include the sandbox environments for Java
applets and .NET-managed browser controls.

Although CAS can be used as a platform for a rigidly formalized secu-
rity model, some important caveats are associated with it. The first
concern is that most developers don’t thoroughly understand its
application and function, so it’s rarely leveraged in commercial soft-
ware. The second concern is that the security provided by CAS
depends entirely on the security of underlying components. Both the
Java VM and the .NET CLR have been victims of vulnerabilities that
could allow an application to escape the virtual machine sandbox and
run arbitrary code.

In practice, a software system’s security policy is likely to be mostly informal
and made up of people’s expectations. However, it often borrows from formal docu-
mentation from the development process and references site and resource security
policies. This definition of a system security policy helps clarify the concept of 
“system security.” The bottom line is that security is in the eye of the beholder, and
it boils down to end users’ requirements and expectations.

Security Expectations
Considering the possible expectations people have about software security helps
determine which issues they consider to be security violations. Security is often
described as resting on three components: confidentiality, integrity, and availability.
The following sections consider possible expectations for software security from the
perspective of these cornerstones.

Confidentiality
Confidentiality requires that information be kept private. This includes any situation
where software is expected to hide information or hide the existence of information.
Software systems often deal with data that contains secrets, ranging from nation- or
state-level intelligence secrets to company trade secrets or even sensitive personal
information.

Businesses and other organizations have plenty of secrets residing in their 
software. Financial information is generally expected to be kept confidential. 
Information about plans and performance could have strategic importance and is
potentially useful for an unlawful competitive advantage or for criminal activities,
such as insider trading. So businesses expect that data to be kept confidential as
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well. Data involving business relationships, contracts, lawsuits, or any other 
sensitive content carries an expectation of confidentiality.

If a software system maintains information about people, expectations about the
confidentiality of that data are often high. Because of privacy concerns, organizations
and users expect a software system to carefully control who can view details related to
people. If the information contains financial details or medical records, improper dis-
closure of the data might involve liability issues. Software is often expected to keep
personal user information secret, such as personal files, e-mail, activity histories, and
accounts and passwords.

In many types of software, the actual program code constitutes a secret. It could
be a trade secret, such as code for evaluating a potential transaction in a commodi-
ties market or a new 3D graphics engine. Even if it’s not a trade secret, it could still
be sensitive, such as code for evaluating credit risks of potential loan applicants or
the algorithm behind an online videogame’s combat system.

Software is often expected to compartmentalize information and ensure that
only authenticated parties are allowed to see information for which they’re author-
ized. These requirements mean that software is often expected to use access control
technology to authenticate users and to check their authorization when accessing
data. Encryption is also used to maintain the confidentiality of data when it’s trans-
ferred or stored.

Integrity
Integrity is the trustworthiness and correctness of data. It refers to expectations
that people have about software’s capability to prevent data from being altered.
Integrity refers not only to the contents of a piece of data, but also to the source of
that data. Software can maintain integrity by preventing unauthorized changes to
data sources. Other software might detect changes to data integrity by making note
of a change in a piece of data or an alteration of the data’s origins.

Software integrity often involves compartmentalization of information, in
which the software uses access control technology to authenticate users and check
their authorization before they’re allowed to modify data. Authentication is also an
important component of software that’s expected to preserve the integrity of the
data’s source because it tells the software definitively who the user is.

Typically, users hold similar expectations for integrity as they do for confiden-
tiality. Any issue that allows attackers to modify information they wouldn’t other-
wise be permitted to modify is considered a security flaw. Any issue that allows
users to masquerade as other users and manipulate data is also considered a breach
of data integrity.

Software vulnerabilities can be particularly devastating in breaches of integrity,
as the modification of data can often be leveraged to further an attackers’ access
into a software system and the computing resources that host the software.
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Availability
Availability is the capability to use information and resources. Generally, it refers
to expectations users have about a system’s availability and its resilience to
denial-of-service (DoS) attacks.

An issue that allows users to easily crash or disrupt a piece of software would
likely be considered a vulnerability that violates users’ expectations of availability.
This issue generally includes attacks that use specific inputs or environmental dis-
ruptions to disable a program as well as attacks centered on exhausting software
system resources, such as CPU, disk, or network bandwidth.

The Necessity of Auditing
Most people expect vendors to provide some degree of assurance about the
integrity of their software. The sad truth is that vendors offer few guarantees of
quality for any software. If you doubt this, just read the end user license agreement
(EULA) that accompanies almost every piece of commercial software. However, it’s
in a company’s best interests to keep clients happy; so most vendors implement
their own quality assurance measures. These measures usually focus on marketable
concerns, such as features, availability, and general stability; this focus has histori-
cally left security haphazardly applied or occasionally ignored entirely. 

Note
Some industries do impose their own security requirements and
standards, but they typically involve regulatory interests and apply
only to certain specialized environments and applications. This
practice is changing, however, as high-profile incidents are moving
regulators and industry standards bodies toward more proactive
security requirements.

The good news is that attitudes toward security have been changing recently,
and many vendors are adopting business processes for more rigorous security test-
ing. Many approaches are becoming commonplace, including automated code
analysis, security unit testing, and manual code audits. As you can tell from the
title, this book focuses on manual code audits.

Auditing an application is the process of analyzing application code (in source
or binary form) to uncover vulnerabilities that attackers might exploit. By going
through this process, you can identify and close security holes that would otherwise
put sensitive data and business resources at unnecessary risk.

In addition to the obvious case of a company developing in-house software,
code auditing makes sense in several other situations. Table 1-1 summarizes the
most common ones.
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Table 1-1 

Code-Auditing Situations

Situation Description Advantage

In-house software audit A software company performs Design and implementation flaws
(prerelease) code audits of a new product can be identified and remedied

before its release. before the product goes to market,
saving money in developing and
deploying updates. It also saves 
the company from potential 
embarrassment.

In-house software audit A software company performs Security vulnerabilities can be 
(postrelease) code audits of a product after  found and fixed before malicious

its release. parties discover the flaws. This
process allows time to perform 
testing and other checks as opposed
to doing a hurried release in 
response to a vulnerability disclosure.

Third-party product range A third party performs audits of An objective third party can provide
comparison a number of competing valuable information to consumers

products in a particular field. and assist in selecting the most
secure product.

Third-party evaluation A third party performs an The client can gain an understanding
independent software audit of of the relative security of an
a product for a client. application it’s considering deploying.

This might prove to be the deciding
factor between purchasing one 
technology over another.

Third-party preliminary A third party performs an Venture capitalists can get an idea 
evaluation independent review of a  of the viability of a prospective 

product before it goes to technology for investment purposes.
market. Vendors might also conduct this

type of evaluation to ensure the
quality of a product they intend to
market.

Independent research A security company or Security product vendors can
consulting firm performs a identify vulnerabilities and
software audit independently. implement protective measures in

scanners and other security devices.
Independent research also functions
as an industry watchdog and 
provides a way for researchers and
security companies to establish 
professional credibility.
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As you can see, code auditing makes sense in quite a few situations. Despite the
demand for people with these skills, however, few professionals have the training
and experience to perform these audits at a high standard. It’s our hope that this
book helps fill that gap.

Auditing Versus Black Box Testing
Black box testing is a method of evaluating a software system by manipulating only
its exposed interfaces. Typically, this process involves generating specially crafted
inputs that are likely to cause the application to perform some unexpected behavior,
such as crashing or exposing sensitive data. For example, black box testing an HTTP
server might involve sending requests with abnormally large field sizes, which
could trigger a memory corruption bug (covered in more depth later in Chapter 5,
“Memory Corruption”). This test might involve a legitimate request, such as the fol-
lowing (assume that the “…” sequence represents a much longer series of “A” 
characters):

GET AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAA HTTP/1.0

Or it might involve an invalid request, such as this one (once again, the “…”
sequence represents a much longer series of “A” characters):

GET / AAAAAAAAAAAAAAAAAAA...AAAAAAAAAAAAAAAAAAAA/1.0

Any crashes resulting from these requests would imply a fairly serious bug in
the application. This approach is even more appealing when you consider that tools
to automate the process of testing applications are available. This process of auto-
mated black box testing is called fuzz-testing, and fuzz-testing tools include generic
“dumb” and protocol-aware “intelligent” fuzzers. So you don’t need to manually try
out every case you can think of; you simply run the tool, perhaps with some modifi-
cations of your own design, and collect the results. 

The advantage of black box testing an application is that you can do it
quickly and possibly have results almost immediately. However, it’s not all good
news; there are several important disadvantages of black box testing. Essentially,
black box testing is just throwing a bunch of data at an application and hoping it
does something it isn’t supposed to do. You really have no idea what the applica-
tion is doing with the data, so there are potentially hundreds of code paths you
haven’t explored because the data you throw at the application doesn’t trigger
those paths. For instance, returning to the Web server example, imagine that it
has certain internal functionality if particular keywords are present in the query
string of a request. Take a look at the following code snippet, paying close atten-
tion to the bolded lines:
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struct keyval {

char *key;

char *value;

};

int handle_query_string(char *query_string)

{

struct keyval *qstring_values, *ent;

char buf[1024];

if(!query_string)

return 0;

qstring_values = split_keyvalue_pairs(query_string);

if((ent = find_entry(qstring_values, “mode”)) != NULL)

{

sprintf(buf, “MODE=%s”, ent->value);

puteenv(buf);

}

... more stuff here ...

}

This Web server has a specialized nonstandard behavior; if the query string 
contains the sequence mode=xxx, the environment variable MODE is set with the value
xxx. This specialized behavior has an implementation flaw, however; a buffer over-
flow caused by a careless use of the sprintf() function. If you aren’t sure why this
code is dangerous, don’t worry; buffer overflow vulnerabilities are covered in depth
in Chapter 5.

You can see the bug right away by examining the code, but a black box or fuzz-
testing tool would probably miss this basic vulnerability. Therefore, you need to be
able to assess code constructs intelligently in addition to just running testing tools
and noting the results. That’s why code auditing is important. You need to be able
to analyze code and detect code paths that an automated tool might miss as well as
locate vulnerabilities that automated tools can’t catch. 

Fortunately, code auditing combined with black box testing provides maximum
results for uncovering vulnerabilities in a minimum amount of time. This book arms
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you with the knowledge and techniques to thoroughly analyze an application for a
wide range of vulnerabilities and provides insight into how you can use your under-
standing and creativity to discover flaws unique to a particular application.

Code Auditing and the Development Life Cycle
When you consider the risks of exposing an application to potentially malicious
users, the value of application security assessment is clear. However, you need to
know exactly when to perform an assessment. Generally, you can perform an audit
at any stage of the Systems Development Life Cycle (SDLC). However, the cost of
identifying and fixing vulnerabilities can vary widely based on when and how you
choose to audit. So before you get started, review the following phases of the SDLC:

1. Feasibility study—This phase is concerned with identifying the needs the
project should meet and determining whether developing the solution is
technologically and financially viable.

2. Requirements definition—In this phase, a more in-depth study of require-
ments for the project is done, and project goals are established.

3. Design—The solution is designed and decisions are made about how the sys-
tem will technically achieve the agreed-on requirements.

4. Implementation—The application code is developed according to the design
laid out in the previous phase.

5. Integration and testing—The solution is put through some level of quality
assurance to ensure that it works as expected and to catch any bugs in the
software.

6. Operation and maintenance—The solution is deployed and is now in use, and
revisions, updates, and corrections are made as a result of user feedback.

Every software development process follows this model to some degree. Classical
waterfall models tend toward a strict interpretation, in which the system’s life span
goes through only a single iteration through the model. In contrast, newer method-
ologies, such as agile development, tend to focus on refining an application by
going through repeated iterations of the SDLC phases. So the way in which the
SDLC model is applied might vary, but the basic concepts and phases are consistent
enough for the purposes of this discussion. You can use these distinctions to help
classify vulnerabilities, and in later chapters, you learn about the best phases in
which to conduct different classes of reviews.
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Classifying Vulnerabilities
A vulnerability class is a set of vulnerabilities that share some unifying commonality—
a pattern or concept that isolates a specific feature shared by several different soft-
ware flaws. Granted, this definition might seem a bit confusing, but the bottom line is
that vulnerability classes are just mental devices for conceptualizing software flaws.
They are useful for understanding issues and communicating that understanding
with others, but there isn’t a single, clean taxonomy for grouping vulnerabilities into
accurate, nonoverlapping classes. It’s quite possible for a single vulnerability to fall
into multiple classes, depending on the code auditor’s terminology, classification 
system, and perspective.

A rigid formal taxonomy for categorizing vulnerabilities isn’t used in this
book; instead, issues are categorized in a consistent, pragmatic fashion that
lends itself to the material. Some software vulnerabilities are best tackled from a
particular perspective. For example, certain flaws might best be approached by
looking at a program in terms of the interaction of high-level software compo-
nents; another type of flaw might best be approached by conceptualizing a 
program as a sequence of system calls. Regardless of the approach, this book
explains the terms and concepts you’ll encounter in security literature so that
you can keep the array of terms and taxonomies the security community uses in
some sort of context.

In defining general vulnerability classes, you can draw a few general distinc-
tions from the discussion of the SDLC phases. Two commonly accepted vulnera-
bility classes include design vulnerabilities (SDLC phases 1, 2, and 3) and
implementation vulnerabilities (SDLC phases 4 and 5). In addition, this book
includes a third category, operational vulnerabilities (SDLC phase 6). The security
community generally accepts design vulnerabilities as flaws in a software sys-
tem’s architecture and specifications; implementation vulnerabilities are low-level
technical flaws in the actual construction of a software system. The category of
operational vulnerabilities addresses flaws that arise in deploying and configur-
ing software in a particular environment.

Design Vulnerabilities
A design vulnerability is a problem that arises from a fundamental mistake or over-
sight in the software’s design. With a design flaw, the software isn’t secure because
it does exactly what it was designed to do; it was simply designed to do the wrong
thing! These types of flaws often occur because of assumptions made about the
environment in which a program will run or the risk of exposure that program com-
ponents will face in the actual production environment. Design flaws are also
referred to as high-level vulnerabilities, architectural flaws, or problems with pro-
gram requirements or constraints.
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A quick glance at the SDLC phases reminds you that a software system’s design
is driven by the definition of software requirements, which are a list of objectives a
software system must meet to accomplish the goals of its creators. Typically, an
engineer takes the set of requirements and constructs design specifications, which
focus on how to create the software that meets those goals. Requirements usually
address what a software system has to accomplish—for example, “Allow a user to
retrieve a transaction file from a server.” Requirements can also specify capabilities
the software must have—for example, “It must support 100 simultaneous downloads
per hour.”

Specifications are the plans for how the program should be constructed to meet
the requirements. Typically, they include a description of the different components
of a software system, information on how the components will be implemented and
what they will do, and information on how the components will interact. Specifica-
tions could involve architecture diagrams, logic diagrams, process flowcharts, inter-
face and protocol specifications, class hierarchies, and other technical specifications. 

When people speak of a design flaw, they don’t usually make a distinction
between a problem with the software’s requirements and a problem with the soft-
ware’s specifications. Making this distinction often isn’t easy because many high-
level issues could be explained as an oversight in the requirements or a mistake in
the specifications.

For example, the TELNET protocol is designed to allow users to connect to a
remote machine and access that machine as though it’s connected to a local termi-
nal. From a design perspective, TELNET arguably has a vulnerability in that it relies
on unencrypted communication. In some environments, this reliance might be
acceptable if the underlying network environment is trusted. However, in corporate
networks and the Internet, unencrypted communications could be a major weak-
ness because attackers sitting on the routing path can monitor and hijack TELNET
sessions. If an administrator connects to a router via TELNET and enters a user-
name and password to log in, a sniffer could record the administrator’s username
and password. In contrast, a protocol such as Secure Shell (SSH) serves the same
basic purpose as TELNET, but it addresses the sniffing threat because it encrypts all
communications.

Implementation Vulnerabilities
In an implementation vulnerability, the code is generally doing what it should, but
there’s a security problem in the way the operation is carried out. As you would
expect from the name, these issues occur during the SDLC implementation phase,
but they often carry over into the integration and testing phase. These problems can
happen if the implementation deviates from the design to solve technical discrepan-
cies. Mostly, however, exploitable situations are caused by technical artifacts and
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nuances of the platform and language environment in which the software is con-
structed. Implementation vulnerabilities are also referred to as low-level flaws or
technical flaws.

This book includes many examples of implementation vulnerabilities because
identifying these technical flaws is one of the primary charges of the code review
process. Implementation vulnerabilities encompass several well-publicized vulnera-
bility classes you’ve probably heard of, such as buffer overflows and SQL injection.

Going back to the TELNET example, you can also find implementation vulnera-
bilities in specific versions of TELNET software. Some previous implementations of
TELNET daemons didn’t cleanse user environment variables correctly, allowing
intruders to leverage the dynamic linking features of a UNIX machine to elevate their
privileges on the machine. There were also flaws that allowed intruders to perform
buffer overflows and format string attacks against various versions of TELNET 
daemons, often without authenticating at all. These flaws resulted in attackers being
able to remotely issue arbitrary commands on the machine as privileged users. 
Basically, attackers could run a small exploit program against a vulnerable TELNET
daemon and immediately get a root prompt on the server.

Operational Vulnerabilities
Operational vulnerabilities are security problems that arise through the operational
procedures and general use of a piece of software in a specific environment. One
way to distinguish these vulnerabilities is that they aren’t present in the source code
of the software under consideration; rather, they are rooted in how the software
interacts with its environment. Specifically, they can include issues with configura-
tion of the software in its environment, issues with configuration of supporting
software and computers, and issues caused by automated and manual processes
that surround the system. Operational vulnerabilities can even include certain types
of attacks on users of the system, such as social engineering and theft. These issues
occur in the SDLC operation and maintenance phase, although they have some
overlap into the integration and testing phase.

Going back to the TELNET example, you know TELNET has a design flaw
because of its lack of encryption. Say you’re looking at a software system for auto-
mated securities trading. Suppose it needs a set of weighting values to be updated
every night to adjust its trading strategy for the next day. The documented process
for updating this data is for an administrator to log in to the machine using TELNET
at the end of each business day and enter the new set of values through a simple
utility program. Depending on the environment, this process could represent a
major operational vulnerability because of the multiple risks associated with using
TELNET, including sniffing and connection hijacking. In short, the operational 
procedure for maintaining the software is flawed because it exposes the system to
potential fraud and attacks.
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Gray Areas
The distinction between design and implementation vulnerabilities is deceptively
simple in terms of the SDLC, but it’s not always easy to make. Many implemen-
tation vulnerabilities could also be interpreted as situations in which the design
didn’t anticipate or address the problem adequately. On the flip side, you could
argue that lower-level pieces of a software system are also designed, in a fashion.
A programmer can design plenty of software components when implementing a
specification, depending on the level of detail the specification goes into. These
components might include a class, a function, a network protocol, a virtual
machine, or perhaps a clever series of loops and branches. Lacking a strict dis-
tinction, in this book the following definition of a design vulnerability is used:

In general, when people refer to design vulnerabilities, they mean high-level
issues with program architecture, requirements, base interfaces, and key
algorithms. 

Expanding on the definition of design vulnerabilities, this book uses the 
following definition of an implementation vulnerability:

Security issues in the design of low-level program pieces, such as parts of
individual functions and classes, are generally considered to be implemen-
tation vulnerabilities. Implementation vulnerabilities also include more
complex logical elements that are not normally addressed in the design
specification. (These issues are often called logic vulnerabilities.)

Likewise, there’s no clear distinction between operational vulnerabilities and
implementation or design vulnerabilities. For example, if a program is installed in
an environment in a fashion that isn’t secure, you could easily argue that it’s a fail-
ure of the design or implementation. You would expect the application to be devel-
oped in a manner that’s not vulnerable to these environmental concerns. Lacking a
strict distinction again, the following definition of an operational vulnerability is
used in this book:

In general, the label “operational vulnerabilities” is used for issues that deal
with unsafe deployment and configuration of software, unsound manage-
ment and administration practices surrounding software, issues with sup-
porting components such as application and Web servers, and direct attacks
on the software’s users.

You can see that there’s plenty of room for interpretation and overlap in the
concepts of design, implementation, and operational vulnerabilities, so don’t con-
sider these definitions to be an infallible formal system for labeling software flaws.
They are simply a useful way to approach and study software vulnerabilities.
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Common Threads
So far you’ve learned some background on the audit process, security models, and
the three common classes of vulnerabilities. This line of discussion is continued
throughout the rest of this book, as you drill down into the details of specific techni-
cal issues. For now, however, take a step back to look at some common threads that
underlie security vulnerabilities in software, focusing primarily on where and why
vulnerabilities are most likely to surface in software.

Input and Data Flow
The majority of software vulnerabilities result from unexpected behaviors triggered
by a program’s response to malicious data. So the first question to address is how
exactly malicious data gets accepted by the system and causes such a serious
impact. The best way to explain it is by starting with a simple example of a buffer
overflow vulnerability. 

Consider a UNIX program that contains a buffer overflow triggered by an overly
long command-line argument. In this case, the malicious data is user input that
comes directly from an attacker via the command-line interface. This data travels
through the program until some function uses it in an unsafe way, leading to an
exploitable situation.

For most vulnerabilities, you’ll find some piece of malicious data that an
attacker injects into the system to trigger the exploit. However, this malicious
data might come into play through a far more circuitous route than direct user
input. This data can come from several different sources and through several dif-
ferent interfaces. It might also pass through multiple components of a system and
be modified a great deal before it reaches the location where it ultimately triggers
an exploitable condition. Consequently, when reviewing a software system, one of
the most useful attributes to consider is the flow of data throughout the system’s
various components.

For example, you have an application that handles scheduling meetings for a
large organization. At the end of every month, the application generates a report of
all meetings coordinated in this cycle, including a brief summary of each meeting.
Close inspection of the code reveals that when the application creates this sum-
mary, a meeting description larger than 1,000 characters results in an exploitable
buffer overflow condition.

To exploit this vulnerability, you would have to create a new meeting with a
description longer than 1,000 characters, and then have the application schedule
the meeting. Then you would need to wait until the monthly report was created to
see whether the exploit worked. Your malicious data would have to pass through
several components of the system and survive being stored in a database, all the
while avoiding being spotted by another user of the system. Correspondingly, you
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have to evaluate the feasibility of this attack vector as a security reviewer. This view-
point involves analyzing the flow of the meeting description from its initial creation,
through multiple application components, and finally to its use in the vulnerable
report generation code.

This process of tracing data flow is central to reviews of both the design and
implementation of software. User-malleable data presents a serious threat to the
system, and tracing the end-to-end flow of data is the main way to evaluate this
threat. Typically, you must identify where user-malleable data enters the system
through an interface to the outside world, such as a command line or Web request.
Then you study the different ways in which user-malleable data can travel through
the system, all the while looking for any potentially exploitable code that acts on the
data. It’s likely the data will pass through multiple components of a software system
and be validated and manipulated at several points throughout its life span.

This process isn’t always straightforward. Often you find a piece of code that’s
almost vulnerable but ends up being safe because the malicious input is caught or
filtered earlier in the data flow. More often than you would expect, the exploit is
prevented only through happenstance; for example, a developer introduces some
code for a reason completely unrelated to security, but it has the side effect of pro-
tecting a vulnerable component later down the data flow. Also, tracing data flow in
a real-world application can be exceedingly difficult. Complex systems often
develop organically, resulting in highly fragmented data flows. The actual data
might traverse dozens of components and delve in and out of third-party framework
code during the process of handling a single user request.

Trust Relationships
Different components in a software system place varying degrees of trust in each
other, and it’s important to understand these trust relationships when analyzing the
security of a given software system. Trust relationships are integral to the flow of
data, as the level of trust between components often determines the amount of vali-
dation that happens to the data exchanged between them. 

Designers and developers often consider an interface between two components
to be trusted or designate a peer or supporting software component as trusted. This
means they generally believe that the trusted component is impervious to malicious
interference, and they feel safe in making assumptions about that component’s data
and behavior. Naturally, if this trust is misplaced, and an attacker can access or
manipulate trusted entities, system security can fall like dominos.

Speaking of dominos, when evaluating trust relationships in a system, it’s
important to appreciate the transitive nature of trust. For example, if your software
system trusts a particular external component, and that component in turn trusts a
certain network, your system has indirectly placed trust in that network. If the 
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component’s trust in the network is poorly placed, it might fall victim to an attack
that ends up putting your software at risk.

Assumptions and Misplaced Trust
Another useful way of looking at software flaws is to think of them in terms of pro-
grammers and designers making unfounded assumptions when they create soft-
ware. Developers can make incorrect assumptions about many aspects of a piece of
software, including the validity and format of incoming data, the security of sup-
porting programs, the potential hostility of its environment, the capabilities of its
attackers and users, and even the behaviors and nuances of particular application
programming interface (API) calls or language features. 

The concept of inappropriate assumptions is closely related to the concept of
misplaced trust because you can say that placing undue trust in a component is
much the same as making an unfounded assumption about that component. The fol-
lowing sections discuss several ways in which developers can make security-relevant
mistakes by making unfounded assumptions and extending undeserved trust.

Input
As stated earlier, the majority of software vulnerabilities are triggered by attackers
injecting malicious data into software systems. One reason this data can cause such
trouble is that software often places too much trust in its communication peers and
makes assumptions about the data’s potential origins and contents.

Specifically, when developers write code to process data, they often make
assumptions about the user or software component providing that data. When han-
dling user input, developers often assume users aren’t likely to do things such as
enter a 5,000-character street address containing nonprintable symbols. Similarly, if
developers are writing code for a programmatic interface between two software com-
ponents, they usually make assumptions about the input being well formed. For
example, they might not anticipate a program placing a negative length binary
record in a file or sending a network request that’s four billion bytes long.

In contrast, attackers looking at input-handling code try to consider every
possible input that can be entered, including any input that might lead to an
inconsistent or unexpected program state. Attackers try to explore every accessi-
ble interface to a piece of software and look specifically for any assumptions the
developer made. For an attacker, any opportunity to provide unexpected input is
gold because this input often has a subtle impact on later processing that the
developers didn’t anticipate. In general, if you can make an unanticipated change
in software’s runtime properties, you can often find a way to leverage it to have
more influence on the program.
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Interfaces
Interfaces are the mechanisms by which software components communicate with
each other and the outside world. Many vulnerabilities are caused by developers not
fully appreciating the security properties of these interfaces and consequently
assuming that only trusted peers can use them. If a program component is accessi-
ble via the network or through various mechanisms on the local machine, attackers
might be able to connect to that component directly and enter malicious input. If
that component is written so that it assumes its peer is trustworthy, the application
is likely to mishandle the input in an exploitable manner.

What makes this vulnerability even more serious is that developers often incor-
rectly estimate the difficulty an attacker has in reaching an interface, so they place
trust in the interface that isn’t warranted. For example, developers might expect a
high degree of safety because they used a proprietary and complex network proto-
col with custom encryption. They might incorrectly assume that attackers won’t be
likely to construct their own clients and encryption layers and then manipulate the
protocol in unexpected ways. Unfortunately, this assumption is particularly
unsound, as many attackers find a singular joy in reverse engineering a proprietary
protocol.

To summarize, developers might misplace trust in an interface for the following
reasons:

■ They choose a method of exposing the interface that doesn’t provide enough
protection from external attackers.

■ They choose a reliable method of exposing the interface, typically a service of
the OS, but they use or configure it incorrectly. The attacker might also exploit a
vulnerability in the base platform to gain unexpected control over that interface.

■ They assume that an interface is too difficult for an attacker to access, which is
usually a dangerous bet.

Environmental Attacks
Software systems don’t run in a vacuum. They run as one or more programs sup-
ported by a larger computing environment, which typically includes components
such as operating systems, hardware architectures, networks, file systems, 
databases, and users.

Although many software vulnerabilities result from processing malicious
data, some software flaws occur when an attacker manipulates the software’s
underlying environment. These flaws can be thought of as vulnerabilities caused
by assumptions made about the underlying environment in which the software is
running. Each type of supporting technology a software system might rely on has
many best practices and nuances, and if an application developer doesn’t fully
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understand the potential security issues of each technology, making a mistake
that creates a security exposure can be all too easy.

The classic example of this problem is a type of race condition you see often in
UNIX software, called a /tmp race (pronounced “temp race”). It occurs when a 
program needs to make use of a temporary file, and it creates this file in a public
directory on the system, located in /tmp or /var/tmp. If the program hasn’t been
written carefully, an attacker can anticipate the program’s moves and set up a trap
for it in the public directory. If the attacker creates a symbolic link in the right place
and at the right time, the program can be tricked into creating its temporary file
somewhere else on the system with a different name. This usually leads to an
exploitable condition if the vulnerable program is running with root (administrator)
privileges.

In this situation, the vulnerability wasn’t triggered through data the attacker
supplied to the program. Instead, it was an attack against the program’s runtime
environment, which caused the program’s interaction with the OS to proceed in an
unexpected and undesired fashion.

Exceptional Conditions
Vulnerabilities related to handling exceptional conditions are intertwined with data
and environmental vulnerabilities. Basically, an exceptional condition occurs when
an attacker can cause an unexpected change in a program’s normal control flow via
external measures. This behavior can entail an asynchronous interruption of the
program, such as the delivery of a signal. It might also involve consuming global
system resources to deliberately induce a failure condition at a particular location in
the program.

For example, a UNIX system sends a SIGPIPE signal if a process attempts to
write to a closed network connection or pipe; the default behavior on receipt of
this signal is to terminate the process. An attacker might cause a vulnerable pro-
gram to write to a pipe at an opportune moment, and then close the pipe before
the application can perform the write operation successfully. This would result in
a SIGPIPE signal that could cause the application to abort and perhaps leave the
overall system in an unstable state. For a more concrete example, the Network File
System (NFS) status daemon of some Linux distributions was vulnerable to crash-
ing caused by closing a connection at the correct time. Exploiting this vulnerabil-
ity created a disruption in NFS functionality that persisted until an administrator
can intervene and reset the daemon.
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Summary
You’ve covered a lot of ground in this short chapter and might be left with a num-
ber of questions. Don’t worry; subsequent chapters delve into more detail and
provide answers as you progress. For now, it’s important that you have a good
understanding of what can go wrong in computer software and understand the
terminology used in discussing these issues. You should also have developed an
appreciation of the need for security auditing of applications and become familiar
with different aspects of the process. In later chapters, you build on this founda-
tion as you learn how to use this audit process to identify vulnerabilities in the
applications you review.
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Chapter 2
Design Review

“Sure. Each one of us is wearing an unlicensed nuclear accelerator on our back. No problem.”
Bill Murray as Dr. Peter Venkman, Ghostbusters (1984)

Introduction
Computer security people tend to fall into one of two camps on design review. People from
a formal development background are usually receptive to the design review process. This
is only natural, as it maps closely to most formal software development methodologies.
The design review process can also seem to be less trouble than reviewing a large applica-
tion code base manually.

In the other camp are code auditors who delight in finding the most obscure and com-
plex vulnerabilities. This crowd tends to look at design review as an ivory-tower construct
that just gets in the way of the real work. Design review’s formalized process and focus on
documentation come across as a barrier to digging into the code.

The truth is that design review falls somewhere between the views of these two camps,
and it has value for both. Design review is a useful tool for identifying vulnerabilities in
application architecture and prioritizing components for implementation review. It doesn’t



replace implementation review, however; it’s just a component of the complete review
process. It makes identifying design flaws a lot easier and provides a more thorough
analysis of the security of a software design. In this capacity, it can make the entire
review process more effective and ensure the best return for the time you invest. 

This chapter gives you some background on the elements of software design
and design vulnerabilities, and introduces a review process to help you identify
security concerns in a software design. 

Software Design Fundamentals
Before you tackle the subject of design review, you need to review some fundamentals
of software design. Many of these concepts tie in closely with the security considera-
tions addressed later in the chapter, particularly in the discussion of threat modeling.
The following sections introduce several concepts that help establish an application’s
functional boundaries with respect to security.

Algorithms
Software engineering can be summed up as the process of developing and
implementing algorithms. From a design perspective, this process focuses on
developing key program algorithms and data structures as well as specifying
problem domain logic. To understand the security requirements and vulnerabil-
ity potential of a system design, you must first understand the core algorithms
that comprise a system.

Problem Domain Logic
Problem domain logic (or business logic) provides rules that a program follows as it
processes data. A design for a software system must include rules and processes for
the main tasks the software carries out. One major component of software design is
the security expectations associated with the system’s users and resources. For
example, consider banking software with the following rules:

■ A person can transfer money from his or her main account to any valid
account.

■ A person can transfer money from his or her money market account to any
valid account.

■ A person can transfer money from his or her money market account only once
a month.

■ If a person goes below a zero balance in his or her main account, money is
automatically transferred from his or her money market account to cover the
balance, if that money is available.
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This example is simple, but you can see that bank customers might be able to
get around the once-a-month transfer restriction on money market accounts. They
could intentionally drain their main account below zero to “free” money from their
monkey market accounts. Therefore, the design for this system has an oversight
that bank customers could potentially exploit.

Key Algorithms
Often programs have performance requirements that dictate the choice of algorithms
and data structures used to manage key pieces of data. Sometimes it’s possible to
evaluate these algorithm choices from a design perspective and predict security 
vulnerabilities that might affect the system.

For example, you know that a program stores an incoming series of records in a
sorted linked list that supports a basic sequential search. Based on this knowledge,
you can foresee that a specially crafted huge list of records could cause the program
to spend considerable time searching through the linked list. Repeated focused
attacks on a key algorithm such as this one could easily lead to temporary or even
permanent disruption of a server’s functioning.

Abstraction and Decomposition
Every text on software design inevitably covers two essential concepts: abstraction
and decomposition. You are probably familiar with these concepts already, but if
not, the following paragraphs give you a brief overview. 

Abstraction is a method for reducing the complexity of a system to make it
more manageable. To do this, you isolate only the most important elements and
remove unnecessary details. Abstractions are an essential part of how people
perceive the world around them. They explain why you can see a symbol such as
☺ and associate it with a smiling face. Abstractions allow you to generalize a 
concept, such as a face, and group-related concepts, such as smiling faces and
frowning faces.

In software design, abstractions are how you model the processes an application
will perform. They enable you to establish hierarchies of related systems, concepts,
and processes—isolating the problem domain logic and key algorithms. In effect,
the design process is just a method of building a set of abstractions that you can
develop into an implementation. This process becomes particularly important when
a piece of software must address the concerns of a range of users, or its implemen-
tation must be distributed across a team of developers.

Decomposition (or factoring) is the process of defining the generalizations and
classifications that compose an abstraction. Decomposition can run in two different
directions. Top-down decomposition, known as specialization, is the process of break-
ing a larger system into smaller, more manageable parts. Bottom-up decomposition,
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called generalization, involves identifying the similarities in a number of components
and developing a higher-level abstraction that applies to all of them.

The basic elements of structural software decomposition can vary from language
to language. The standard top-down progression is application, module, class, and
function (or method). Some languages might not support every distinction in this list
(for example, C doesn’t have language support for classes); other languages add more
distinctions or use slightly different terminology. The differences aren’t that impor-
tant for your purposes, but to keep things simple, this discussion generally sticks to
modules and functions.

Trust Relationships
In Chapter 1, “Software Vulnerability Fundamentals,” the concept of trust and how it
affects system security was introduced. This chapter expands on that concept to
state that every communication between multiple parties must have some degree of
trust associated with it. This is referred to as a trust relationship. For simple commu-
nications, both parties can assume complete trust—that is, each communicating
party allows other parties participating in the communication complete access to its
exposed functionality. For security purposes, however, you’re more concerned with
situations in which communicating parties should restrict their trust of one another.
This means parties can access only a limited subset of each other’s functionality. The
limitations imposed on each party in a communication define a trust boundary
between them. A trust boundary distinguishes between regions of shared trust,
known as trust domains. (Don’t worry if you’re a bit confused by these concepts;
some examples are provided in the next section.)

A software design needs to account for a system’s trust domains, boundaries,
and relationships; the trust model is the abstraction that represents these concepts
and is a component of the application’s security policy. The impact of this model is
apparent in how the system is decomposed, as trust boundaries tend to be module
boundaries, too. The model often requires that trust not be absolute; instead, it 
supports varying degrees of trust referred to as privileges. A classic example is the 
standard UNIX file permissions, whereby a user can provide a limited amount of
access to a file for other users on the system. Specifically, users can dictate whether
other users are allowed to read, write, or execute (or any combination of these per-
missions) the file in question, thus extending a limited amount of trust to other
users of the system.

Simple Trust Boundaries
As an example of a trust relationship, consider a basic single-user OS, such as 
Windows 98. To keep the example simple, assume that there’s no network involved.
Windows 98 has basic memory protection and some notion of users but offers no
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measure of access control or enforcement. In other words, if users can log in to a 
Windows 98 system, they are free to modify any files or system settings they
please. Therefore, you have no expectation of security from any user who can log
on interactively. 

You can determine that there are no trust boundaries between interactive users
of the same Windows 98 system. You do, however, make an implicit assumption
about who has physical access to the system. So you can say that the trust bound-
ary in this situation defines which users have physical access to the system and
which do not. That leaves you with a single domain of trusted users and an implicit
domain that represents all untrusted users.

To complicate this example a bit, say you’ve upgraded to a multiuser OS,
such as Windows XP Professional. This upgrade brings with it a new range of
considerations. You expect that two normally privileged users shouldn’t be able
to manipulate each other’s data or processes. Of course, this expectation
assumes you aren’t running as an administrative user. So now you have an expec-
tation of confidentiality and integrity between two users of the system, which
establishes their trust relationship and another trust boundary. You also have to
make allowances for the administrative user, which adds another boundary:
Nonadministrative users can’t affect the integrity or configuration of the system.
This expectation is a natural progression that’s necessary to enforce the bound-
ary between users. After all, if any user could affect the state of the system, you
would be right back to a single-user OS. Figure 2-1 is a graphical representation
of this multiuser OS trust relationship.

Now take a step back and consider something about the nature of trust. That is,
every system must eventually have some absolutely trusted authority. There’s no way
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around this because someone must be responsible for the state of the system. That’s
why UNIX has a root account, and Windows has an administrator account. You can, of
course, apply a range of controls to this level of authority. For instance, both UNIX and
Windows have methods of granting degrees of administrative privilege to different
users and for specific purposes. The simple fact remains, however, that in every trust
boundary, you have at least one absolute authority that can assume responsibility.

Complex Trust Relationships
So far, you’ve looked at fairly simple trust relationships to get a sense of the problem
areas you need to address later. However, some of the finer details have been glossed
over. To make the discussion a bit more realistic, consider the same system con-
nected to a network.

After you hook a system up to a network, you have to start adding a range of dis-
tinctions. You might need to consider separate domains for local users and remote
users of the system, and you’ll probably need a domain for people who have net-
work access to the system but aren’t “regular” users. Firewalls and gateways further
complicate these distinctions and allow more separations. 

It should be apparent that defining and applying a trust model can have a huge
impact on any software design. The real work begins before the design process is
even started. The feasibility study and requirements-gathering phases must ade-
quately identify and define users’ security expectations and the associated factors of
the target environment. The resulting model must be robust enough to meet these
needs, but not so complex that it’s too difficult to implement and apply. In this way,
security has to carefully balance the concerns of clarity with the need for accuracy.
When you examine threat modeling later in this chapter, you take trust models into
account by evaluating the boundaries between different system components and the
rights of different entities on a system.

Chain of Trust
Chapter 1 also introduced the concept of transitive trust. Essentially, it means that if
component A trusts component B, component A must implicitly trust all components
trusted by component B. This concept can also be called a chain of trust relationship. 

A chain of trust is a completely viable security construct and the core of many
systems. Consider the way certificates are distributed and validated in a typical
Secure Sockets Layer (SSL) connection to a Web server. You have a local database of
signatures that identifies providers you trust. These providers can then issue a cer-
tificate to a certificate authority (CA), which might then be extended to other
authorities. Finally, the hosting site has its certificate signed by one of these authori-
ties. You must follow this chain of trust from CA to CA when you establish an SSL
connection. The traversal is successful only when you reach an authority that’s in
your trusted database.
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Now say you want to impersonate a Web site for some nefarious means. For
the moment, leave Domain Name System (DNS) out of the picture because it’s
often an easy target. Instead, all you want to do is find a way to manipulate the
certificate database anywhere in the chain of trust. This includes manipulating
the client certificate database of visitors, compromising the target site directly, or
manipulating any CA database in the chain, including a root CA. 

It helps to repeat that last part, just to make sure the emphasis is clear. The
transitive nature of the trust shared by every CA means that a compromise of any
CA allows an attacker to impersonate any site successfully. It doesn’t matter if the
CA that issued the real certificate is compromised because any certificate issued
by a valid CA will suffice. This means the integrity of any SSL transaction is only
as strong as the weakest CA. Unfortunately, this method is the best that’s available
for establishing a host’s identity.

Some systems can be implemented only by using a transitive chain of trust. As
an auditor, however, you want to look closely at the impact of choosing this trust
model and determine whether a chain of trust is appropriate. You also need to 
follow trusts across all the included components and determine the real exposure
of any component. You’ll often find that the results of using a chain of trust are
complex and subtle trust relationships that attackers could exploit.

Defense in Depth
Defense in depth is the concept of layering protections so that the compromise of one
aspect of a system is mitigated by other controls. Simple examples of defense in depth
include using low privileged accounts to run services and daemons, and isolating dif-
ferent functions to different pieces of hardware. More complex examples include net-
work demilitarized zones (DMZs), chroot jails, and stack and heap guards.

Layered defenses should be taken into consideration when you’re prioritizing
components for review. You would probably assign a lower priority to an
intranet-facing component running on a low privileged account, inside a chroot
jail, and compiled with buffer protection. In contrast, you would most likely
assign a higher priority to an Internet-facing component that must run as root.
This is not to say that the first component is safe and the second isn’t. You just
need to look at the evidence and prioritize your efforts so that they have the most
impact. Prioritizing threats is discussed in more detail in “Threat Modeling” later
on in this chapter.

Principles of Software Design
The number of software development methodologies seems to grow directly in pro-
portion to the number of software developers. Different methodologies suit differ-
ent needs, and the choice for a project varies based on a range of factors.
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Fortunately, every methodology shares certain commonly accepted principles. The
four core principles of accuracy, clarity, loose coupling, and strong cohesion (dis-
cussed in the following sections) apply to every software design and are a good
starting point for any discussion of how design can affect security.

Accuracy
Accuracy refers to how effectively design abstractions meet the associated require-
ments. (Remember the discussion on requirements in Chapter 1.) Accuracy includes
both how correctly abstractions model the requirements and how reasonably they can
be translated into an implementation. The goal is, of course, to provide the most accu-
rate model with the most direct implementation possible.

In practice, a software design might not result in an accurate translation into an
implementation. Oversights in the requirements-gathering phase could result in a
design that misses important capabilities or emphasizes the wrong concerns. Fail-
ures in the design process might result in an implementation that must diverge
drastically from the design to meet real-world requirements. Even without failures
in the process, expectations and requirements often change during the implementa-
tion phase. All these problems tend to result in an implementation that can diverge
from the intended (and documented) design.

Discrepancies between a software design and its implementation result in
weaknesses in the design abstraction. These weaknesses are fertile ground for a
range of bugs to creep in, including security vulnerabilities. They force developers
to make assumptions outside the intended design, and a failure to communicate
these assumptions often creates vulnerability-prone situations. Watch for areas
where the design isn’t adequately defined or places unreasonable expectations on
programmers.

Clarity
Software designs can model extremely complex and often confusing processes. To
achieve the goal of clarity, a good design should decompose the problem in a reason-
able manner and provide clean, self-evident abstractions. Documentation of the
structure should also be readily available and well understood by all developers
involved in the implementation process.

An unnecessarily complex or poorly documented design can result in vulnera-
bilities similar to those of an inaccurate design. In this case, weaknesses in the
abstraction occur because the design is simply too poorly understood for an 
accurate implementation. Your review should identify design components that are
inadequately documented or exceptionally complex. You see examples of this prob-
lem throughout the book, especially when variable relationships are tackled in
Chapter 7, “Program Building Blocks.”
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Loose Coupling
Coupling refers to the level of communication between modules and the degree to
which they expose their internal interfaces to each other. Loosely coupled modules
exchange data through well-defined public interfaces, which generally leads to
more adaptable and maintainable designs. In contrast, strongly coupled modules
have complex interdependencies and expose important elements of their internal
interfaces.

Strongly coupled modules generally place a high degree of trust in each other
and rarely perform data validation for their communication. The absence of well-
defined interfaces in these communications also makes data validation difficult and
error prone. This tends to lead to security flaws when one of the components is mal-
leable to an attacker’s control. From a security perspective, you want to look out for
any strong intermodule coupling across trust boundaries.

Strong Cohesion
Cohesion refers to a module’s internal consistency. This consistency is primarily
the degree to which a module’s interfaces handle a related set of activities. Strong
cohesion encourages the module to handle only closely related activities. A side
effect of maintaining strong cohesion is that it tends to encourage strong
intramodule coupling (the degree of coupling between different components of a
single module).

Cohesion-related security vulnerabilities can occur when a design fails to
decompose modules along trust boundaries. The resulting vulnerabilities are simi-
lar to strong coupling issues, except that they occur within the same module. This is
often a result of systems that fail to incorporate security in the early stages of their
design. Pay special attention to designs that address multiple trust domains within
a single module.

Fundamental Design Flaws
Now that you have a foundational understanding, you can consider a few examples
of how fundamental design concepts affect security. In particular, you need to see
how misapplying these concepts can create security vulnerabilities. When reading
the following examples, you’ll notice quickly that they tend to result from a combina-
tion of issues. Often, an error is open to interpretation and might depend heavily on
the reviewer’s perspective. Unfortunately, this is part of the nature of design flaws.
They usually affect the system at a conceptual level and can be difficult to categorize.
Instead, you need to concentrate on the issue’s security impact, not get caught up in
the categorization.
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Exploiting Strong Coupling
This section explores a fundamental design flaw resulting from a failure to 
decompose an application properly along trust boundaries. The general issue is
known as the Shatter class of vulnerabilities, originally reported as part of independ-
ent research conducted by Chris Paget. The specific avenue of attack takes advantage
of certain properties of the Windows GUI application programming interface (API).
The following discussion avoids many details in order to highlight the design specific
nature of Shatter vulnerabilities. Chapter 12, “Windows II: Interprocess Communica-
tion,” provides a much more thorough discussion of the technical details associated
with this class of vulnerabilities. 

Windows programs use a messaging system to handle all GUI-related events;
each desktop has a single message queue for all applications associated with it.
So any two processes running on the same desktop can send messages to each
other, regardless of the user context of the processes. This can cause an issue
when a higher privileged process, such as a service, is running on a normal
user’s desktop.

The Windows API provides the SetTimer() function to schedule sending a
WM_TIMER message. This message can include a function pointer that is invoked
when the default message handler receives the WM_TIMER message. This creates a sit-
uation in which a process can control a function call in any other process that
shares its desktop. An attacker’s only remaining concern is how to supply code for
execution in the target process.

The Windows API includes a number of messages for manipulating the content
of window elements. Normally, they are used for setting the content of text boxes
and labels, manipulating the Clipboard’s content, and so forth. However, an
attacker can use these messages to insert data into the address space of a target
process. By combining this type of message with the WM_TIMER message, an attacker
can build and run arbitrary code in any process on the same desktop. The result is a
privilege escalation vulnerability that can be used against services running on the
interactive desktop.

After this vulnerability was published, Microsoft changed the way the WM_TIMER
message is handled. The core issue, however, is that communication across a desk-
top must be considered a potential attack vector. This makes more sense when you
consider that the original messaging design was heavily influenced by the concerns
of single-user OS. In that context, the design was accurate, understandable, and
strongly cohesive. 

This vulnerability demonstrates why it’s difficult to add security to an existing
design. The initial Windows messaging design was sound for its environment, but
introducing a multiuser OS changed the landscape. The messaging queue now
strongly couples different trust domains on the same desktop. The result is new
types of vulnerabilities in which the desktop can be exploited as a public interface.
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Exploiting Transitive Trusts
A fascinating Solaris security issue highlights how attackers can manipulate a
trusted relationship between two components. Certain versions of Solaris included
an RPC program, automountd, that ran as root. This program allowed the root user
to specify a command to run as part of a mounting operation and was typically 
used to handle mounting and unmounting on behalf of the kernel. The automountd
program wasn’t listening on an IP network and was available only through three
protected loopback transports. This meant the program would accept commands
only from the root user, which seems like a fairly secure choice of interface.

Another program, rpc.statd, runs as root and listens on Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) interfaces. It’s used as part of the
Network File System (NFS) protocol support, and its purpose is to monitor NFS
servers and send out a notification in case they go down. Normally, the NFS lock
daemon asks rpc.statd to monitor servers. However, registering with rpc.statd
requires the client to tell it which host to contact and what RPC program number to
call on that host. 

So an attacker can talk to a machine’s rpc.statd and register the automountd
program for receipt of crash notifications. Then the attacker tells rpc.statd that the
monitored NFS server has crashed. In response, rpc.statd contacts the 
automountd daemon on the local machine (through the special loopback interface)
and gives it an RPC message. This message doesn’t match up to what automountd
is expecting, but with some manipulation, you can get it to decode into a valid 
automountd request. The request comes from root via the loopback transport, so
automountd thinks it’s from the kernel module. The result is that it carries out a
command of the attacker’s choice.

In this case, the attack against a public interface to rpc.statd was useful
only in establishing trusted communication with automountd. It occurred
because an implicit trust is shared between all processes running under the same
account. Exploiting this trust allowed remote attackers to issue commands to the
automountd process. Finally, assumptions about the source of communication
caused developers to be lenient in the format automountd accepts. These issues,
combined with the shared trust between these modules, resulted in a remote
root-level vulnerability.

Failure Handling
Proper failure handling is an essential component of clear and accurate usability in
a software design. You simply expect an application to handle irregular conditions
properly and provide users with assistance in solving problems. However, failure
conditions can create situations in which usability and security appear to be in
opposition. Occasionally, compromises must be made in an application’s function-
ality so that security can be enforced.
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Consider a networked program that detects a fault or failure condition in data it
receives from a client system. Accurate and clear usability dictates that the applica-
tion attempt to recover and continue processing. When recovery isn’t possible, the
application should assist users in diagnosing the problem by supplying detailed
information about the error. 

However, a security-oriented program generally takes an entirely different
approach, which might involve terminating the client session and providing the
minimum amount of feedback necessary. This approach is taken because a program
designed around an ideal of security assumes that failure conditions are the result
of attackers manipulating the program’s input or environment. From that perspec-
tive, the attempt to work around the problem and continue processing often plays
right into an attacker’s hands. The pragmatic defensive reaction is to drop what’s
going on, scream bloody murder in the logs, and abort processing. Although this
reaction might seem to violate some design principles, it’s simply a situation in
which the accuracy of security requirements supersedes the accuracy and clarity of
usability requirements.

Enforcing Security Policy
Chapter 1 discussed security expectations and how they affect a system. Now you can
take those concepts and develop a more detailed understanding of how security
expectations are enforced in a security policy. Developers implement a security policy
primarily by identifying and enforcing trust boundaries. As an auditor, you need to
analyze the design of these boundaries and the code implementing their enforcement.
In order to more easily address the elements of the security policy, enforcement is bro-
ken up into six main types discussed in the following sections.

Authentication
Authentication is the process by which a program determines who a user claims to
be and then checks the validity of that claim. A software component uses authenti-
cation to establish the identity of a peer (client or server) when initiating communi-
cation. A classic example is requiring the user of a Web site to enter a username
and password. Authentication isn’t just for human peers, either, as you can see in
the previous discussion of SSL certificates. In that example, the systems authenti-
cated with each other to function safely over an untrustworthy interface.

Common Vulnerabilities of Authentication
One notable design oversight is to not require authentication in a situation that war-
rants it. For example, a Web application presents a summary of sensitive corporate
accounting information that could be useful for insider trading. Exposing that 
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information to arbitrary Internet users without asking for some sort of authentication
would be a design flaw. Note that “lack of authentication” issues aren’t always obvi-
ous, especially when you’re dealing with peer modules in a large application. Often
it’s difficult to determine that an attacker can get access to a presumably internal
interface between two components.

Typically, the best practice is to centralize authentication in the design, espe-
cially in Web applications. Some Web applications require authentication for users
who come in through a main page but don’t enforce authentication in follow-on
pages. This lack of authentication means you could interact with the application
without ever having to enter a username or password. In contrast, centralized
authentication mitigates this issue by validating every Web request within the pro-
tected domain.

Untrustworthy Credentials
Another common mistake happens when some authentication information is pre-
sented to the software, but the information isn’t trustworthy. This problem often
happens when authentication is performed on the client side, and an attacker can
completely control the client side of the connection. For example, the SunRPC
framework includes the AUTH_UNIX authentication scheme, which basically
amounts to fully trusting the client system. The client simply passes along a record
that tells the server what the user and group IDs are, and the server just accepts
them as fact.

UNIX systems used to include a RPC daemon called rexd (remote execute dae-
mon). The purpose of this program was to let a remote user run a program on the
system as a local user. If you were to connect to the rexd system and tell the rexd
program to run the /bin/sh command as the user bin, the program would run a
shell as bin and let you interact with it. That’s about all there was to it, with the
exception that you couldn’t run programs as the root user. Typically, getting around
this restriction takes only a few minutes after you have a shell running as bin. More
recently, a remote root flaw was exposed in the default installation of sadmind on
Solaris; it treated the AUTH_UNIX authentication as sufficient validation for running
commands on behalf of the client.

Note
The bug in sadmind is documented at www.securityfocus.com/bid/
2354/info.

Many network daemons use the source IP address of a network connection or
packet to establish a peer’s identity. By itself, this information isn’t a sufficient cre-
dential and is susceptible to tampering. UDP can be trivially spoofed, and TCP 
connections can be spoofed or intercepted in various situations. UNIX provides
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multiple daemons that honor the concept of trusted hosts based on source address.
These daemons are rshd and rlogind, and even sshd can be configured to honor
these trust relationships. By initiating, spoofing, or hijacking a TCP connection
from a trusted machine on a privileged port, an attacker can exploit the trust rela-
tionship between two machines.

Insufficient Validation
An authentication system can be close to sufficient for its environment but still 
contain a fundamental design flaw that leaves it exposed. This problem isn’t likely to
happen with the typical authentication design of requiring username/password/
mom’s maiden name, as it’s easy to think through the consequences of design 
decisions in this type of system.

You’re more likely to see this kind of design flaw in programmatic authentication
between two systems. If a program makes use of existing authentication mechanisms,
such as certificates, design-level problems can arise. First, many distributed
client/server applications authenticate in only one direction: by authenticating only the
client or only the server. An attacker can often leverage this authentication scheme to
masquerade as the unauthenticated peer and perform subtle attacks on the system.

Homemade authentication with cryptographic primitives is another issue you
might encounter. From a conceptual standpoint, making your own authentication
seems simple. If you have a shared secret, you give the peer a challenge. The peer
then sends back a value that could be derived only from a combination of the chal-
lenge and shared secret. If you’re using public and private keys, you send a chal-
lenge to a peer, encrypting it with the peer’s public key, and anticipate a response
that proves the peer was able to decrypt it.

However, there’s plenty of room for error when creating authentication proto-
cols from scratch. Thomas Lopatic found an amusing vulnerability in the FWN/1
protocol of Firewall-1. Each peer sends a random number R1 and a hash of that ran-
dom number with a shared key, Hash(R1+K). The receiving peer can look at the ran-
dom number that was sent, calculate the hash, and compare it with the transmitted
value. The problem is that you can simply replay the R1 and Hash(R1+K) values to
the server because they’re made using the same shared symmetric key.

Authorization
Authorization is the process of determining whether a user on the system is permit-
ted to perform a specific operation within a trust domain. It works in concert with
authentication as part of an access control policy: Authentication establishes who a
user is, and authorization determines what that user is permitted to do. There are
many formal designs for access control systems, including discretionary access con-
trol, mandatory access control, and role-based access control. In addition, several 
technologies are available for centralizing access control into various frameworks,
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operating systems, and libraries. Because of the complexity of different access control
schemes, it’s best to begin by looking at authorization from a general perspective.

Common Vulnerabilities of Authorization
Web applications are notorious for missing or insufficient authorization. Often, you
find that only a small fraction of a Web site’s functionality does proper authoriza-
tion checks. In these sites, pages with authorization logic are typically main menu
pages and major subpages, but the actual handler pages omit authorization checks.
Frequently, it’s possible to find a way to log in as a relatively low-privileged user,
and then be able to access information and perform actions that don’t belong to
your account or are intended for higher-privileged users.

Authorities That Aren’t Secure
Omitting authorization checks is obviously a problem. You can also run into situa-
tions in which the logic for authorization checks is inconsistent or leaves room for
abuse. For example, say you have a simple expense-tracking system, and each user
in the company has an account. The system is preprogrammed with the corporate
tree so that it knows which employees are managers and who they manage. The
main logic is data driven and looks something like this:

Enter New Expense

for each employee you manage

View/Approve Expenses

This system is fairly simple. Assuming that the initial corporate tree is popu-
lated correctly, managers can review and approve expenses of their subordinates.
Normal employees see only the Enter New Expense menu entry because they aren’t
in the system as managing other employees.

Now say that you constantly run into situations in which employees are officially
managed by one person, but actually report to another manager for day-to-day issues.
To address this problem, you make it possible for each user to designate another user
as his or her “virtual” manager. A user’s virtual manager is given view and approve
rights to that user’s expenses, just like the user’s official manager. This solution might
seem fine at first glance, but it’s flawed. It creates a situation in which employees can
assign any fellow employee as their virtual manager, including themselves. The result-
ing virtual manager could then approve expenses without any further restrictions.

This simple system with an obvious problem might seem contrived, but it’s
derived from problems encountered in real-world applications. As the number of
users and groups in an application grows and the complexity of the system grows, it
becomes easy for designers to overlook the possibility of potential abuse in the
authorization logic.
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Accountability
Accountability refers to the expectation that a system can identify and log activities
that users of the system perform. Nonrepudiation is a related term that’s actually a
subset of accountability. It refers to the guarantee that a system logs certain user
actions so that users can’t later deny having performed them. Accountability, along
with authorization and authentication, establishes a complete access control policy.
Unlike authentication and authorization, accountability doesn’t specifically enforce
a trust boundary or prevent a compromise from occurring. Instead, accountability
provides data that can be essential in mitigating a successful compromise and per-
forming forensic analysis. Unfortunately, accountability is one of the most over-
looked portions of secure application design.

Common Vulnerabilities of Accountability
The most common accountability vulnerability is a system’s failure to log operations
on sensitive data. In fact, many applications provide no logging capability whatso-
ever. Of course, many applications don’t handle sensitive data that requires logging.
However, administrators or end users—not developers—should determine whether
logging is required.

The next major concern for accountability is a system that doesn’t adequately
protect its log data. Of course, this concern might also be an authorization, confi-
dentiality, or integrity issue. Regardless, any system maintaining a log needs to
ensure the security of that log. For example, the following represents a simple text-
based log, with each line including a timestamp followed by a log entry:

20051018133106 Logon Failure: Bob

20051018133720 Logon Success: Jim

20051018135041 Logout: Jim

What would happen if you included user-malleable strings in the log entry?
What’s to prevent a user from intentionally sending input that looks like a log
entry? For instance, say a user supplied “Bob\n20051018133106 Logon Success:
Greg” as a logon name. It looks like a harmless prank, but it could be used for mali-
cious activity. Attackers could use fake entries to cover malicious activity or 
incriminate an innocent user. They might also be able to corrupt the log to the point
that it becomes unreadable or unwriteable. This corruption could create a denial-of-
service condition or open pathways to other vulnerabilities. It might even provide
exploitable pathways in the logging system itself.

Manipulating this log isn’t the only problem. What happens when attackers can
read it? At the very least, they would know at what times every user logged in and
logged out. From this data, they could deduce login patterns or spot which users have
a habit of forgetting their passwords. This information might seem harmless, but it
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can be useful in staging a larger attack. Therefore, unauthorized users shouldn’t be
able to read or modify the contents of a system log.

Confidentiality
Chapter 1 described confidentiality as the expectation that only authorized parties can
view data. This requirement is typically addressed through access control mechanisms,
which are covered by authentication and authorization. However, additional measures
must be taken when communication is performed over a channel that’s not secure. In
these cases, encryption is often used to enforce confidentiality requirements. 

Encryption is the process of encoding information so that it can’t be read by a
third party without special knowledge, which includes the encryption process and
usually some form of key data. Key data is a piece of data known only to the parties
who are authorized to access the information. 

The topic of validating cryptographic algorithms and processes is not covered in
this book because the mathematics involved are extremely complex and encompass
an entire field of study. However, the knowledge you need to identify certain vul-
nerabilities in implementing and applying cryptography is covered throughout this
book, including memory management issues in cryptographic message handling
and how to validate specification requirements against an implementation.

Your biggest concern from a design perspective is in determining if a particular
cryptographic protocol is applied correctly. The protocol must be strong enough for
the data it’s protecting and must be used in a secure manner. If you’re interested in
more information on the appropriate use of cryptography, you can read Practical
Cryptography (Wiley, 2003) by Bruce Schneier and Niels Ferguson. If your interest
lies in algorithms and implementation, consider Bruce Schneier’s other book,
Applied Cryptography (Wiley, 1996).

Encryption Algorithms
Encryption has a long history, dating all the way back to ancient cultures. However,
because you’re concerned with modern cryptographic protocols that can be used to
protect data communications effectively, this chapter focuses on two major classes
of encryption: symmetric and asymmetric.

Symmetric encryption (or shared key encryption) refers to algorithms in which
all authorized parties share the same key. Symmetric algorithms are generally the
simplest and most efficient encryption algorithms. Their major weakness is that
they require multiple parties to have access to the same shared secret. The alterna-
tive is to generate and exchange a unique key for each communication relationship,
but this solution quickly results in an untenable key management situation. Fur-
ther, asymmetric encryption has no means for verifying the sender of a message
among any group of shared key users.
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Asymmetric encryption (or public key encryption) refers to algorithms in which
each party has a different set of keys for accessing the same encrypted data. This is
done by using a public and private key pair for each party. Any parties wanting to com-
municate must exchange their public keys in advance. The message is then encrypted
by combining the recipient’s public key and the sender’s private key. The resulting
encrypted message can be decrypted only by using the recipient’s private key.

In this manner, asymmetric encryption simplifies key management, doesn’t
require exposing private keys, and implicitly verifies the sender of a message. How-
ever, these algorithms are more complex and tend to be computationally intensive.
Therefore, asymmetric algorithms are typically used to exchange a symmetric key
that’s then used for the duration of a communication session.

Block Ciphers
Block ciphers are symmetric encryption algorithms that work on fixed-size blocks of
data and operate in a number of modes. You should be aware of some considerations
for their use, however. One consideration is whether the block cipher encrypts each
block independently or uses output from the previous block in encrypting the cur-
rent block. Ciphers that encrypt blocks independently are far more vulnerable to
cryptanalytic attacks and should be avoided whenever possible. Therefore, a cipher
block chaining (CBC) mode cipher is the only appropriate fixed-block cipher in gen-
eral use. It performs an XOR operation with the previous block of data, resulting in
negligible performance overhead and much higher security than modes that handle
blocks independently.

Stream Ciphers
One of the most inconvenient aspects of block ciphers is that they must handle
fixed-size chunks of data. Any data chunks larger than the block size must be
fragmented, and anything smaller must be padded. This requirement can add
complexity and overhead to code that handles something like a standard 
TCP socket.

Fortunately, block ciphers can run in modes that allow them to operate on arbi-
trarily sized chunks of data. In this mode, the block cipher performs as a stream
cipher. The counter (CTR) mode cipher is the best choice for a stream cipher. Its
performance characteristics are comparable to CBC mode, but it doesn’t require
padding or fragmentation.

Initialization Vectors
An initialization vector (IV) is a “dummy” block of data used to start a block cipher.
An IV is necessary to force the cipher to produce a unique stream of output, regard-
less of identical input. The IV doesn’t need to be kept private, although it must be
different for every new cipher initialization with the same key. Reusing an IV causes
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information leakage with a CBC cipher in only a limited number of scenarios; 
however, it severely degrades the security of other block ciphers. As a general rule,
IV reuse should be considered a security vulnerability.

Key Exchange Algorithms
Key exchange protocols can get complicated, so this section just provides some sim-
ple points to keep in mind. First, the implementation should use a standard key
exchange protocol, such as RSA, Diffie-Hellman, or El Gamal. These algorithms
have been extensively validated and provide the best degree of assurance.

The next concern is that the key exchange is performed in a secure manner,
which means both sides of the communication must provide some means of
identification to prevent man-in-the-middle attacks. All the key exchange algo-
rithms mentioned previously provide associated signature algorithms that can be
used to validate both sides of the connection. These algorithms require that both
parties have already exchanged public keys or that they are available through
some trusted source, such as a Public Key Infrastructure (PKI) server.

Common Vulnerabilities of Encryption
Now that you have some background on the proper use of encryption, it’s important
to understand what can go wrong. Homemade encryption is one of the primary
causes of confidentiality-related vulnerabilities. Encryption is extremely complicated
and requires extensive knowledge and testing to design and implement properly.
Therefore, most developers should restrict themselves to known algorithms, proto-
cols, and implementations that have undergone extensive review and testing.

Storing Sensitive Data Unnecessarily
Often a design maintains sensitive data without any real cause, typically because of
a misunderstanding of the system requirements. For instance, validating a pass-
word doesn’t require storing the password in a retrievable form. You can safely store
a hash of the password and use it for comparison. If it’s done correctly, this method
prevents the real password from being exposed. (Don’t worry if you aren’t familiar
with hashes; they are introduced in “Hash Functions” later in this chapter.)

Clear-text passwords are one of the most typical cases of storing data unneces-
sarily, but they are far from the only example of this problem. Some application
designs fail to classify sensitive information properly or just store it for no under-
standable reason. The real issue is that any design needs to classify the sensitivity of
its data correctly and store sensitive data only when absolutely required.

Lack of Necessary Encryption
Generally, a system doesn’t provide adequate confidentiality if it’s designed to
transfer clear-text information across publicly accessible storage, networks, or
unprotected shared memory segments. For example, using TELNET to exchange
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sensitive information would almost certainly be a confidentiality-related design 
vulnerability because TELNET does not encrypt its communication channel. 

In general, any communication with the possibility of containing sensitive infor-
mation should be encrypted when it travels over potentially compromised or public
networks. When appropriate, sensitive information should be encrypted as it’s
stored in a database or on disk. Encryption requires a key management solution of
some sort, which can often be tied to a user-supplied secret, such as a password. In
some situations, especially when storing passwords, hashed values of sensitive data
can be stored in place of the actual sensitive data.

Insufficient or Obsolete Encryption
It’s certainly possible to use encryption that by design isn’t strong enough to pro-
vide the required level of data security. For example, 56-bit single Digital Encryption
Standard (DES) encryption is probably a bad choice in the current era of inexpen-
sive multigigahertz computers. Keep in mind that attackers can record encrypted
data, and if the data is valuable enough, they can wait it out while computing power
advances. Eventually, they will be able to pick up a 128 q-bit quantum computer at
Radio Shack, and your data will be theirs (assuming that scientists cure the aging
problem by 2030, and everyone lives forever).

Jokes aside, it’s important to remember that encryption implementations do age
over time. Computers get faster, and mathematicians find devious new holes in
algorithms just as code auditors do in software. Always take note of algorithms and
key sizes that are inadequate for the data they protect. Of course, this concern is a
moving target, so the best you can do is keep abreast of the current recommended
standards. Organizations such as the National Institute for Standards and Technol-
ogy (NIST; www.nist.gov) do a good job of publishing generally accepted criteria for
algorithms and key sizes.

Data Obfuscation Versus Data Encryption
Some applications—and even industry-wide security standards—don’t seem to dif-
ferentiate between data obfuscation and data encryption. Put simply, data is obfus-
cated when attackers have access to all the information they need to recover
encoded sensitive data. This situation typically occurs when the method of encod-
ing data doesn’t incorporate a unique key, or the key is stored in the same trust
domain as the data. Two common examples of encoding methods that don’t incor-
porate a unique key are ROT13 text encoding and simple XOR mechanisms. 

The problem of keys stored in the same context as data is a bit more confusing
but not necessarily less common. For example, many payment-processing applica-
tions store sensitive account holder information encrypted in their databases, but
all the processing applications need the keys. This requirement means that stealing
the backup media might not give attackers the account data, but compromising any
payment server can get them the key along with the encrypted data. Of course, you
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could add another key to protect the first key, but all the processing applications
would still require access. You could layer as many keys as you like, but in the end,
it’s just an obfuscation technique because each processing application needs to
decrypt the sensitive data.

Note
The PCI (Payment Card Industry) 1.0 Data Security Requirement is
part of an industry-wide standard to help ensure safe handling of
payment card data and transactions. These requirements are a 
forward-thinking move for the industry, and many of them are 
consistent with best security practices. However, the standard 
contains requirements that create exactly the confidentiality issue
described in this chapter. In particular, the requirements allow 
storing encrypted data and the key in the same context, as long as
the key is encrypted by another key residing in the same context.

One final point is that security by obscurity (or obfuscation) has earned a bad
reputation in the past several years. On its own, it’s an insufficient technique for
protecting data from attackers; it simply doesn’t provide a strong enough level of
confidentiality. However, in practice, obfuscation can be a valuable component of
any security policy because it deters casual snoopers and can often slow down dedi-
cated attackers.

Integrity
Chapter 1 defined integrity as the expectation that only authorized parties are able
to modify data. This requirement, like confidentiality, is typically addressed
through access control mechanisms. However, additional measures must be taken
when communication is performed over a channel that’s not secure. In these cases,
certain cryptographic methods, discussed in the following sections, are used to
ensure data integrity.

Hash Functions
Cryptographic data integrity is enforced through a variety of methods, although
hash functions are the basis of most approaches. A hash function (or “message
digest function”) accepts a variable-length input and generates a fixed-size output.
The effectiveness of a hash function is measured primarily by three requirements.
The first is that it must not be reversible, meaning that determining the input
based only on the output should be computationally infeasible. This requirement is
known as the “no pre-image” requirement. The second requirement is that the
function not have a second pre-image, which means that given the input and the
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output, generating an input with the same output is computationally infeasible.
The final requirement, and the strongest, is that a hash must be relatively collision
free, meaning that intentionally generating the same output for differing inputs
should be computationally infeasible.

Hash functions provide the foundation of most programmatic integrity protec-
tion. They can be used to associate an arbitrary set of data with a unique, fixed-size
value. This association can be used to avoid retaining sensitive data and to vastly
reduce the storage required to validate a piece of data. The simplest forms of hash
functions are cyclic redundancy check (CRC) routines. They are fast and efficient
and offer a moderate degree of protection against unintentional data modification.
However, CRC functions aren’t effective against intentional modification, which
makes them unusable for security purposes. Some popular CRC functions include
CRC-16, CRC-32, and Adler-32.

The next step up from CRC functions are cryptographic hash functions. They
are far more computationally intensive, but they offer a high degree of protection
against intentional and unintentional modification. Popular hash functions include
SHA-1, SHA-256, and MD5. (Issues with MD5 are discussed in more detail in “Bait-
and-Switch Attacks” later in this chapter.)

Salt Values
Salt values are much the same as initialization vectors. The “salt” is a random value
added to a message so that two messages don’t generate the same hash value. As with
an IV, a salt value must not be duplicated between messages. A salt value must be stored
in addition to the hash so that the digest can be reconstructed correctly for compari-
son. However, unlike an IV, a salt value should be protected in most circumstances.

Salt values are most commonly used to prevent precomputation-based attacks
against message digests. Most password storage methods use a salted hash value to
protect against this problem. In a precomputation attack, attackers build a diction-
ary of all possible digest values so that they can determine the original data value.
This method works only for fairly small ranges of input values, such as passwords;
however, it can be extremely effective.

Consider a salt value of 32 random bits applied to an arbitrary password. This
salt value increases the size of a password precomputation dictionary by four billion
times its original value (232). The resulting precomputation dictionary would likely
be too large for even a small subset of passwords. Rainbow tables, developed by
Philippe Oechslin, are a real-world example of how a lack of a salt value leaves pass-
word hashes vulnerable to pre-computation attacks. Rainbow tables can be used to
crack most password hashes in seconds, but the technique works only if the hash
does not include a salt value. You can find more information on rainbow tables at
the Project RainbowCrack website: http://www.antsight.com/zsl/rainbowcrack/.
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Originator Validation
Hash functions provide a method of validating message content, but they can’t
validate the message source. Validating the source of a message requires incorpo-
rating some form of private key into the hash operation; this type of function is
known as a hash-based message authentication code (HMAC) function. A MAC is
a function that returns a fixed-length value computed from a key and variable-
length message.

An HMAC is a relatively fast method of validating a message’s content and
sender by using a shared secret. Unfortunately, an HMAC has the same weakness
as any shared key system: An attacker can impersonate any party in a conversation
by compromising only one party’s key.

Cryptographic Signatures
A cryptographic signature is a method of associating a message digest with a
specific public key by encrypting the message digest with the sender’s public
and private key. Any recipient can then decrypt the message digest by using the
sender’s public key and compare the resulting value against the computed mes-
sage digest. This comparison proves that the originator of the message must have
had access to the private key.

Common Vulnerabilities of Integrity
Integrity vulnerabilities are similar to confidentiality vulnerabilities. Most integrity
vulnerabilities can, in fact, be prevented by addressing confidentiality concerns.
However, some integrity-related design vulnerabilities, discussed in the following
sections, merit special consideration.

Bait-and-Switch Attacks
Commonly used hashing functions must undergo a lot of public scrutiny. However,
over time, weaknesses tend to appear that could result in exploitable vulnerabilities.
The bait-and-switch attack is typically one of the first weaknesses found in an aging
hash function. This attack takes advantage of a weak hash function’s tendency to
generate collisions over certain ranges of input. By doing this, an attacker can create
two inputs that generate the same value.

For example, say you have a banking application that accepts requests to trans-
fer funds. The application receives the request, and if the funds are available, it
signs the transfer and passes it on. If the hashing function is vulnerable, attackers
could generate two fund transfers that produce the same digest. The first request
would have a small value, and the second would be much larger. Attackers could
then open an account with a minimum balance and get the smaller transfer
approved. Then they would submit the larger request to the next system and close
out their accounts before anyone was the wiser.
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Bait-and-switch attacks have been a popular topic lately because SHA-1 and
MD5 are starting to show some wear. The potential for collision vulnerabilities in
MD5 was identified as early as 1996, but it wasn’t until August 2004 that Xiaoyun
Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu published a paper describing suc-
cessful collisions with the MD5 algorithm. This paper was followed up in March
2005 by Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. They successfully gen-
erated a colliding pair of X.509 certificates with different public keys, which is the
certificate format used in SSL transactions. More recently, Vlastimil Klima pub-
lished an algorithm in March 2006 that’s capable of finding MD5 collisions in an
extremely short time. 

The SHA family of algorithms is also under close scrutiny. A number of potential
attacks against SHA-0 have been identified; however, SHA-0 was quickly superseded
by SHA-1 and never saw significant deployment. The SHA-0 attack research has pro-
vided the foundation for identifying vulnerabilities in the SHA-1 algorithm, although
at the time of this writing, no party has successfully generated a SHA-1 collision. How-
ever, these issues have caused several major standards bodies (such as the U.S.-based
NIST) to initiate phasing out SHA-1 in favor of SHA-256 (also known as SHA-2).

Of course, finding random collisions is much harder than finding collisions that
are viable for a bait-and-switch attack. However, by their nature, cryptographic
algorithms should be chosen with the intention that their security will be viable far
beyond the applicable system’s life span. This reasoning explains the shift in recent
years from hashing algorithms that had previously been accepted as relatively
secure. The impact of this shift can even be seen in password-hashing applications,
which aren’t directly susceptible to collision-based attacks, but are also being
upgraded to stronger hash functions.

Availability
Chapter 1 defined availability as the capability to use a resource when expected.
This expectation of availability is most often associated with reliability, and not
security. However, there are a range of situations in which the availability of a sys-
tem should be viewed as a security requirement.

Common Vulnerabilities of Availability
There is only one type of general vulnerability associated with a failure of availability—
the denial-of-service (DoS) vulnerability. A DoS vulnerability occurs when an attacker
can make a system unavailable by performing some unanticipated action. 

The impact of a DoS attack can be very dependant on the situation in which it
occurs. A critical system may include an expectation of constant availability, and
outages would represent an unacceptable business risk. This is often the case
with core business systems such as centralized authentication systems or flagship
websites. In both of these cases, a successful DoS attack could correspond
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directly to a significant loss of revenue due to the business’s inability to function
properly without the system.

A lack of availability also represents a security risk when an outage forces
requirements to be addressed in a less secure manner. For example, consider a
point-of-sale (PoS) system that processes all credit card transactions via a central
reconciliation server. When the reconciliation server is unavailable, the PoS system
must spool all of the transactions locally and perform them at a later time. An
attacker may have a variety of reasons for inducing a DoS between a PoS system and
the reconciliation server. The DoS condition may allow an attacker to make pur-
chases with stolen or invalid credit cards, or it may expose spooled cardholder infor-
mation on a less secure PoS system.

Threat Modeling
By now, you should have a good idea of how design affects the security of a software
system. A system has defined functionality that’s provided to its users but is bound
by the security policy and trust model. The next step is to turn your attention to
developing a process for applying this knowledge to an application you’ve been
tasked to review. Ideally, you need to be able to identify flaws in the design of a sys-
tem and prioritize the implementation review based on the most security-critical
modules. Fortunately, a formalized methodology called threat modeling exists for
just this purpose.

In this chapter, you use a specific type of threat modeling that consists of a five-
phase process:

■ Information collection
■ Application architecture modeling
■ Threat identification
■ Documentation of findings
■ Prioritizing the implementation review

This process is most effectively applied during the design (or a refactoring)
phase of development and is updated as modifications are made in later develop-
ment phases. It can, however, be integrated entirely at later phases of the SDLC. It
can also be applied after development to evaluate an application’s potential expo-
sure. The phase you choose depends on your own requirements, but keep in mind
that the design review is just a component of a complete application review. So
make sure you account for the requirements of performing the implementation and
operational review of the final system.

This approach to threat modeling should help establish a framework for relating
many of the concepts you’ve already learned. This process can also serve as a
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roadmap for applying many concepts in the remainder of this book. However, you
should maintain a willingness to adapt your approach and alter these techniques as
required to suit different situations. Keep in mind that processes and methodolo-
gies can make good servants but are poor masters.

Note
This threat-modeling process was originally introduced in Writing
Secure Code, 2nd Edition (Microsoft Press, 2002) by Michael Howard
and David Le Blanc. It was later expanded and refined in Threat
Modeling (Microsoft Press, 2004) by Frank Swiderski and Window
Snyder.

Information Collection
The first step in building a threat model is to compile all the information you can
about the application. You shouldn’t put too much effort into isolating security-
related information yet because at this phase you aren’t certain what’s relevant to
security. Instead, you want to develop an understanding of the application and get
as much information as possible for the eventual implementation review. These are
the key areas you need to identify by the end of this phase:

■ Assets—Assets include anything in the system that might have value to attack-
ers. They could be data contained in the application or an attached database,
such as a database table of user accounts and passwords. An asset can also be
access to some component of the application, such as the capability to run
arbitrary code on a target system.

■ Entry points—Entry points include any path through which an attacker can
access the system. They include any functionality exposed via means such as
listening ports, Remote Procedure Call (RPC) endpoints, submitted files, or
any client-initiated activity.

■ External entities—External entities communicate with the system via its entry
points. These entities include all user classes and external systems that inter-
act with the application.

■ External trust levels—External trust levels refer to the privileges granted to an
external entity, as discussed in “Trust Relationships” earlier in this chapter. A
complex system might have several levels of external trust associated with dif-
ferent entities, whereas a simple application might have nothing more than a
concept of local and remote access.

■ Major components—Major components define the structure of an application
design. Components can be internal to the application, or they might represent
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external module dependencies. The threat-modeling process involves decompos-
ing these components to isolate their security-relevant considerations.

■ Use scenarios—Use scenarios cover all potential applications of the system.
They include a list of both authorized and unauthorized scenarios.

Developer Interviews
In many situations, you can save yourself a lot of time by going straight to the horse’s
mouth, as it were. So if you have access to the developers, be sure to use this access to
your advantage. Of course, this option might not be available. For instance, an inde-
pendent vulnerability researcher rarely has access to the application’s developers.

When you approach a system’s developers, you should keep a few points in
mind. First, you’re in a position to criticize work they have put a lot of time and effort
into. Make it clear that your goal is to help improve the security of their application,
and avoid any judgmental or condescending overtones in your approach. After you
have a decent dialogue going, you still need to verify any information you get against
the application’s implementation. After all, the developers might have their own mis-
conceptions that could be a contributing factor to some vulnerabilities.

Developer Documentation
A well-documented application can make the review process faster and more thor-
ough; however, there’s one major catch to this convenience. You should always be
cautious of any design documentation for an existing implementation. The reason
for this caution isn’t usually deceitful or incompetent developers; it’s just that too
many things change during the implementation process for the result to ever match
the specifications perfectly. 

A number of factors contribute to these inconsistencies between specifications
and the implementation. Extremely large applications can often drift drastically
from their specifications because of developer turnover and minor oversights com-
pounded over time. Implementations can also differ simply because two people
rarely have exactly the same interpretation of a specification. The bottom line is that
you should expect to validate everything you determine from the design against the
actual implementation.

Keeping this caveat in mind, you still need to know how to wring everything you
can out of the documentation you get. Generally, you want anything you can get your
hands on, including design (diagrams, protocol specifications, API documentation,
and so on), deployment (installation guides, release notes, supplemental configura-
tion information, and so forth), and end-user documentation. In binary (and some
source code) reviews, end-user documentation is all you can get, but don’t underesti-
mate its value. This documentation is “customer-facing” literature, so it tends to be
fairly accurate and can offer a process-focused view that makes the system easier 
to understand.
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Standards Documentation
If you’re asked to examine an application that uses standardized network protocols
or file formats, a good understanding of how those protocols and file formats are
structured is necessary to know how the application should function and what
deficiencies might exist. Therefore, acquiring any published standards and related
documentation created by researchers and authors is a good idea. Typically, Inter-
net-related standards documents are available as requests for comments (RFCs,
available at www.ietf.org/rfc/). Open-source implementations of the same stan-
dards can be particularly useful in clarifying ambiguities you might encounter
when researching the technology a target application uses.

Source Profiling
Access to source code can be extremely helpful when you’re trying to gather infor-
mation on an application. You don’t want to go too deep at this phase, but having
the source code can speed up a lot of the initial modeling process. Source code can
be used to initially verify documentation, and you can determine the application’s
general structure from class and module hierarchies in the code. When the source
does not appear to be laid out hierarchically, you can look at the application startup
to identify how major components are differentiated at initialization. You can also
identify entry points by skimming the code to find common functions and objects,
such as listen() or ADODB.

System Profiling
System profiling requires access to a functional installation of the application, which
gives you an opportunity to validate the documentation review and identify elements
the documentation missed. Threat models performed strictly from documentation need
to skip this step and validate the model entirely during the implementation review.

You can use a variety of methods for profiling an application. Here are a few
common techniques:

■ File system layout—Look at the application’s file system layout and make notes
of any important information. This information includes identifying the per-
mission structure, listing all executable modules, and identifying any relevant
data files.

■ Code reuse—Look for any application components that might have come from
another library or package, such as embedded Web servers or encryption
libraries. These components could present their own unique attack surface
and require further review.

■ Imports and exports—List the function import and export tables for every mod-
ule. Look closely for any libraries used for establishing or managing external
connections or RPC interfaces.
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■ Sandboxing—Run the application in a sandbox so that you can identify every
object it touches and every activity it performs. Use a sniffer and application
proxies to record any network traffic and isolate communication. In Windows
environments, the Filemon, Regmon, WinObj, and Process Explorer utilities
(from www.sysinternals.com) are helpful for this activity.

■ Scanning—Probe the application on any listening ports, RPC interfaces, or
similar external interfaces. Try grabbing banners to validate the protocols in
use and identify any authentication requirements. For HTTP applications,
try spidering links and identifying as many unique entry points as possible.

Application Architecture Modeling
After you have some background information, you need to begin examining the
application architecture. This phase involves familiarizing yourself with how the
software is structured and what components can affect its overall security. These
steps help identify design concerns and let you know where to focus your energies
during the implementation review. You build this knowledge by reviewing existing
documentation of the application model and developing new models as required.
Every piece of software is modeled to some extent during its development; the only
difference is whether the models are ever formally recorded. So you need to under-
stand the types of modeling in common use and how you can develop your own.

Unified Markup Language
Unified Markup Language (UML) is a specification developed by the Object Man-
agement Group (OMG; www.omg.org/uml/) to describe many different aspects of
how an application operates from a fairly high level. It includes diagrams to
describe information flow, interaction between components, different states the
application can be in, and more. Of particular interest in this phase are class dia-
grams, component diagrams, and use cases. The following list briefly describes
these types of diagrams so that you get a feel for what they’re trying to convey. If
you’re unfamiliar with UML, picking up one of the myriad books available on the
subject is strongly recommended. Because of UML’s complexity, explaining it in
depth is far beyond the scope of this chapter.

Note
UML has gone through several revisions. The currently accepted
standard is UML 2.0.

■ Class diagrams—A class diagram is a UML diagram for modeling an object-
oriented (OO) solution. Each object class is represented by a rectangle that
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includes the methods and attributes in the class. Relationships between
objects are then represented by lines between classes. Lines with arrows on
one end define parents in an inheritance hierarchy; unadorned lines (no
arrows) with numbers near the ends indicate a cardinality relationship.
Class diagrams can be helpful when you’re trying to understand relationships
in a complex module. They essentially spell out how an application is modeled
and how classes interact with each other. Realistically, however, you won’t
encounter them all that often unless you’re performing in-house code reviews.
By analyzing an OO solution, you can roughly construct class diagrams.
Although doing so might seem like a waste of time, they can be useful when
you need to come back and review the same software later or when you per-
form an initial high-level review and then hand off various code-auditing tasks
to other members of a team. 

■ Component diagrams—Component diagrams divide a solution into its con-
stituent components, with connectors indicating how they interact with each
other. A component is defined as an opaque subsystem that provides an inde-
pendent function for a solution. Examples of a component include a database,
a parser of some description, an ordering system, and so forth. A component
diagram offers a less complex view of a system than class diagrams do
because components generally represent a complete self-contained subsys-
tem, often implemented by many classes and modules.
A component diagram exposes interfaces (denoted by protruding circles) and
uses interfaces of other components (denoted by an empty semicircle). Com-
ponents are tied together through these interface exposures or by means of
association lines, which indicate that two components are inherently interre-
lated and don’t rely on exposed interfaces. Component diagrams also allow
two components to be joined together by realization. A realization simply
means that the functionality required by one component is a subset of the
functionality exposed by an interface of another component. Realization is
represented by a dotted line.
In an assessment, a component diagram can be valuable for defining the high-
level view of a system and its intercomponent relationships. It can be espe-
cially useful when you’re trying to develop the initial context of a threat model
because it eliminates much of a system’s complexity and allows you to focus
on the big picture.

■ Use cases—A use case is possibly the most nebulous component of the UML
standard. There are no strict requirements for what a use case should look like
or include. It can be represented with text or graphics, and developers choose
which they prefer. Fundamentally, a use case is intended to describe how an
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application should be used, so a good set of use cases can come in handy.
After all, when you know what an application should be doing, addressing
what it shouldn’t be doing is easier. When reviewing use cases, keep an eye
out for any developer assumptions about the system’s behavior. 

Data Flow Diagrams
A number of diagramming tools can aid in understanding a system, but the data
flow diagram (DFD) is one of the most effective for security purposes. These dia-
grams are used to map how data moves through a system and identify any affected
elements. If done properly, the DFD modeling process accounts not only for the
application functionality exposed directly to external sources, but also the function-
ality that’s exposed indirectly. This modeling process also accounts for mitigating
factors in a system’s design, such as additional security measures enforcing trust
boundaries. Figure 2-2 shows the five main elements of a DFD, which are summa-
rized in the following list:

■ Processes—Processes are opaque logic components with well-defined input and
output requirements. They are represented with a circle, and groups of related
processes are represented by a circle with a double border. Multiple process
groups can be further decomposed in additional DFDs for each single process.
Although processes aren’t typically assets, they can be in some contexts.

■ Data stores—Data stores are information resources the system uses, such as files
and databases. They are represented by open-ended rectangular boxes. Usually,
anything represented in this way in a DFD is considered a system asset.

■ External entities—These elements, described previously in “Information Collec-
tion,” are “actors” and remote systems that communicate with the system over
its entry points. They are represented by closed rectangles. Identifying external
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entities helps you isolate system entry points quickly and determine what
assets are externally accessible. External entities might also represent assets
that need to be protected, such as a remote server.

■ Data flow—The flow of data is represented by arrows. It indicates what data is
sent through what parts of the system. These elements can be useful for dis-
covering what user-supplied data can reach certain components so that you
can target them in the implementation review.

■ Trust boundary—Trust boundaries are the boundaries between different enti-
ties in the system or between entire systems. They are represented by a dotted
line between the two components.

Figure 2-3 shows how you can use DFD elements to model a system. It repre-
sents a simplified model of a basic Web application that allows users to log in and
access resources stored in a database. Of course, DFDs look different at various 
levels of an application. A simple, high-level DFD that encapsulates a large system
is referred to as a context diagram. The Web site example is a context diagram
because it represents a high-level abstraction that encapsulates a complex system.

However, your analysis generally requires you to decompose the system further.
Each successive level of decomposition is labeled numerically, starting from zero. A
level-0 diagram identifies the major application subsystems. The major subsystems
in this Web application are distinguished by the user’s authentication state. This
distinction is represented in the level-0 diagram in Figure 2-4.

Depending on the complexity of a system, you may need to continue decompos-
ing. Figure 2-5 is a level-1 diagram of the Web application’s login process. Normally,
you would only progress beyond level-0 diagrams when modeling complex subsys-
tems. However, this level-1 diagram provides a useful starting point for using DFDs
to isolate design vulnerabilities.
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When preparing for an implementation review, you can use these diagrams to
model application behavior and isolate components. For instance, Figure 2-6
shows the login process altered just a bit. Can you see where the vulnerability is?
The way the login process handles an invalid login has been changed so that it
now returns the result of each phase directly back to the client. This altered
process is vulnerable because attackers can identify valid usernames without 
logging in successfully, which can be extremely useful in attempting a brute-force
attack against the authentication system.

By diagramming this system, you can more easily identify its security compo-
nents. In this example, it helped you isolate a vulnerability in the way the system
authenticates. Of course, the login example is still fairly simple; a more complex 
system might have several layers of complexity that must be encapsulated in multiple
DFDs. You probably don’t want model all these layers, but you should decompose
different components until you’ve reached a point that isolates the security-relevant
considerations. Fortunately, there are tools to assist in this process. Diagramming
applications such as Microsoft Visio are useful, and the Microsoft Threat Modeling
Tool is especially helpful in this process. 
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Threat Identification 
Threat identification is the process of determining an application’s security expo-
sure based on your knowledge of the system. This phase builds on the work you did
in previous phases by applying your models and understanding of the system to
determine how vulnerable it is to external entities. For this phase, you use a new
modeling tool called attack trees (or threat trees), which provide a standardized
approach for identifying and documenting potential attack vectors in a system.

Drawing an Attack Tree
The structure of an attack tree is quite simple. It consists of a root node, which
describes the attacker’s objective, and a series of subnodes that indicate ways of
achieving that objective. Each level of the tree breaks the steps into more detail until
you have a realistic map of how an attacker can exploit a system. Using the simple
Web application example from the previous section, assume it’s used to store per-
sonal information. Figure 2-7 shows a high-level attack tree for this application.

As you can see, the root node is at the top with several subnodes underneath.
Each subnode states an attack methodology that could be used to achieve the goal
stated in the root node. This process is further decomposed, as necessary, into
subnodes that eventually define an attack. Looking at this diagram, you should start
to notice the similarities between attack trees and DFDs. After all, an attack tree
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Figure 2-7 Attack tree example
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isn’t developed in a vacuum. It’s best created by walking through a DFD and using
the attack tree to note specific concerns. As an example, notice how the branch
leading to subnode 1.2.1 follows the same reasoning pattern used previously in 
analyzing the DFD of the flawed login process.

As with DFDs, you want to continue decomposing attack trees only along
security-relevant paths. You need to use your judgment and determine what paths
constitute reasonable attack vectors and what vectors are unlikely. Before getting
into that topic, however, continue to the next section for a more detailed descrip-
tion of the attack tree structure.

Node Types 
You might have noticed some strange markings in the lines connecting each node
to its children (such as nodes 1.2.1.1 and 1.2.1.2). The arc between these node con-
nectors indicates that the child nodes are AND nodes, meaning both conditions of
the child node must be met to continue evaluating the vector. A node without an
arc is simply an OR node, meaning either branch can be traversed without any
additional condition. Referring to Figure 2-7, look at the brute-force login vector in
node 1.2.1. To traverse past this node, you must meet the following conditions in
the two subnodes:

■ Identify username
■ Identify user password

Neither step can be left out. A username with no password is useless, and a
password without the associated username is equally useless. Therefore, node 1.2.1
is an AND node.

Conversely, OR nodes describe cases in which an objective can be reached by
achieving any one of the subnodes. So the condition of just a single node must be
met to continue evaluating the child nodes. Referring to Figure 2-7 again, look at the
objective “Log in as target user” in node 1.2. This objective can be achieved with
either of the following approaches:

■ Brute-force login
■ Steal user credentials

To log in as the user, you don’t have to achieve both goals; you need to achieve
only one. Therefore, they are OR nodes.

Textual Representation
You can represent attack trees with text as well as graphics. Text versions convey
identical information as the graphical versions but sometimes aren’t as easy to visu-
alize (although they’re more compact). The following example shows how you
would represent the attack tree from Figure 2-7 in a text format:
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1. Adversary gains access to a user’s personal information

OR 1.1 Gain direct access to the database

1.1.1 Exploit a hole in system application or kernel

1.2 Log in as target user

OR 1.2.1 Brute-force login

AND 1.2.1.1 Identify username

1.2.1.2 Identify user password

1.2.2 Steal user credentials

1.3 Hijack user session

1.3.1 Steal user session cookie

1.4 Passively intercept personal data

AND 1.4.1 Identify user connection initiation

1.4.2 Sniff network traffic for personal data

As you can see, all the same information is present. First, the root node objec-
tive is stated as the heading of the attack tree, and its immediate descendants are
numbered and indented below the heading. Each new level is indented again and
numbered below its parent node in the same fashion. The AND and OR keywords
are used to indicate whether nodes are AND or OR nodes.

Threat Mitigation
Part of the value of an attack tree is that it allows you to track potential threats.
However, tracking threats isn’t particularly useful if you have no way of identifying
how they are mitigated. Fortunately, attack trees include a special type of node for
addressing that concern: a circular node. Figure 2-8 shows a sample attack tree with
mitigating factors in place.

Three mitigation nodes have been added to this attack tree to help you realize
that these vectors are less likely avenues of attack than the unmitigated branches.
The dashed lines used in one mitigation node are a shorthand way to identify a
branch as an unlikely attack vector. It doesn’t remove the branch, but it does
encourage you to direct your focus elsewhere.

One final note on mitigation: You don’t want to look for it too early. Identifying
mitigating factors is useful because it can prevent you from pursuing an unlikely
attack vector. However, you don’t want to get lulled into a false sense of security
and miss a likely branch. So consider mitigation carefully, and make sure you per-
form some validation before you add it to your attack tree.
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Documentation of Findings
Now that the investigative work is done, you need to document what you discovered. 
In the documentation phase, you will review the threats you uncovered in the previous
phase and present them in a formal manner. For each threat you uncovered, you need to
provide a brief summary along with any recommendations for eliminating the threat. To
see how this process works, use the “Brute-force login” threat (node 1.2.1) from your
sample attack tree. This threat could allow an attacker to log in with another user’s 
credentials. The documentation of your threat summary would look similar to Table 2-1.

Table 2-1 

Threat Summary

Threat Brute-force login.

Affected Component Web application login component.

Description Clients can brute-force attack usernames and passwords by repeatedly 
connecting and attempting to log in. This threat is increased because the
application returns different error messages for invalid username and 
passwords, making usernames easier to identify.
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Figure 2-8 An attack tree with mitigation nodes
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Result Untrusted clients can gain access to a user account and, therefore, read or
modify sensitive information.

Mitigation Strategies Make error messages ambiguous so that an attacker doesn’t know whether
the username or password is invalid. Lock the user account after repeated
failed login attempts. (Three or five attempts would be appropriate.)

All the information for the brute-force login threat is neatly summarized in a
table. In the next part of this phase, you extend this table to include some additional
information on the risk of the threat.

DREAD Risk Ratings
Real-world applications are generally much larger and more complex in both design
and implementation than the examples used in this chapter. Increased size and com-
plexity creates a broad spectrum of attack vectors in a variety of user classes. As a
result, you can usually come up with a long list of potential threats and possible recom-
mendations to help mitigate those threats. In a perfect world, designers could system-
atically go about addressing each threat and fixing potential issues, closing each attack
vector as necessary. However, certain business realities might not allow mitigating
every identified vector, and almost certainly not all at once. Clearly, some sort of priori-
tization is needed to help address the more serious vectors before worrying about the
less important ones. By assigning a threat severity rating, you can rank each uncovered
threat based on the risk it poses to the security of the application and associated sys-
tems. This rating can then be used as a guideline for developers to help decide which
issues take precedence.

You can choose to rate threats in a number of different ways. What’s most
important is that you incorporate the exposure of the threat (how easy is it to
exploit and who the vector is available to) and the amount of damage incurred
during a successful exploit. Beyond that, you might want to add components 
that are more pertinent to your environment and business processes. For this
chapter’s threat-modeling purposes, the DREAD rating system developed by
Microsoft is used. No model is perfect, but this one provides a fairly good balance
of commonly accepted threat characteristics. These characteristics are briefly
summarized as follows:

■ Damage potential—What are the repercussions if the threat is exploited 
successfully?

■ Reproducibility—How easy is it to reproduce the attack in question?
■ Exploitability—How difficult is it to perform the attack?
■ Affected users—If a successful attack is carried out, how many users would be

affected and how important are they?
■ Discoverability—How difficult is it to spot the vulnerability?
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Each category can be given a score between 1 and 10 (1 being the lowest, 10 the
highest). Category scores are then totaled and divided by 5 for an overall threat rat-
ing. A rating of 3 or below can be considered a low-priority threat, 4 to 7 as a
medium-priority threat, and 8 or greater as a high-priority threat.

Note
The DREAD model is also useful in rating implementation and oper-
ational vulnerabilities. In fact, you can use DREAD as your general-
purpose rating system over the entire course of an application
review.

One of the benefits of the DREAD rating system is that it provides a range of
detail you can use when presenting results to business decision makers. You can
give them a concise threat assessment, with just the total threat rating and the
category it falls into. You could also present more detailed information, such as
individual scores for the five threat categories. You might even want to give them
a full report, including the model documentation and an explanation of how you
arrived at the scores for each category. Regardless of your choice, it’s a good idea
to have information available at each level of detail when making a presentation
to clients or senior management. 

Table 2-2 is an example of applying a DREAD rating to the brute-force login threat.

Table 2-2

Threat Summary with DREAD Rating

Threat Brute-force login.

Affected Component Web application login component.

Description Clients can brute-force attack usernames and passwords by repeatedly 
connecting and attempting to log in. This threat is increased because the
application returns a different error message for an invalid username 
than a valid one, making usernames easier to identify.

Result Untrusted clients can gain access to a user account and, therefore, read or
modify sensitive information.

Mitigation Strategies Make error messages ambiguous so that an attacker doesn’t know whether
the username or password is invalid.
Lock the user account after repeated failed login attempts. (Three to five
attempts would be appropriate.)

Risk Damage potential: 6
Reproducibility: 8
Exploitability: 4
Affected users: 5
Discoverability: 8
Overall: 6.2
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Automatic Threat-Modeling Documentation
As you can see, quite a lot of documentation is involved in the threat-modeling
process (both text and diagrams). Thankfully, Frank Swiderski (co-author of the
previously mentioned Threat Modeling) has developed a tool to help with creating
various threat-modeling documents. It’s available as a free download at
http://msdn.microsoft.com/security/securecode/threatmodeling/. The tool
makes it easy to create DFDs, use cases, threat summaries, resource summaries,
implementation assumptions, and many other documents you’re going to need.
Furthermore, the documentation is organized into a tree structure that’s easy to
navigate and maintain. The tool can output all your documentation as HTML or
another output form of your choosing, using Extensible Stylesheet Language
Transformations (XSLT) processing. Familiarizing yourself with this tool for
threat-modeling documentation is strongly recommended.

Prioritizing the Implementation Review
Now that you’ve completed and scored your threat summaries, you can finally
turn your attention to structuring the implementation review. When developing
your threat model, you should have decomposed the application according to a
variety of factors, including modules, objects, and functionality. These divisions
should be reflected in the Affected Components entry in each individual threat
summary. The next step is to make a list of components at the appropriate level
of decomposition; exactly what level is determined by the size of the application,
number of reviewers, time available for review, and similar factors. However, it’s
usually best to start at a high level of abstraction, so you only need to consider a
handful of components. In addition to the component names, you need another
column on your list for risk scores associated with each component.

After you have this component list, you simply identify which component a
threat summary belongs to and add the risk score for that summary to the associated
component. After you’ve totaled your list of summaries, you’ll have a score for the
risk associated with each component. Generally, you want to start your assessment
with the highest scoring component and continue proceeding from highest to lowest.
You might also need to eliminate some components due to time, budget, or other
constraints. So it’s best to start eliminating from the lowest scoring components. You
can apply this scoring process to the next level of decomposition for a large applica-
tion; although that starts to get into the implementation review process, which is
covered in detail in Chapter 4, “Application Review Process.”

Using a scoring list can make it a lot easier to prioritize a review, especially for a
beginner. However, it isn’t necessarily the best way to get the job done. An experi-
enced auditor will often be able to prioritize the review based on their understanding
of similar applications. Ideally, this should line up with the threat summary scores,
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but sometimes that isn’t the case. So it’s important to take the threat summaries into
account, but don’t cling to them when you have a reason to follow a better plan.

Summary
This chapter has examined the essential elements of application design review.
You’ve seen that security needs to be a fundamental consideration in application
design and learned how decisions made in the design process can dramatically
affect an application’s security. You have also learned about several tools for under-
standing the security and vulnerability potential of an application design. 

It’s important that you not treat the design review process as an isolated
component. The results of the design review should progress naturally into the
implementation review process, discussed in depth in Chapter 4.
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Chapter 3
Operational Review

“Civilization advances by extending the number of important operations which we can perform
without thinking.”

Alfred North Whitehead

Introduction
Operational vulnerabilities are the result of issues in an application’s configuration or
deployment environment. These vulnerabilities can be a direct result of configuration
options an application offers, such as default settings that aren’t secure, or they might be
the consequence of choosing less secure modes of operation. Sometimes these vulnerabili-
ties are caused by a failure to use platform security measures properly, such as file system
and shared object permissions. Finally, an operational vulnerability could be outside the
developer’s direct control. This problem occurs when an application is deployed in a 
manner that’s not secure or when the base platform inherits vulnerabilities from the
deployment environment.

The responsibility for preventing these vulnerabilities can fall somewhere between
the developer and the administrative personnel who deploy and maintain the system.



Shrink-wrapped commercial software might place most of the operational security
burden on end users. Conversely, you also encounter special-purpose systems,
especially embedded devices and turnkey systems, so tightly packaged that devel-
opers control every aspect of their configuration.

This chapter focuses on identifying several types of operational vulnerabilities
and preventive measures. Concrete examples should help you understand the sub-
tle patterns that can lead to these vulnerabilities. The goal is to help you understand
how to identify these types of vulnerabilities, not present an encyclopedia of poten-
tial issues. Technologies are varied and change often, but with a little practice, you
should be able to spot the commonalities in any operational vulnerability, which
helps you establish your own techniques for identifying vulnerabilities in the 
systems you review.

Exposure
When reviewing application security, you need to consider the impact of the
deployment environment. This consideration might be simple for an in-house appli-
cation with a known target. Popular commercial software, on the other hand, could
be deployed on a range of operating systems with unknown network profiles. When
considering operational vulnerabilities, you need to identify these concerns and
make sure they are adequately addressed. The following sections introduce the ele-
ments of an application’s environment that define its degree of exposure to various
classes of users who have access to and, therefore, are able to attack the application.

Attack Surface
Chapter 2, “Design Review,” covered the threat-modeling concepts of assets and
entry points. These concepts can be used to define an application’s attack surface,
the collection of all entry points that provide access to an asset. At the moment,
how this access is mitigated isn’t a concern; you just need to know where the
attack surface is.

For the purposes of this chapter, the discussions of trust models and threats
have been simplified because operational vulnerabilities usually occur when the
attack surface is exposed unnecessarily. So it helps to bundle the complexities into
the attack surface and simply look for where it can be eliminated.

The actual process of minimizing the attack surface is often referred to as “host
hardening” or “application hardening.” Hardening specific platforms isn’t covered
in this book, as better resources are dedicated to hardening a particular platform.
Instead, this chapter focuses on several general operational vulnerabilities that
occur because software deployment and configuration aren’t secure.
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Insecure Defaults
Insecure defaults are simply preconfigured options that create an unnecessary risk
in a deployed application. This problem tends to occur because a software or device
vendor is trying to make the deployment as simple and painless as possible—which
brings you back to the conflict between usability and security.

Any reader with a commercial wireless access point has probably run into this
same issue. Most of these devices are preconfigured without any form of connec-
tion security. The rationale is that wireless security is buggy and difficult to config-
ure. That’s probably true to an extent, but the alternative is to expose your wireless
communications to anyone within a few hundred yards. Most people would rather
suffer the inconvenience of struggling with configuration than expose their wireless
communications.

As a reviewer, two types of vulnerable default settings should concern you the
most. The first is the application’s default settings, which include any options that
can reduce security or increase the application’s attack surface without the user’s
explicit consent. These options are discussed in more detail in the remainder of this
chapter, but a few obvious installation considerations are prompting for passwords
versus setting defaults, enabling more secure modes of communication, and enforc-
ing proper access control.

You also need to consider the default settings of the base platform and operating
system. Examples of this measure include ensuring that the installation sets ade-
quate file and object permissions or restricting the verbs allowed in a Web request.
The process can get a bit complicated if the application is portable across a range of
installation targets, so be mindful of all potential deployment environments. In fact,
one of main contributors to insecure defaults in an application is that the software is
designed and built to run on many different operating systems and environments; a
safe setting on one operating system might not be so safe on another.

Access Control
Chapter 2 introduced access control and how it affects an application’s design. The
effects of access control, however, don’t stop at the design. Internally, an application
can manage its own application-specific access control mechanisms or use features
the platform provides. Externally, an application depends entirely on the access con-
trols the host OS or platform provides (a subject covered in more depth later in
Chapter 9, “Unix I: Privileges and Files,” and Chapter 11, “Windows I: Objects and
the File System”). 

Many developers do a decent amount of scripting; so you probably have a few
scripting engines installed on your system. On a Windows system, you might have
noticed that most scripting installations default to a directory right off the root. As
an example, in a typical install of the Python interpreter on a Windows system, the
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default installation path is C:\Python24, so it’s installed directly off the root direc-
tory of the primary hard drive (C:). This installation path alone isn’t an issue until
you take into account default permissions on a Windows system drive. These per-
missions allow any user to write to a directory created off the root (permission
inheritance is explained in more detail in Chapter 11). Browsing to C:\Python24,
you find python.exe (among other things), and if you look at the imported dynamic
link libraries (DLLs) that python.exe uses, you find msvcr71.dll listed.

Note
For those unfamiliar with basic Windows binary layout, an import 
is a required library containing routines the application needs to
function correctly. In this example, python.exe needs routines
implemented in the msvcr71 library. The exact functions python.exe
requires are also specified in the imports section.

Chapter 11 explains the particulars of how Windows handles imported. What’s
important to this discussion is that you can write your own msvcr71.dll and store it
in the C:\Python24 directory, and then it’s loaded when anyone runs python.exe.
This is possible because the Windows loader searches the current directory for
named DLLs before searching system directories. This Windows feature, however,
could allow an attacker to run code in the context of a higher privileged account,
which would be particularly useful on a terminal server, or in any shared computing
environment.

You could have the same problem with any application that inherits permis-
sions from the root drive. The real problem is that historically, Windows developers
have often been unaware of the built-in access control mechanisms. This is only nat-
ural when you consider that Windows was originally a single-user OS and has since
evolved into a multiuser system. So these problems might occur when developers
are unfamiliar with additional security considerations or are trying to maintain
compatibility between different versions or platforms.

Unnecessary Services
You’ve probably heard the saying “Idle hands are the devil’s playthings.” You might not
agree with it in general, but it definitely applies to unnecessary services. Unnecessary
services include any functionality your application provides that isn’t required for its
operation. These capabilities often aren’t configured, reviewed, or secured correctly. 

These problems tend to result from insecure default settings but might be
caused by the “kitchen sink mentality,” a term for developers and administrators
who include every possible capability in case they need it later. Although this
approach might seem convenient, it can result in a security nightmare.
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When reviewing an application, make sure you can justify the need for each
component that’s enabled and exposed. This justification is especially critical when
you’re reviewing a deployed application or turnkey system. In this case, you need to
look at the system as a whole and identify anything that isn’t needed.

The Internet Information Services (IIS) HTR vulnerabilities are a classic exam-
ple of exposing a vulnerable service unnecessarily. HTR is a scripting technology
Microsoft pioneered that never gained much following, which can be attributed to
the release of the more powerful Active Server Pages (ASP) shortly after HTR. Any
request made to an IIS server for a filename with an .htr extension is handled by
the HTR Internet Server API (ISAPI) filter.

Note
ISAPI filters are IIS extension modules that can service requests
based on file extensions.

From 1999 through 2002, a number of researchers identified HTR vulnerabili-
ties ranging from arbitrary file reading to code execution. None of these vulnerabili-
ties would have been significant, however, if this rarely used handler had simply
been disabled in the default configuration. 

Secure Channels
A secure channel is any means of communication that ensures confidentiality
between the communicating parties. Usually this term is used in reference to
encrypted links; however, even a named pipe can be considered a secure channel if
access control is used properly. In either case, what’s important is that only the cor-
rect parties can view or alter meaningful data in the channel, assuming, of course,
that the parties have already been authenticated by some means.

Sometimes the need for secure channels can be determined during the design of
an application. You might know before deployment that all communications must
be conducted over secure channels, and the application must be designed and
implemented in this way. More often, however, the application design must account
for a range of possible deployment requirements.

The most basic example of a secure channel vulnerability is simply not using a
secure channel when you should. Consider a typical Web application in which you
authenticate via a password, and then pass a session key for each following transac-
tion. (This topic is explained in more detail in Chapter 17, “Web Applications.”) You
expect password challenges to be performed over Secure Sockets Layer (SSL), but what
about subsequent exchanges? After all, attackers would like to retrieve your password,
but they can still get unrestricted access to your session if they get the session cookie. 
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This example shows that the need for secure channels can be a bit subtle. Every-
one can agree on the need to protect passwords, but the session key might not be
considered as important, which is perfectly acceptable sometimes. For example,
most Web-based e-mail providers use a secure password exchange, but all remain-
ing transactions send session cookies in the clear. These providers are offering a
free service with a minimal guarantee of security, so it’s an acceptable business risk.
For a banking application, however, you would expect that all transactions occur
over a secure channel.

Spoofing and Identification
Spoofing occurs whenever an attacker can exploit a weakness in a system to imper-
sonate another person or system. Chapter 2 explained that authentication is used 
to identify users of an application and potentially connected systems. However,
deploying an application could introduce some additional concerns that the appli-
cation design can’t address directly.

The TCP/IP standard in most common use doesn’t provide a method for 
preventing one host from impersonating another. Extensions and higher layer
protocols (such as IPsec and SSL) address this problem, but at the most basic
level, you need to assume that any network connection could potentially be
impersonated.

Returning to the SSL example, assume the site allows only HTTPS connections.
Normally, the certificate for establishing connections would be signed by a trusted
authority already listed in your browser’s certificate database. When you browse to
the site, the name on the certificate is compared against the server’s DNS name; if
they match, you have a reasonable degree of certainty that the site hasn’t been
spoofed.

Now change the example a bit and assume that the certificate isn’t signed by a
default trusted authority. Instead, the site’s developer has signed the certificate.
This practice is fairly common and perfectly acceptable if the site is on a corporate
intranet. You simply need to ensure that every client browser has the certificate
added to its database.

If that same site is on the public Internet with a developer-signed certificate,
however, it’s no longer realistic to assume you can get that certificate to all poten-
tial clients. The client, therefore, has no way of knowing whether the certificate
can be trusted. If users browse to the site, they get an error message stating that
the certificate isn’t signed by a trusted authority; the only option is to accept the
untrusted certificate or terminate the connection. An attacker capable of spoofing
the server could exploit this situation to stage man-in-the-middle attacks and then
hijack sessions or steal credentials.
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Network Profiles
An application’s network profile is a crucial consideration when you’re reviewing
operational security. Protocols such as Network File System (NFS) and Server Mes-
sage Block (SMB) are acceptable inside the corporate firewall and generally are an
absolute necessity. However, these same types of protocols become an unacceptable
liability when they are exposed outside the firewall. Application developers often
don’t know the exact environment an application might be deployed in, so they
need to choose intelligent defaults and provide adequate documentation on security
concerns.

Generally, identifying operational vulnerabilities in the network profile is easier
for a deployed application. You can simply look at what the environment is and
identify any risks that are unacceptable, and what protections are in place. Obvious
protections include deploying Internet-facing servers inside demilitarized zones
(DMZs) and making sure firewall rule sets are as strict as reasonably possible.

Network profile vulnerabilities are more difficult to tackle when the environ-
ment is unknown. As a reviewer, you need to determine the most hostile potential
environment for a system, and then review the system from the perspective of that
environment. You should also ensure that the default configuration supports a
deployment in this type of environment. If it doesn’t, you need to make sure the
documentation and installer address this problem clearly and specifically.

Web-Specific Considerations
The World Wide Web—more specifically, HTTP and HTTPS services—has become
one of the most ubiquitous platforms for application development. The proliferation
of Web services and applications is almost single-handedly responsible for the
increased awareness of network security and vulnerabilities. For this reason, Web
security warrants certain special considerations.

HTTP Request Methods
A Web application can be tightly restricted in which requests and operations are
allowed; however, in practice, this restriction often isn’t applied. For example, the
server might support a number of HTTP methods, but all the application requires is
the HTTP GET, POST, and HEAD requests. When reviewing a deployed or embedded
Web application, you should ensure that only the necessary request methods are
allowed. In particular, question whether TRACE, OPTIONS, and CONNECT requests
should be allowed. If you are unfamiliar with these methods, you can find a lot more
information in Chapter 17.
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Directory Indexing
Many Web servers enable directory indexing by default. This setting has no effect in
directories that provide an index file; however, it can expose valuable information to
directories with no index. Often, these directories contain include and configura-
tion files, or other important details on the application’s structure, so directory
indexing should be disabled by default.

File Handlers
When you try to run a file, it’s obvious if the proper handler hasn’t been installed.
The server simply won’t run the file, and instead it returns the source or binary
directly. However, handler misconfiguration could happen in a number of less obvi-
ous situations. When machines are rebuilt or replaced, the correct handlers might
not be installed before the application is deployed. Developers might also establish
conventions for naming include files with different extensions. For example, Classic
ASP and PHP: Hypertext Processor (PHP) include files are often named with an
.inc extension, which is not interpreted by the default handlers in PHP or ASP.
Because the include file isn’t intended to be requested directly, developers and
administrators might not realize it’s vulnerable.

Both situations can result in a source or binary file disclosure, which allows attack-
ers to download the raw source or binary code and get detailed information on the
application’s internal structure. In addition, PHP and other scripting languages com-
monly use include files to provide database account credentials and other sensitive
information, which can make source disclosure vulnerabilities particularly dangerous.

This problem needs to be approached from three sides. First, developers need to
choose a set of extensions to be used for all source and binary files. Second, the
Web server should be configured with handlers for all appropriate file types and
extensions. Finally, the only files in the Web tree should be those that must be
retrieved by Web requests. Include files and supporting libraries should be placed
outside the Web tree. This last step prevents attackers from requesting files directly
that are only intended to be included.

An important extension to the last step is applicable when Web applications deal
with uploaded content from clients. Applications commonly allow clients to upload
files, but doing so has potentially dangerous consequences, especially if the directory
where files are uploaded is within the Web tree. In this case, clients might be able to
request the file they just uploaded; if the file is associated with a handler, they can
achieve arbitrary execution. As an example, consider a PHP application that stores
uploaded files in /var/www/webapp/tmpfiles/, which can be browsed via the 
HTTP URI /webapp/tmpfiles/. If the client uploads a file called evil.php and then
requests /webapp/tmpfiles/evil.php in a browser, the Web server will likely 
recognize that the file is a PHP application and run code within the file’s PHP tags.
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Authentication
Web applications might not perform authentication internally; this process might
be handled externally through the HTTP authentication protocol, an authenticating
reverse proxy, or a single sign-on (SSO) system. With this type of authentication, it
is especially important to make sure the external authentication mechanism is con-
figured correctly and performs authentication in a safe manner. For example, a
reverse-proxy device might add headers that include the current account name and
user information. However, attackers could discover a request path that doesn’t
pass through the reverse proxy, which would allow them to set the account headers
to whatever they want and impersonate any user on the system.

Default Site Installations
Some Web servers include a number of sample sites and applications as part of a
default installation. The goal is to provide some reference for configuring the server
and developing modules. In practice, however, these sample sites are a rather severe
case of unnecessary services and insecure defaults. Numerous security problems
have been caused by installing sample Web applications and features. For example,
ColdFusion’s Web-scripting technologies used to install several sample applications
by default that allowed clients to upload files and run arbitrary code on the system.

Note
This ColdFusion bug ties in with some of the previous discussion 
on spoofing and identification. The sample applications were acces-
sible only to clients who connected from the same machine where
ColdFusion was installed. However, the way they verified whether
the client was connecting locally was to check the HTTP HOST vari-
able, which is completely controlled by the client. As a result, any
client could claim to be connecting locally and access sample scripts
with the dangerous functionality. This bug is documented at
www.securityfocus.com/bid/3154/info.

Overly Verbose Error Messages
Most Web servers return fairly verbose error messages that assist in diagnosing any
problems you encounter. Web application platforms also provide detailed exception
information to assist developers in debugging code. These capabilities are essential
when developing a system, but they can be a serious operational vulnerability in a
deployed system.

The burden of end-user error reporting should rest primarily on application devel-
opers. The application level has the correct context to determine what information is
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appropriate to display to end users. Configuration of the base platform should always
be performed under the assumption that the application is filtering and displaying
any end-user error information. This way, the deployed system can be configured to
report the minimum necessary information to client users and redirect any required
details to the system log.

Public-Facing Administrative Interfaces
Web-based administration has become popular for Web applications and network
devices. These administrative interfaces are often convenient, but they are rarely
implemented with potentially malicious users in mind. They might use weak default
passwords, not perform sufficient authentication, or have any number of other vul-
nerabilities. Therefore, they should be accessible only over restricted network seg-
ments when possible and never exposed to Internet-facing connections.

Protective Measures
A range of additional protective measures can affect an application’s overall security.
In consultant speak, they are often referred to as mitigating factors or compensating
controls; generally, they’re used to apply the concept of defense in depth mentioned
in Chapter 2. These measures can be applied during or after the development
process, but they tend to exist outside the software itself. 

The following sections discuss the most common measures, but they don’t form
an exhaustive list. For convenience, these measures have been separated into
groups, depending on whether they’re applied during development, to the deployed
host, or in the deployed network. One important consideration is that most of these
measures include software, so they could introduce a new attack surface or even
vulnerabilities that weren’t in the original system.

Development Measures
Development protective measures focus on using platforms, libraries, compiler
options, and hardware features that reduce the probability of code being exploited.
These techniques generally don’t affect the way code is written, although they often
influence the selection of one platform over another. Therefore, these measures are
viewed as operational, not implementation measures. 

Nonexecutable Stack
The classic stack buffer overflow is quite possibly the most often-used software vul-
nerability in history, so hardware vendors are finally trying to prevent them at the
lowest possible level by enforcing the nonexecutable protection on memory pages.
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This technique is nothing new, but it’s finally becoming common in inexpensive
commodity hardware, such as consumer PCs.

A nonexecutable stack can make it harder to exploit a memory management
vulnerability, but it doesn’t necessarily eliminate it because the exploit might not
require running code from the stack. It might simply involve patching a stack vari-
able or the code execution taking advantage of a return to libc style attack. These
vulnerabilities are covered in more detail in Chapter 5, “Memory Corruption,” but
for now, it’s important to understand where the general weaknesses are.

Stack Protection
The goal of the classic stack overflow is to overwrite the instruction pointer. Stack
protection prevents this exploit by placing a random value, called a “canary,”
between stack variables and the instruction pointer. When a function returns, the
canary is checked to ensure that it hasn’t changed. In this way, the application can
determine whether a stack overflow has occurred and throw an exception instead of
running potentially malicious code.

Like a nonexecutable stack, stack protection has its share of weaknesses. It
also doesn’t protect against stack variable patching (although some implementa-
tions reorder variables to prevent the likelihood of this problem). Stack protection
mechanisms might also have issues with code that performs certain types of
dynamic stack manipulation. For instance, LibSafePlus can’t protect code that uses
the alloca() call to resize the stack; this problem can also be an undocumented
issue in other implementations. Worse yet, some stack protections are vulnerable
to attacks that target their implementation mechanisms directly. For example, an
early implementation of Microsoft’s stack protection could be circumvented by
writing past the canary and onto the current exception handler.

No form of stack protection is perfect, and every implementation has types of
overflows that can’t be detected or prevented. You have to look at your choices and
determine the advantages and disadvantages. Another consideration is that it’s not
uncommon for a development team to enable stack protection and have the appli-
cation stop functioning properly. This problem happens because of stack overflows
occurring somewhere in the application, which may or may not be exploitable.
Unfortunately, developers might have so much trouble tracking down the bugs that
they choose to disable the protection entirely. You might need to take this possibil-
ity into account when recommending stack protection as an easy fix.

Heap Protection
Most program heaps consist of a doubly linked list of memory chunks. A generic
heap exploit attempts to overwrite the list pointers so that arbitrary data can be
written somewhere in the memory space. The simplest form of heap protection
involves checking that list pointers reference valid heap chunks before performing
any list management.
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Simple heap protection is fairly easy to implement and incurs little performance
overhead, so it has become common in the past few years. In particular, Microsoft’s
recent OS versions include a number of heap consistency-checking mechanisms to
help minimize the damage heap overwrites can do. The GNU libc also has some
capabilities to protect against common exploitation techniques; the memory man-
agement routines check linked list values and validate the size of chunks to a cer-
tain degree. Although these mechanisms are a step in the right direction, heap
overflows can still be exploited by manipulating application data rather than heap
structures. 

Address Space Layout Randomization
When an application is launched in most contemporary operating systems, the
loader organizes the program and required libraries into memory at the same
locations every time. Customarily, the program stack and heap are put in identical
locations for each program that runs. This practice is useful for attackers exploit-
ing a memory corruption vulnerability; they can predict with a high degree of
accuracy the location of key data structures and program components they want
to manipulate or misuse. Address space layout randomization (ASLR) technolo-
gies seek to remove this advantage from attackers by randomizing where different
program components are loaded at in memory each time the application runs. A
data structure residing at address 0x12345678 during one program launch might
reside at address 0xABCD5678 the next time the program is started. Therefore,
attackers can no longer use hard-coded addresses to reliably exploit a memory
corruption flaw by targeting specific structures in memory. ASLR is especially
effective when used with other memory protection schemes; the combination of
multiple measures can turn a bug that could previously be exploited easily into a
very difficult target. However, ASLR is limited by a range of valid addresses, so it
is possible for an attacker to perform a repeated sequence of exploit attempts and
eventually succeed.

Registered Function Pointers
Applications might have long-lived functions pointers at consistent locations in a
process’s address space. Sometimes these pointers are defined at compile time and
never change for a given binary; exception handlers are one of the most common
examples. These properties make long-lived function pointers an ideal target for
exploiting certain classes of vulnerabilities. Many types of vulnerabilities are simi-
lar, in that they allow only a small value to be written to one arbitrary location, such
as attacks against heap management functions.

Function pointer registration is one attempt at preventing the successful exploit
of these types of vulnerabilities. It’s implemented by wrapping function pointer
calls in some form of check for unauthorized modification. The exact details of the
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check might vary in strength and how they’re performed. For example, the compiler
can place valid exception handlers in a read-only memory page, and the wrapper
can just make a direct comparison against this page to determine whether the
pointer is corrupt.

Virtual Machines
A virtual machine (VM) platform can do quite a bit to improve an application’s basic
security. Java and the .NET Common Language Runtime (CLR) are two popular VM
environments, but the technology is even more pervasive. Most popular scripting
languages (such as Perl, Python, and PHP) compile first to bytecode that’s then
interpreted by a virtual machine. 

Virtual machine environments are typically the best choice for most common
programming tasks. They generally provide features such as sized buffers and
strings, which prevent most memory management attacks. They might also include
additional protection schemes, such as the code access security (CAS) mentioned in
Chapter 1. These approaches usually allow developers to create more secure appli-
cations more quickly.

The downside of virtual machines is that their implicit protection stops at low-
level vulnerabilities. VM environments usually have no additional protections
against exploiting vulnerabilities such as race conditions, formatted data manipula-
tion, and script injection. They might also provide paths to low-level vulnerabilities
in the underlying platform or have their own vulnerabilities.

Host-Based Measures
Host-based protections include OS features or supporting applications that can
improve the security of a piece of software. They can be deployed with the applica-
tion or be additional measures set up by end users or administrators. These addi-
tional protective measures can be useful in preventing, identifying, and mitigating
successful exploits, but remember that these applications are pieces of software.
They might contain vulnerabilities in their implementations and introduce new
attack surface to a system.

Object and File System Permissions
Permission management is the first and most obvious place to try reducing the
attack surface. Sometimes it’s done programmatically, such as permissions on a
shared memory object or process synchronization primitive. From an operational
perspective, however, you’re concerned with permissions modified during and after
application installation. 
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As discussed earlier in this chapter, permission assignment can be complicated.
Platform defaults might not provide adequate security, or the developer might not be
aware of how a decision could affect application security. Typically, you need to per-
form at least a cursory review of all files and objects included in a software installation.

Restricted Accounts
Restricted accounts are commonly used for running an application with a public-
facing service. The intent of using this type of account is not to prevent a compro-
mise but to reduce the impact of the compromise. Therefore, these accounts have
limited access to the system and can be monitored more closely.

On Windows systems, a restricted account usually isn’t granted network access
to the system, doesn’t belong to default user groups, and might be used with
restricted tokens. Sudhakar Govindavajhala and Andrew W. Appel of Princeton
University published an interesting paper, “Windows Access Control Demystified,”
in which they list a number of considerations and escalation scenarios for different
group privileges and service accounts. This paper is available at
http://www.cs.princeton.edu/~sudhakar/papers/winval.pdf.

Restricted accounts generally don’t have a default shell on UNIX systems, so
attackers can’t log in with that account, even if they successfully set a password
through some application flaw. Furthermore, they usually have few to no privileges
on the system, so if they are able to get an interactive shell somehow, they can’t per-
form operations with much consequence. Having said that, attackers simply having
access to the system is often dangerous because they can use the system to “spring-
board” to other previously inaccessible hosts or perform localized attacks on the
compromised system to elevate privileges.

Restricted accounts are useful, but they can be deployed carelessly. You need to
ensure that restricted accounts contain no unnecessary rights or privileges. It’s
also good to follow the rule of one account to one service because of the implicit
shared trust between all processes running under the same account, as discussed
in Chapter 2.

Chroot Jails
UNIX operating systems use the chroot command to change the root directory of a
newly executed process. This command is normally used during system startup or
when building software. However, chroot also has a useful security application: A
nonroot process can be effectively jailed to a selected portion of the file system by
running it with the chroot command. 

This approach is particularly effective because of UNIX’s use of the file system
as the primary interface for all system activity. An attacker who exploits a jailed
process is still restricted to the contents of the jailed file system, which prevents
access to most of the critical system assets.
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A chroot jail can improve security quite a bit; however, there are caveats. Any
process running under root privileges can usually escape the jail environment by
using other system mechanisms, such as the PTRACE debugging API, setting sys-
tem variables with sysctl, or exploiting some other means to allow the system to
run a new arbitrary process that’s not constrained to the chroot jail. As a result,
chroot jails are more effective when used with a restricted account. In addition, a
chroot jail doesn’t restrict network access beyond normal account permissions,
which could still allow enough attack surface for a follow-on attack targeted at 
daemons listening on the localhost address.

System Virtualization
Security professionals have spent the past several years convincing businesses to
run one public-facing service per server. This advice is logical when you consider
the implicit shared trusts between any processes running on the same system. How-
ever, increases in processing power and growing numbers of services have made
this practice seem unnecessarily wasteful. 

Fortunately, virtualization comes to the rescue. Virtualization allows multiple
operating systems to share a single host computer. When done correctly, each host
is isolated from one another and can’t affect the integrity of other hosts except
through standard network interfaces. In this way, a single host can provide a high
level of segmentation but still make efficient use of resources.

Virtualization is nothing new; it’s been around for decades in the mainframe
arena. However, most inexpensive microcomputers haven’t supported the features
required for true hardware virtualization—these features are known as the Popek
and Goldberg virtualization requirements. True hardware virtualization involves
capabilities that hardware must provide to virtualize access without requiring soft-
ware emulation. Software virtualization works, of course, but only recently has
commodity hardware become powerful enough to support large-scale virtualization.

Virtualization will continue to grow, however. New commodity processors from
vendors such as Intel and AMD now have full hardware virtualization support, and
software virtualization has become more commonplace. You can now see a handful
of special cases where purpose-built operating systems and software are distributed
as virtual machine disk images. These concepts have been developing for more than
a decade through research in exokernels and para-virtualization, with commercial
products only now becoming available.

For auditors, virtualization has advantages and disadvantages. It could allow an
application to be distributed in a strictly configured environment, or it might force a
poorly configured black box on users. The best approach is to treat a virtualized sys-
tem as you would any other system and pay special attention to anywhere the vir-
tual segmentation is violated. As virtualization grows more popular, however, it will
almost certainly introduce new and unique security concerns.
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Enhanced Kernel Protections
All operating systems must provide some mechanism for user land applications to
communicate with the kernel. This interface is typically referred to as the system
call gateway, and it should be the only interface for manipulating base system
objects. The system call gateway is a useful trust boundary, as it provides a choke-
point into kernel operations. A kernel module can then intercept requested opera-
tions (or subsequent calls) to provide a level of access control that is significantly
more granular than normal object permissions.

For example, you might have a daemon that you need to run as root, but this
daemon shouldn’t be able to access arbitrary files or load kernel modules. These
restrictions can be enforced only by additional measures taken inside the kernel.
An additional set of permissions can be mapped to the executable and user associ-
ated with the process. In this case, the kernel module would refuse the call if the
executable and user match the restricted daemon. This approach is an example of a
simple type of enhanced kernel protection; however, a number of robust implemen-
tations are available for different operating systems. SELinux is a popular module
for Linux and BSD systems, and Core Force (from Core Security) is a freely available
option for Windows 2000 and XP systems. 

There’s no question that this approach offers fine-grained control over exactly
what a certain process is allowed to do. It can effectively stop a compromise by
restricting the rights of even the most privileged accounts. However, it’s a fairly new
approach to security, so implementations vary widely in their capabilities and oper-
ation. This approach can also be difficult to configure correctly, as most applications
aren’t designed with the expectation of operating under such tight restrictions.

Host-Based Firewalls
Host-based firewalls have become extremely popular in recent years. They often
allow fine-grained control of network traffic, including per-process and per-user
configuration. This additional layer of protection can help compensate for any over-
looked network attack surface. These firewalls can also mitigate an attack’s effect
by restricting the network access of a partially compromised system.

For the most part, you can view host-based firewalls in the same manner as
standard network firewalls. Given their limited purpose, they should be much less
complicated than a standard firewall, although per-process and per-user rules can
increase their complexity somewhat.

Antimalware Applications
Antimalware applications include antivirus and antispyware software. They are
usually signature-based systems that attempt to identify behaviors and attributes
associated with malicious software. They might even incorporate a degree of
enhanced kernel protection, host-based firewalling, and change monitoring. For the
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most part, however, these applications are useful at identifying known malware
applications. Typically, they have less value in handling more specialized attacks or
unknown malware.

Antimalware applications generally have little effect when auditing software
systems. The primary consideration is that a deployed system should have the
appropriate software installed and configured correctly.

File and Object Change Monitoring
Some security applications have methods of monitoring for changes in system
objects, such as configuration files, system binaries, and sensitive Registry keys.
This monitoring can be an effective way to identify a compromise, as some sensitive
portion of the system is often altered as a result of an exploit. More robust monitor-
ing systems actually maintain digests (or hashes) of sensitive files and system
objects. They can then be used to assist in forensic data analysis in the event of a
serious compromise.

Change monitoring is a fairly reactive process by nature, so generally it isn’t
useful in preventing compromises. It can, however, prove invaluable in identifying,
determining the extent of, and mitigating a successful compromise. The most
important consideration for auditors is that most change-monitoring systems are
configured by default to monitor only base system objects. Adding monitoring 
for application-specific components usually requires changes to the default 
configuration.

Host-Based IDSs/IPSs
Host-based intrusion detection systems (IDSs) and intrusion prevention systems
(IPSs) tend to fall somewhere between host-based firewalls and antimalware appli-
cations. They might include features of both or even enhanced kernel protections
and file change monitoring. The details vary widely from product to product, but
typically these systems can be viewed as some combination of the host-based meas-
ures presented up to this point.

Network-Based Measures
An entire book could be devoted to the subject of secure network architecture.
After all, security is only one small piece of the puzzle. A good network layout
must account for a number of concerns in addition to security, such as cost, usabil-
ity, and performance. Fortunately, a lot of reference material is available on the
topic, so this discussion has been limited to a few basic concepts in the following
sections. If you’re not familiar with network fundamentals, you should start with a
little research on TCP/IP and the Open Systems Interconnection (OSI) model and
network architecture.
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Segmentation
Any discussion of network security needs to start with segmentation. Network seg-
mentation describes how communication over a network is divided into groupings
at different layers. TCP/IP networks are generally segmented for only two reasons:
security and performance. For the purposes of this discussion, you’re most con-
cerned with the security impact of network segmentation.

You can view network segmentation as a method of enforcing trust boundaries.
This enforcement is why security is an important concern when developing a net-
work architecture. You should also consider what OSI layer is used to enforce a
security boundary. Generally, beginning with the lowest layer possible is best. Each
higher layer should then reinforce the boundary, as appropriate. However, you
always encounter practical constraints on how much network security can be pro-
vided and limitations on what can be enforced at each layer.

Layer 1: Physical
The security of the physical layer is deceptively simple. Segmentation of this
layer is literally physical separation of the transmission medium, so security of
the physical layer is simply keeping the medium out of attackers’ hands. In the
past, that meant keeping doors locked, running cables through conduit, and not
lighting up unconnected ports. If any transmission media were outside your
immediate control, you just added encryption or protected at higher layers.

Unfortunately, the rapid growth of wireless networking has forced many people
to reevaluate the notion of physical layer security. When you deploy a wireless net-
work, you expose the attack surface to potentially anyone in transmission range.
With the right antenna and receiver, an attacker could be a mile or more away.
When you consider this possibility with the questionable protection of the original
Wired Equivalent Privacy (WEP) standard, it should be apparent that physical layer
security can get more complicated.

Layer 2: Data Link
Segmentation at the data link layer is concerned with preventing spoofing (imper-
sonating) hosts and sniffing traffic (capturing data transmitted by other hosts). Sys-
tems at this layer are identified via Media Address Control (MAC) addresses, and
the Address Resolution Protocol (ARP) is used to identify MAC addresses associ-
ated with connected hosts. Switching is then used to route traffic to only the appro-
priate host.

Network switches, however, run the gamut in terms of features and quality.
They might be vulnerable to a variety of ARP spoofing attacks that allow attackers
to impersonate another system or sniff traffic destined for other systems. Address
filtering can be used to improve security at this layer, but it should never be relied
on as the sole measure.
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Wireless media creates potential concerns at this layer, too, because they add
encryption and authentication to compensate for their inability to segment the
physical layer adequately. When choosing a wireless protection protocol, you have a
few options to consider. Although proprietary standards exist, open standards are
more popular, so this section focuses on them.

WEP was the original standard for wireless authentication and encryption;
however, its design proved vulnerable to cryptanalytic attacks that were further
aggravated by weaknesses in a number of implementations. Wi-Fi Protected Access
(WPA) is a more robust standard that provides more secure key handling with the
same base encryption capabilities as WEP (which allows it to operate on existing
hardware). However, WPA was intended as only an interim measure and has been
superseded by WPA2, which retains the essential key-handling improvements of
WPA and adds stronger encryption and digest capabilities.

Layer 3: Network
Security and segmentation at the network layer are typically handled via IP filtering
and, in some cases, the IP Security (IPsec) protocol. Any meaningful discussion of
IPsec is beyond the scope of this book, but it’s important to note exactly what it is.
IPsec is a component of the IPv6 specification that has been back-ported to the current
IPv4. It provides automatic encryption and authentication for TCP/IP connections at
the network layer. Although IPsec does have some appealing security capabilities, its
adoption has been slow, and different technologies have been developed to address
many of the areas it was intended for. However, adoption is continuing to grow, and a
properly deployed IPsec environment is extremely effective at preventing a range of
network attacks, including most sniffing and spoofing attacks.

IP filtering is a fairly simple method of allowing or denying packets based only
on the protocol, addresses, and ports. This method allows traffic to be segmented
according to its function, not just the source and destination. This type of filtering is
easy to implement, provides fast throughput, and has fairly low overhead. At this
point, IP filtering is practically a default capability expected in almost any network-
enabled system, such as a router or an OS. The disadvantage of IP filtering is that it
maintains no connection state. It can’t discriminate based on which side is estab-
lishing the connection or whether the communication is associated with an active
connection. Therefore, a simple IP filter must allow inbound traffic to any port
where it allows outbound traffic.

Layer 4: Transport
The transport layer is what most people think of when they discuss network secu-
rity architecture. This layer is low enough to be common to all TCP/IP applications
but high enough that you can determine connection state. The addition of state
allows a firewall to determine which side is initiating the connection and establishes
the fundamental concept of an internal and external network.
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Firewalls, which are devices that filter traffic at the network and transport layers,
are the primary method of segmenting a network for security purposes. The simplest
firewall has only two interfaces: inside and outside. The simplest method of fire-
walling is to deny all inbound traffic and allow all outbound traffic. Most host-based
firewalls and personal firewalls are configured this way by default.

Firewalls get interesting, however, when you use them to divide a network
according to functional requirements. For example, say you know that employees
on your network need only outbound Web access. You can allow only TCP ports
80 and 443 outbound and deny all the rest. The company Web site is hosted
locally, so you need to add TCP port 80 inbound to the Web server. (Note: A num-
ber of other likely services, most notably DNS, have been ignored to keep this
example simple.) However, you don’t like the idea of having an opening straight
into the internal network via TCP port 80. The solution is to deploy the Web
server inside a demilitarized zone (DMZ). A DMZ uses a third interface from the
firewall containing its own set of rules. First, assume that the DMZ is configured
to deny any connections by default, which lets you start with a clean slate. Next,
you need to move the Web server into the DMZ, remove the deny inbound rule for
port 80, and replace it with a rule that allows inbound traffic from the external
network to the Web server in the DMZ on TCP port 80. Figure 3-1 shows an exam-
ple of this network.

This example, although simple, conveys the basics of transport-layer segmenta-
tion. What’s important to understand is that the network should be segmented by
function as much as reasonably possible. Continuing the example, what if the Web
server is backed by a database on a separate system? The database might contain
particularly sensitive customer information that shouldn’t be located inside the
DMZ. However, migrating the database to the internal network requires opening
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connectivity from the DMZ into the internal network, which might not be an
acceptable risk, either. In this case, adding a second DMZ containing a data tier for
the Web front end might be necessary.

When reviewing an in-place application, you need to take these environmental
considerations into account. There will always be legitimate reasons to prevent a
deployment from having the ideal segmentation. However, you should aware of
these contributing factors and determine whether the environment is adequately
segmented for the application’s security requirements.

Layers 5 and 6: Session and Presentation
Some layers of the OSI model don’t map cleanly to TCP/IP; for example, the session
and presentation layer generally get pushed up into the TCP/IP application layer.
However, collectively these layers provide a useful distinction for certain applica-
tion protocols. Platform-specific features, such as RPC interfaces and named pipes,
are generally accepted as session- and presentation-layer protocols. Security on
these interfaces is typically handled programmatically and should be addressed via
the platform’s native access control mechanisms.

Secure Socket Layer/Transport Layer Security (SSL/TLS) is another protocol
that’s more appropriately discussed in terms of the session or presentation layer.
The “Secure Channels” section earlier in this chapter discussed how SSL can be
used to create a secure encrypted channel. SSL/TLS also supports certificate-based
authentication, which can reduce an application’s attack surface by enforcing
authentication below the application layer.

Layer 7: Application
Application-layer security is an interesting mix, and most of this book is devoted to
it. However, application-layer proxies fall squarely into the category of operational
protective measures. If you’ve spent any time in network security, you’ve probably
heard numerous discussions of the value of heterogeneous (or mixed) networks. On
the positive side, a heterogeneous environment is much less prone to silver bullet
attacks, in which an attacker can compromise the bulk of a network by taking
advantage of a single vulnerability. However, a homogeneous environment is usu-
ally easier and less expensive to manage.

Application-layer gateways are interesting because they add extra network
diversity in just the right location. Some of the first popular application gateways
were simply validating HTTP reverse proxies. They sat in front of vulnerability-
prone Web servers and denied malformed Web traffic, which provided moderate
protection against Web server attacks. Newer Web application gateways have added
a range of capabilities, including sitewide authentication, exploit detection, and
fine-grained rule sets. 

Overall, application gateways are no substitute for properly coded applications.
They have significant limitations, and configuring rules for the most effective 

Protective Measures

87



protection requires more effort than assessing and fixing a potentially vulnerable
application. However, these gateways can increase a network’s diversity, provide an
extra layer of assurance, and add a layer of protection over a questionable third-
party application.

Network Address Translation (NAT)
Network Address Translation (NAT) provides a method of mapping a set of internal
addresses against a different set of external addresses. It was originally developed
to make more efficient use of the IPv4 address space by mapping a larger number of
private, internal network addresses to a much smaller number of external
addresses.

NAT wasn’t intended to provide security, but it does have some implicit security
benefits. A NAT device must be configured with explicit rules to forward inbound
connections; this configuration causes inbound connectivity to be implicitly denied.
NAT also conceals the internal address space from the external network, ensuring
some extra security against internal network mapping. 

NAT can offer additional protection, but generally, this isn’t its intended pur-
pose. Depending on the implementation, NAT devices might allow attacks that
establish internal connections, spoof internal addresses, or leak addresses on the
private network. Therefore, NAT shouldn’t be relied on alone; it should be viewed
as a supplementary measure. 

Virtual Private Networks (VPNs)
A virtual private network (VPN) provides a virtual network interface connected to
a remote network over an encrypted tunnel. This approach has become popular
and is quickly replacing dial-in business connections and leased lines. The advan-
tage of a VPN is that it presents an interface that’s almost identical to that of a
directly connected user, which makes it convenient for end users and network
administrators.

The main disadvantage of a VPN is that typically, the client system is outside of
the network administrators’ physical control, which creates the potential for a much
larger attack surface than a normal internal system does. VPN segments need to be
monitored more closely, and administrators must enforce additional client precau-
tions. These precautions usually include denying VPN clients access to their local
network (split tunneling) while connected and restricting access to certain internal
resources over the VPN.

Network IDSs/IPSs
Network IDSs and IPSs are devices that attempt to identify malicious network
traffic and potentially terminate or deny connectivity based on detected hostile
activity. The first systems were primarily signature-based engines that looked for
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specific traffic associated with known attacks. Newer systems attempt to identify
and alert administrators to anomalous traffic patterns in addition to known hos-
tile patterns.

There’s quite a bit of literature and debate on the proper approach to IDS and
IPS deployment and configuration. The details are specific to the network environ-
ment. However, the best generally accepted practices require segmenting the net-
work first to isolate different functional areas and points of highest risk. IDS
sensors are then deployed to take advantage of segmentation in identifying poten-
tial attacks or compromises.

Summary
Application security extends beyond the code to encompass the operational envi-
ronment and mode in which applications function. In this chapter, you have looked
at external system details that affect how secure an application is in a deployment
environment. When conducting audits on an application, you need to consider the
target deployment environment (if one is available) and the application’s default
configuration parameters. Unsafe or unnecessary exposure of the application can
lead to vulnerabilities that are entirely independent of the program code.
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Chapter 4
Application Review Process

“Ah, my ridiculously circuitous plan is one quarter complete!”
Robot Devil, Futurama

Introduction
You no doubt purchased this book with the expectation of delving into the technical
details of application security vulnerabilities, but first you need to understand the
process of application review and its logistical and administrative details. After all,
technical prowess doesn’t matter if a review is structured so poorly that it neglects the
important application attack surface and vulnerable code paths. Having some degree of
structured process in planning and carrying out an application assessment is essential.
Of course, your review may have some unique requirements, but this chapter gives you
a framework and tools you can adapt to your own process. By incorporating these ele-
ments, you should be able to get the best results for the time you invest in any 
application review.



Overview of the Application Review Process
Conducting an application security review can be a daunting task; you’re pre-
sented with a piece of software you aren’t familiar with and are expected to
quickly reach a zenlike communion with it to extract its deepest secrets. You
must strike a balance in your approach so that you uncover design, logic, opera-
tional, and implementation flaws, all of which can be difficult to find. Of course,
you will rarely have enough time to review every line of an application. So you
need understand how to focus your efforts and maintain good coverage of the
most security-relevant code.

Rationale
To be successful, any process you adopt must be pragmatic, flexible, and results
driven. A rigid methodology that provides a reproducible detailed step-by-step pro-
cedure is definitely appealing, especially for people trying to manage code reviews
or train qualified professionals. For a number of reasons, however, such a rigid
approach isn’t realistic. It’s borne out of a fundamental misunderstanding of code
review because it overlooks two simple truths. The first is that code review is a funda-
mentally creative process.

It might seem as though this point couldn’t possibly be true because reading
other people’s code doesn’t seem particularly creative. However, to find vulnerabili-
ties in applications, you must put yourself in the developer’s shoes. You also need to
see the unexpressed possibilities in the code and constantly brainstorm for ways
that unexpected things might happen. 

The second truth is that code review is a skill. Many people assume that code
review is strictly a knowledge problem. From this perspective, the key to effective
code review is compiling the best possible list of all things that could go wrong. This
list is certainly an important aspect of code review, but you must also appreciate the
considerable skill component. Your brain has to be able to read code in a way that
you can infer the developer’s intentions yet hypothesize ways to create situations
the developer didn’t anticipate. 

Furthermore, you have to be proficient and flexible with programming lan-
guages so that you can feel at home quickly in someone else’s application. This kind
of aptitude takes years to develop fully, much like learning a foreign language or
playing a musical instrument. There’s considerable overlap with related skills, such
as programming, and other forms of systems security analysis, but this aptitude has
unique elements as well. So it’s simply unrealistic to expect even a seasoned devel-
oper to jump in and be a capable auditor.

Accepting these truths, having a process is still quite valuable, as it makes you
more effective. There’s a lot to be done in a typical security review, and it’s easy to over-
look tasks when you’re under a time crunch. A process gives your review structure,
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which helps you prioritize your work and maintain a consistent level of thoroughness
in your analysis. It also makes your assessments approachable from a business per-
spective, which is critical when you need to integrate your work with timelines and
consulting or development teams.

Process Outline
The review process described in this chapter is open ended, and you can adapt it as
needed for your own requirements. This discussion should arm you with the tools
and knowledge you need to do a formal review, but it’s left flexible enough to handle
real-world application assessments. This application review process is divided into
four basic phases:

1. Preassessment—This phase includes planning and scoping an application
review, as well as collecting initial information and documentation. 

2. Application review—This phase is the primary phase of the assessment. It can
include an initial design review of some form, and then proceed to a review
of the application code, augmented with live testing, if appropriate. The
review isn’t rigidly structured into distinct design, logic, implementation,
and operational review phases. Instead, these phases are simultaneous
objectives reached by using several strategies. The reason for this approach
is simply that the assessment team learns a great deal about the application
over the course of the assessment. 

3. Documentation and analysis—This phase involves collecting and documenting
the results of the review as well as helping others evaluate the meaning of
the results by conducting risk analysis and suggesting remediation methods
and their estimated costs.

4. Remediation support—This phase is a follow-up activity to assist those who
have to act based on your findings. It includes working with developers and
evaluating their fixes or possibly assisting in reporting any findings to a
third party.

This process is intended to apply to reviews that occur with some form of
schedule, perhaps as part of a consulting engagement, or reviews of an in-house
application by developers or security architects. However, it should be easy to
apply to more free-form projects, such as an open-ended, ongoing review of an
in-house application or self-directed vulnerability research.

Preassessment
Before you perform the actual review, you need to help scope and plan the assess-
ment. This process involves gathering key pieces of information that assist you in
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later phases of your review. By gathering as much information as you can before
starting the assessment, you can construct a better plan of attack and achieve more
thorough coverage. 

Scoping
When tasked with an application security review, first you need to ask what your
goal is. This question might seem simple, but numerous answers are possible. 
Generally, a vulnerability researcher’s goal is to find the most significant vulnerabil-
ity in the shortest time. In contrast, an application security consultant is usually
concerned with getting the best application coverage the project’s budget allows.
Finally, a developer or security architect might have a more generous schedule when
conducting internal reviews and use that time to be as thorough as possible.

The goal of a review might also be heavily colored by business concerns or less
tangible factors, such as company image. A company certainly isn’t inclined to
devote extensive time to a product that’s close to or even past its end of life (EOL).
However, a review might be required to meet regulatory concerns. That same com-
pany might also want a thorough review of its newest flagship financial manage-
ment application.

When businesses commit to more thorough reviews, often you find that their
interests aren’t what you expect. A business is sometimes more concerned with
easy-to-detect issues, regardless of their severity. Their goal is more to avoid the 
negative stigma of a published security issue than to address the ultimate technical
security of their product or service. So you aren’t meeting your client’s (or
employer’s) needs if you spend all your time on complex issues and miss the low-
risk but obvious ones. Focusing on low-risk issues seems like blasphemy to most
technical security people, but it’s often a reasonable business decision. For exam-
ple, assume you’re performing a source-code-based assessment on a bank’s Web-
facing account management application. What is the likelihood of someone blindly
finding a subtle authentication bypass that you found only by tracing through the
source code carefully? In contrast, think of how easily an attacker can find cross-site
scripting vulnerabilities—just with normal user access. So which issue do you think
is more likely to be identified and leveraged by a third party? The obvious answer is
cross-site scripting vulnerabilities, but that’s not what many auditors go after
because they want to focus on the more interesting vulnerabilities. 

That’s not to say you should ignore complex issues and just get the easy stuff.
After all, that advice would make this book quite short. However, you need to under-
stand the goals of your review clearly. You also need to have an appreciation for what
you can reasonably accomplish in a given timeframe and what confidence you can
have in your results. These details are influenced by two major factors: the type of
access you have to the application and the time you have available for review.
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Application Access
Application access is divided into the five categories listed in Table 4-1. These 
distinctions are not, of course, absolute. There are always minor variations, such as 
limited source access or inconsistencies between test environments and deployment
environments. However, these distinctions work well enough to cover most possibilities.

Table 4-1

Categories of Application Access

Category Description

Source only Only the source code has been supplied, with no build environment
or application binaries. You might be able to build a working binary
with some effort, although some required components typically
aren’t available. As a result, the review is generally done using only
static analysis. This type of access is common for contracted 
application reviews, when the client can provide source but not a
functional build or testing environment.

Binary only Application binaries have been supplied, but no source code is 
provided. The application review focuses on live analysis and
reverse engineering. This type of access is common when perform-
ing vulnerability research on closed-source commercial software.

Both source and binary access Both a source tree and access to a working application build are
available. This type of access provides the most efficient review 
possible. It’s most common for in-house application assessments,
although security- and cost- conscious clients provide this access for
contracted reviews, too.

Checked build You have an application binary and no source code, but the 
application binary has additional debugging information. 
This approach is often taken for contracted code reviews when a
client is unwilling to provide source but does want to expedite the
review process somewhat.

Strict black box No direct access to the application source or binary is available.
Only external, blind testing techniques, such as black box and 
fuzz- testing, are possible with this type of access. It’s common
when assessing Web applications (discussed more in Chapter 17,
“Web Applications”).

This book focuses primarily on source-code-based application review.
Although the techniques discussed in this chapter can be applied to other types of
reviews, more information is generally better. The ideal assessment environment
includes source-based analysis augmented with access to functioning binaries and
a live QA environment (if appropriate). This environment offers the widest range
of assessment possibilities and results in the most time-effective review. The
remaining types of access in Table 4-1 are all viable techniques, but they generally
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require more time for the same degree of thoroughness or have an upper limit on
the degree of thoroughness you can reasonably hope to achieve.

Timelines
In addition to application access, you need to determine how much time can be
allotted to a review. The timeline is usually the most flexible part of a review, so it’s
a good way to adjust the thoroughness. The most commonly used measure of
application size is thousands of lines of code (KLOC). It’s not an ideal way to meas-
ure an application’s complexity and size, but it’s a reasonable metric for general
use. A good reviewer ranges between 100 to 1,000 lines of code an hour, depending
on experience and details of the code. The best way to establish an effective base-
line for yourself is to keep track of how much time you spend reviewing different
components and get a feel for your own pacing.

Code type and quality have a big impact on your review speed. Languages such as
C/C++ generally require close examination of low-level details because of the subtle
nature of many flaws. Memory-safe languages, such as Java, address some of these
issues, but they might introduce higher-level complexity in the form of expansive
class hierarchies and excessive layering of interfaces. Meanwhile, the quality of inter-
nal documentation and comments is a language-independent factor that can seriously
affect your review pacing. For this reason, you should look at some samples of the
application code before you attempt to estimate for your pace for a specific codebase. 

Overall code size affects the pace at which you can effectively review an
application. For instance, reviewing a 100KLOC application doesn’t usually take
twice as much time as a 50KLOC application. The reason is that the first
50KLOC give you a feel for the code, allow you to establish common vulnerability
patterns, and let you pick up on developer idioms. This familiarity enables you to
review the remainder of the application more efficiently. So be sure to account
for these economies of scale when determining your timelines.

In the end, balancing coverage with cost is usually the ultimate factor in deter-
mining your timeline. In a perfect world, every application should be reviewed as
thoroughly as possible, but this goal is rarely feasible in practice. Time and budg-
etary constraints force you to limit the components you can review and the depth
of coverage you can devote to each component. Therefore, you need to exercise
considerable judgment in determining where to focus your efforts. 

Information Collection
The first step in reviewing an application is learning about the application’s purpose
and function. The discussion of threat modeling in Chapter 2 included a number of
sources for information collection. This component of your review should encapsulate
that portion of the threat model. To recap, you should focus on collecting information
from these sources:
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■ Developer interviews
■ Developer documentation
■ Standards documentation
■ Source profiling
■ System profiling

Application Review
People’s natural inclination when approaching code review is to try to structure
it like a waterfall-style development process. This means starting with a struc-
tured design review phase and adhering to a formal process, including DFDs and
attack trees. This type of approach should give you all the information you need
to plan and perform an effective targeted review. However, it doesn’t necessarily
result in the most time-effective identification of high and intermediate level
design and logic vulnerabilities, as it overlooks a simple fact about application
reviews: The time at which you know the least about an application is the beginning of
the review.

This statement seems obvious, but people often underestimate how much one
learns over the course of a review; it can be a night and day difference. When you
first sit down with the code, you often can’t see the forest for the trees. You don’t
know where anything is, and you don’t know how to begin. By the end of a review,
the application can seem almost like a familiar friend. You probably have a feel for
the developers’ personalities and can identify where the code suffers from neglect
because everyone is afraid to touch it. You know who just read a book on design
patterns and decided to build the world’s most amazing flexible aspect-oriented
turbo-logging engine—and you have a good idea which developer was smart enough
to trick that guy into working on a logging engine.

The point is that the time you’re best qualified to find more abstract design
and logic vulnerabilities is toward the end of the review, when you have a detailed
knowledge of the application’s workings. A reasonable process for code review
should capitalize on this observation.

A design review is exceptional for starting the process, prioritizing how the
review is performed, and breaking up the work among a review team. However, it’s
far from a security panacea. You’ll regularly encounter situations, such as the ones
in the following list, where you must skip the initial design review or throw out the
threat model because it doesn’t apply to the implementation:

■ You might not have any design documentation to review. Unfortunately, this
happens all the time. 
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■ The design documentation might be so outdated that it’s useless. Unfortunately,
this happens all the time, too—particularly if the design couldn’t be reasonably
implemented or simply failed to be updated with the ongoing application
development.

■ There might be a third party who doesn’t want to give you access to design
information for one reason or another (usually involving lawyers).

■ The developers might not be available for various reasons. They might even
consider you the enemy.

■ Clients don’t want to pay for a design review. This isn’t a surprise, as clients
rarely want to pay for anything. It’s more or less up to you as a professional
to make sure they get the best bang for their buck—in spite of themselves.
Time is expensive in consulting and development environments, so you’d
better be confident that what you’re doing is the best use of your time.

Accepting all the preceding points, performing a design review and threat
model first, whenever realistically possible, is still encouraged. If done properly, it
can make the whole assessment go more smoothly.

Avoid Drowning
This process has been structured based on extensive experience in performing
code reviews. Experienced auditors (your authors in particular) have spent years
experimenting with different methodologies and techniques, and some have
worked out better than others. However, the most important thing learned from
that experience is that it’s best to use several techniques and switch between
them periodically for the following reasons:

■ You can concentrate intensely for only a limited time.
■ Different vulnerabilities are easier to find from different perspectives.
■ Variety helps you maintain discipline and motivation.
■ Different people think in different ways.

Iterative Process
The method for performing the review is a simple, iterative process. It’s intended to
be used two or three times over the course of a work day. Generally, this method
works well because you can switch to a less taxing auditing activity when you start
to feel as though you’re losing focus. Of course, your work day, constitution, and
preferred schedule might prompt you to adapt the process further, but this method
should be a reasonable starting point.
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