

Embedded Linux Primer,
Second Edition

Open Source technology has revolutionized the computing world.

From MySQL to the Python programming language, these technologies

are in use on many different systems, ranging from proprietary systems,

to Linux systems, to traditional UNIX systems, to mainframes. The Prentice

Hall Open Source Software Development Series is designed to bring

you the best of these Open Source technologies. Not only will you learn

how to use them for your projects, but you will learn from them. By seeing

real code from real applications, you will learn the best practices of Open

Source developers the world over.

Visit informit.com/opensourcedev for a complete list of available publications.

The Prentice Hall Open Source
Software Development Series

Arnold Robbins, Series Editor

Embedded Linux Primer,
Second Edition
A Practical, Real-World Approach

Christopher Hallinan

Prentice Hall Professional Technical Reference
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Hallinan, Christopher.
 Embedded Linux primer : a practical real-world approach / Christopher Hallinan.
 p. cm.
 ISBN 978-0-13-701783-6 (hardback : alk. paper) 1. Linux. 2. Operating systems (Computers) 3. Embedded computer
systems--Programming. I. Title.

 QA76.76.O63H34462 2011
 005.4’32--dc22

 2010032891

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-137-01783-6
ISBN-10: 0-137-01783-9

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing September 2010

Editor-in-Chief: Mark L. Taub
Executive Acquisitions Editor: Debra Williams Cauley
Development Editor: Michael Thurston
Managing Editor: Kristy Hart
Project Editors: Alexandra Maurer and Jovana San Nicolas-Shirley
Copy Editor: Gayle Johnson
Indexer: Heather McNeill
Proofreader: Sarah Kearns
Technical Reviewers: Robert P.J. Day, Kurt Lloyd, Jon Masters, Sandra Terrace, and Mark A. Yoder
Publishing Coordinator: Kim Boedigheimer
Cover Designer: Alan Clements
Compositor: Tricia Bronkella

To my grandmother Edythe Diorio Ricciuti, who, at one hundred

and fi ve and counting, continues to provide inspiration to her

loving family through her deep faith, unshakable moral compass,

and selfl ess dedication to others.

This page intentionally left blank

vii

Contents

Foreword for the First Edition ... xxv

Foreword for the Second Edition .. xxvi

Preface ... xxvii

Acknowledgments for the First Edition ..xxxiii

Acknowledgments for the Second Edition ... xxxv

About the Author ... xxxvi

Chapter 1 Introduction..1

1.1 Why Linux? ... 2

1.2 Embedded Linux Today .. 3

1.3 Open Source and the GPL .. 3

1.3.1 Free Versus Freedom .. 4

1.4 Standards and Relevant Bodies .. 5

1.4.1 Linux Standard Base .. 5

1.4.2 Linux Foundation .. 6

1.4.3 Carrier-Grade Linux .. 6

1.4.4 Mobile Linux Initiative: Moblin... 7

1.4.5 Service Availability Forum.. 7

1.5 Summary ... 8

1.5.1 Suggestions for Additional Reading .. 8

viii Embedded Linux Primer, Second Edition

Chapter 2 The Big Picture ...9

2.1 Embedded or Not? .. 10

2.1.1 BIOS Versus Bootloader .. 11

2.2 Anatomy of an Embedded System ... 12

2.2.1 Typical Embedded Linux Setup ... 13

2.2.2 Starting the Target Board ... 14

2.2.3 Booting the Kernel ... 16

2.2.4 Kernel Initialization: Overview .. 18

2.2.5 First User Space Process: init ... 19

2.3 Storage Considerations .. 20

2.3.1 Flash Memory .. 20

2.3.2 NAND Flash ... 22

2.3.3 Flash Usage .. 23

2.3.4 Flash File Systems .. 24

2.3.5 Memory Space ... 25

2.3.6 Execution Contexts .. 26

2.3.7 Process Virtual Memory ... 28

2.3.8 Cross-Development Environment .. 30

2.4 Embedded Linux Distributions ... 32

2.4.1 Commercial Linux Distributions ... 33

2.4.2 Do-It-Yourself Linux Distributions .. 33

2.5 Summary ... 34

2.5.1 Suggestions for Additional Reading .. 35

Chapter 3 Processor Basics ..37

3.1 Stand-Alone Processors .. 38

3.1.1 IBM 970FX ... 39

3.1.2 Intel Pentium M .. 39

 Contents ix

3.1.3 Intel Atom™ ... 40

3.1.4 Freescale MPC7448 ... 40

3.1.5 Companion Chipsets ... 41

3.2 Integrated Processors: Systems on Chip ... 43

3.2.1 Power Architecture ... 44

3.2.2 Freescale Power Architecture .. 44

3.2.3 Freescale PowerQUICC I ... 45

3.2.4 Freescale PowerQUICC II ... 46

3.2.5 PowerQUICC II Pro .. 47

3.2.6 Freescale PowerQUICC III .. 48

3.2.7 Freescale QorIQ™ .. 48

3.2.8 AMCC Power Architecture .. 50

3.2.9 MIPS ... 53

3.2.10 Broadcom MIPS .. 54

3.2.11 Other MIPS ... 55

3.2.12 ARM ... 55

3.2.13 TI ARM ... 56

3.2.14 Freescale ARM ... 58

3.2.15 Other ARM Processors .. 59

3.3 Other Architectures ... 59

3.4 Hardware Platforms .. 60

3.4.1 CompactPCI ... 60

3.4.2 ATCA .. 60

3.5 Summary ... 61

3.5.1 Suggestions for Additional Reading .. 62

x Embedded Linux Primer, Second Edition

Chapter 4 The Linux Kernel: A Different Perspective ..63

4.1 Background ... 64

4.1.1 Kernel Versions .. 65

4.1.2 Kernel Source Repositories ... 67

4.1.3 Using git to Download a Kernel .. 68

4.2 Linux Kernel Construction.. 68

4.2.1 Top-Level Source Directory .. 69

4.2.2 Compiling the Kernel .. 69

4.2.3 The Kernel Proper: vmlinux .. 72

4.2.4 Kernel Image Components .. 73

4.2.5 Subdirectory Layout ... 77

4.3 Kernel Build System .. 78

4.3.1 The Dot-Config ... 78

4.3.2 Configuration Editor(s) ... 80

4.3.3 Makefile Targets ... 83

4.4 Kernel Configuration .. 89

4.4.1 Custom Configuration Options ... 91

4.4.2 Kernel Makefiles .. 95

4.5 Kernel Documentation .. 96

4.6 Obtaining a Custom Linux Kernel .. 96

4.6.1 What Else Do I Need? ... 97

4.7 Summary ... 97

4.7.1 Suggestions for Additional Reading .. 98

Chapter 5 Kernel Initialization ..99

5.1 Composite Kernel Image: Piggy and Friends ... 100

5.1.1 The Image Object ... 103

5.1.2 Architecture Objects .. 104

 Contents xi

5.1.3 Bootstrap Loader ... 105

5.1.4 Boot Messages .. 106

5.2 Initialization Flow of Control .. 109

5.2.1 Kernel Entry Point: head.o .. 111

5.2.2 Kernel Startup: main.c .. 113

5.2.3 Architecture Setup ... 114

5.3 Kernel Command-Line Processing .. 115

5.3.1 The __setup Macro ... 116

5.4 Subsystem Initialization ... 122

5.4.1 The *__initcall Macros ... 122

5.5 The init Thread ... 125

5.5.1 Initialization Via initcalls .. 126

5.5.2 initcall_debug .. 127

5.5.3 Final Boot Steps ... 127

5.6 Summary ... 129

5.6.1 Suggestions for Additional Reading .. 130

Chapter 6 User Space Initialization ...131

6.1 Root File System ... 132

6.1.1 FHS: File System Hierarchy Standard .. 133

6.1.2 File System Layout ... 133

6.1.3 Minimal File System .. 134

6.1.4 The Embedded Root FS Challenge .. 136

6.1.5 Trial-and-Error Method ... 137

6.1.6 Automated File System Build Tools .. 137

xii Embedded Linux Primer, Second Edition

6.2 Kernel’s Last Boot Steps... 137

6.2.1 First User Space Program ... 139

6.2.2 Resolving Dependencies ... 139

6.2.3 Customized Initial Process ... 140

6.3 The init Process .. 140

6.3.1 inittab ... 143

6.3.2 Sample Web Server Startup Script .. 145

6.4 Initial RAM Disk .. 146

6.4.1 Booting with initrd .. 147

6.4.2 Bootloader Support for initrd .. 148

6.4.3 initrd Magic: linuxrc ... 150

6.4.4 The initrd Plumbing .. 151

6.4.5 Building an initrd Image .. 152

6.5 Using initramfs .. 153

6.5.1 Customizing initramfs .. 154

6.6 Shutdown .. 156

6.7 Summary ... 156

6.7.1 Suggestions for Additional Reading .. 157

Chapter 7 Bootloaders ...159

7.1 Role of a Bootloader .. 160

7.2 Bootloader Challenges ... 161

7.2.1 DRAM Controller ... 161

7.2.2 Flash Versus RAM .. 162

7.2.3 Image Complexity.. 162

7.2.4 Execution Context ... 165

 Contents xiii

7.3 A Universal Bootloader: Das U-Boot ... 166

7.3.1 Obtaining U-Boot ... 166

7.3.2 Configuring U-Boot .. 167

7.3.3 U-Boot Monitor Commands ... 169

7.3.4 Network Operations .. 170

7.3.5 Storage Subsystems .. 173

7.3.6 Booting from Disk ... 174

7.4 Porting U-Boot ... 174

7.4.1 EP405 U-Boot Port ... 175

7.4.2 U-Boot Makefile Configuration Target .. 176

7.4.3 EP405 First Build .. 177

7.4.4 EP405 Processor Initialization.. 178

7.4.5 Board-Specific Initialization ... 181

7.4.6 Porting Summary ... 184

7.4.7 U-Boot Image Format .. 185

7.5 Device Tree Blob (Flat Device Tree) ... 187

7.5.1 Device Tree Source ... 189

7.5.2 Device Tree Compiler .. 192

7.5.3 Alternative Kernel Images Using DTB ... 193

7.6 Other Bootloaders ... 194

7.6.1 Lilo .. 194

7.6.2 GRUB ... 195

7.6.3 Still More Bootloaders ... 197

7.7 Summary ... 197

7.7.1 Suggestions for Additional Reading .. 198

xiv Embedded Linux Primer, Second Edition

Chapter 8 Device Driver Basics ...201

8.1 Device Driver Concepts .. 202

8.1.1 Loadable Modules .. 203

8.1.2 Device Driver Architecture .. 204

8.1.3 Minimal Device Driver Example .. 204

8.1.4 Module Build Infrastructure .. 205

8.1.5 Installing a Device Driver .. 209

8.1.6 Loading a Module .. 210

8.1.7 Module Parameters .. 211

8.2 Module Utilities .. 212

8.2.1 insmod ... 212

8.2.2 lsmod ... 213

8.2.3 modprobe ... 213

8.2.4 depmod ... 214

8.2.5 rmmod ... 215

8.2.6 modinfo ... 216

8.3 Driver Methods ... 217

8.3.1 Driver File System Operations ... 217

8.3.2 Allocation of Device Numbers ... 220

8.3.3 Device Nodes and mknod .. 220

8.4 Bringing It All Together ... 222

8.5 Building Out-of-Tree Drivers .. 223

8.6 Device Drivers and the GPL .. 224

8.7 Summary ... 225

8.7.1 Suggestions for Additional Reading .. 226

 Contents xv

Chapter 9 File Systems ...227

9.1 Linux File System Concepts .. 228

9.1.1 Partitions ... 229

9.2 ext2 ... 230

9.2.1 Mounting a File System ... 232

9.2.2 Checking File System Integrity .. 233

9.3 ext3 ... 235

9.4 ext4 ... 237

9.5 ReiserFS .. 238

9.6 JFFS2 .. 239

9.6.1 Building a JFFS2 Image ... 240

9.7 cramfs .. 242

9.8 Network File System ... 244

9.8.1 Root File System on NFS ... 246

9.9 Pseudo File Systems ... 248

9.9.1 /proc File System ... 249

9.9.2 sysfs ... 252

9.10 Other File Systems .. 255

9.11 Building a Simple File System ... 256

9.12 Summary ... 258

9.12.1 Suggestions for Additional Reading .. 259

Chapter 10 MTD Subsystem ...261

10.1 MTD Overview .. 262

10.1.1 Enabling MTD Services ... 263

10.1.2 MTD Basics ... 265

10.1.3 Configuring MTD on Your Target ... 267

xvi Embedded Linux Primer, Second Edition

10.2 MTD Partitions .. 267

10.2.1 Redboot Partition Table Partitioning .. 269

10.2.2 Kernel Command-Line Partitioning .. 273

10.2.3 Mapping Driver ... 274

10.2.4 Flash Chip Drivers ... 276

10.2.5 Board-Specific Initialization ... 276

10.3 MTD Utilities ... 279

10.3.1 JFFS2 Root File System ... 281

10.4 UBI File System .. 284

10.4.1 Configuring for UBIFS .. 284

10.4.2 Building a UBIFS Image .. 284

10.4.3 Using UBIFS as the Root File System .. 287

10.5 Summary ... 287

10.5.1 Suggestions for Additional Reading .. 288

Chapter 11 BusyBox ..289

11.1 Introduction to BusyBox ... 290

11.1.1 BusyBox Is Easy ... 291

11.2 BusyBox Configuration ... 291

11.2.1 Cross-Compiling BusyBox ... 293

11.3 BusyBox Operation ... 293

11.3.1 BusyBox init ... 297

11.3.2 Sample rcS Initialization Script .. 299

11.3.3 BusyBox Target Installation .. 300

11.3.4 BusyBox Applets .. 302

11.4 Summary ... 303

11.4.1 Suggestions for Additional Reading .. 304

 Contents xvii

Chapter 12 Embedded Development Environment ...305

12.1 Cross-Development Environment ... 306

12.1.1 “Hello World” Embedded .. 307

12.2 Host System Requirements .. 311

12.2.1 Hardware Debug Probe ... 311

12.3 Hosting Target Boards ... 312

12.3.1 TFTP Server .. 312

12.3.2 BOOTP/DHCP Server.. 313

12.3.3 NFS Server .. 316

12.3.4 Target NFS Root Mount .. 318

12.3.5 U-Boot NFS Root Mount Example ... 320

12.4 Summary ... 322

12.4.1 Suggestions for Additional Reading .. 323

Chapter 13 Development Tools ...325

13.1 GNU Debugger (GDB) .. 326

13.1.1 Debugging a Core Dump .. 327

13.1.2 Invoking GDB ... 329

13.1.3 Debug Session in GDB .. 331

13.2 Data Display Debugger ... 333

13.3 cbrowser/cscope .. 335

13.4 Tracing and Profiling Tools .. 337

13.4.1 strace ... 337

13.4.2 strace Variations ... 341

13.4.3 ltrace ... 343

13.4.4 ps .. 344

13.4.5 top .. 346

xviii Embedded Linux Primer, Second Edition

13.4.6 mtrace ... 348

13.4.7 dmalloc ... 350

13.4.8 Kernel Oops .. 353

13.5 Binary Utilities .. 355

13.5.1 readelf ... 355

13.5.2 Examining Debug Information Using readelf .. 357

13.5.3 objdump ... 359

13.5.4 objcopy ... 360

13.6 Miscellaneous Binary Utilities ... 361

13.6.1 strip ... 361

13.6.2 addr2line ... 361

13.6.3 strings ... 362

13.6.4 ldd .. 362

13.6.5 nm .. 363

13.6.6 prelink ... 364

13.7 Summary ... 364

13.7.1 Suggestions for Additional Reading .. 365

Chapter 14 Kernel Debugging Techniques ..367

14.1 Challenges to Kernel Debugging ... 368

14.2 Using KGDB for Kernel Debugging ... 369

14.2.1 KGDB Kernel Configuration ... 371

14.2.2 Target Boot with KGDB Support ... 372

14.2.3 Useful Kernel Breakpoints .. 376

14.2.4 Sharing a Console Serial Port with KGDB ... 377

14.2.5 Debugging Very Early Kernel Code ... 379

14.2.6 KGDB Support in the Mainline Kernel ... 380

 Contents xix

14.3 Kernel Debugging Techniques ... 381

14.3.1 gdb Remote Serial Protocol .. 382

14.3.2 Debugging Optimized Kernel Code ... 385

14.3.3 GDB User-Defined Commands ... 392

14.3.4 Useful Kernel GDB Macros ... 393

14.3.5 Debugging Loadable Modules.. 402

14.3.6 printk Debugging ... 407

14.3.7 Magic SysReq Key ... 409

14.4 Hardware-Assisted Debugging ... 410

14.4.1 Programming Flash Using a JTAG Probe ... 411

14.4.2 Debugging with a JTAG Probe .. 413

14.5 When It Doesn’t Boot ... 417

14.5.1 Early Serial Debug Output .. 417

14.5.2 Dumping the printk Log Buffer ... 417

14.5.3 KGDB on Panic ... 420

14.6 Summary ... 421

14.6.1 Suggestions for Additional Reading .. 422

Chapter 15 Debugging Embedded Linux Applications423

15.1 Target Debugging .. 424

15.2 Remote (Cross) Debugging ... 424

15.2.1 gdbserver ... 427

15.3 Debugging with Shared Libraries .. 429

15.3.1 Shared Library Events in GDB ... 431

15.4 Debugging Multiple Tasks ... 435

15.4.1 Debugging Multiple Processes .. 435

15.4.2 Debugging Multithreaded Applications ... 438

15.4.3 Debugging Bootloader/Flash Code .. 441

xx Embedded Linux Primer, Second Edition

15.5 Additional Remote Debug Options ... 442

15.5.1 Debugging Using a Serial Port ... 442

15.5.2 Attaching to a Running Process ... 442

15.6 Summary ... 443

15.6.1 Suggestions for Additional Reading .. 444

Chapter 16 Open Source Build Systems ..445

16.1 Why Use a Build System? .. 446

16.2 Scratchbox... 447

16.2.1 Installing Scratchbox .. 447

16.2.2 Creating a Cross-Compilation Target ... 448

16.3 Buildroot ... 451

16.3.1 Buildroot Installation ... 451

16.3.2 Buildroot Configuration .. 451

16.3.3 Buildroot Build .. 452

16.4 OpenEmbedded .. 454

16.4.1 OpenEmbedded Composition ... 455

16.4.2 BitBake Metadata ... 456

16.4.3 Recipe Basics .. 456

16.4.4 Metadata Tasks ... 460

16.4.5 Metadata Classes .. 461

16.4.6 Configuring OpenEmbedded .. 462

16.4.7 Building Images ... 463

16.5 Summary ... 464

16.5.1 Suggestions for Additional Reading .. 464

 Contents xxi

Chapter 17 Linux and Real Time ...465

17.1 What Is Real Time? ... 466

17.1.1 Soft Real Time ... 466

17.1.2 Hard Real Time ... 467

17.1.3 Linux Scheduling ... 467

17.1.4 Latency .. 467

17.2 Kernel Preemption .. 469

17.2.1 Impediments to Preemption... 469

17.2.2 Preemption Models .. 471

17.2.3 SMP Kernel ... 472

17.2.4 Sources of Preemption Latency .. 473

17.3 Real-Time Kernel Patch... 473

17.3.1 Real-Time Features .. 475

17.3.2 O(1) Scheduler .. 476

17.3.3 Creating a Real-Time Process ... 477

17.4 Real-Time Kernel Performance Analysis .. 478

17.4.1 Using Ftrace for Tracing ... 478

17.4.2 Preemption Off Latency Measurement ... 479

17.4.3 Wakeup Latency Measurement .. 481

17.4.4 Interrupt Off Timing ... 483

17.4.5 Soft Lockup Detection ... 484

17.5 Summary ... 485

17.5.1 Suggestion for Additional Reading ... 485

Chapter 18 Universal Serial Bus ..487

18.1 USB Overview .. 488

18.1.1 USB Physical Topology .. 488

18.1.2 USB Logical Topology ... 490

xxii Embedded Linux Primer, Second Edition

18.1.3 USB Revisions ... 491

18.1.4 USB Connectors .. 492

18.1.5 USB Cable Assemblies ... 494

18.1.6 USB Modes ... 494

18.2 Configuring USB .. 495

18.2.1 USB Initialization .. 497

18.3 sysfs and USB Device Naming .. 500

18.4 Useful USB Tools .. 502

18.4.1 USB File System .. 502

18.4.2 Using usbview .. 504

18.4.3 USB Utils (lsusb) .. 507

18.5 Common USB Subsystems .. 508

18.5.1 USB Mass Storage Class ... 508

18.5.2 USB HID Class ... 511

18.5.3 USB CDC Class Drivers .. 512

18.5.4 USB Network Support ... 515

18.6 USB Debug ... 516

18.6.1 usbmon .. 517

18.6.2 Useful USB Miscellanea ... 518

18.7 Summary ... 519

18.7.1 Suggestions for Additional Reading .. 519

Chapter 19 udev ..521

19.1 What Is udev? .. 522

19.2 Device Discovery ... 523

19.3 Default udev Behavior ... 525

 Contents xxiii

19.4 Understanding udev Rules ... 527

19.4.1 Modalias .. 530

19.4.2 Typical udev Rules Configuration .. 533

19.4.3 Initial System Setup for udev ... 535

19.5 Loading Platform Device Drivers .. 538

19.6 Customizing udev Behavior ... 540

19.6.1 udev Customization Example: USB Automounting 540

19.7 Persistent Device Naming .. 541

19.7.1 udev Helper Utilities .. 542

19.8 Using udev with busybox .. 545

19.8.1 busybox mdev .. 545

19.8.2 Configuring mdev .. 547

19.9 Summary ... 548

19.9.1 Suggestions for Additional Reading .. 548

Appendix A GNU Public License ...549

Preamble .. 550

Terms and Conditions for Copying, Distribution, and Modification 551

No Warranty .. 555

Appendix B U-Boot Configurable Commands ..557

Appendix C BusyBox Commands ..561

Appendix D SDRAM Interface Considerations ... 571

D.1 SDRAM Basics .. 572

D.1.1 SDRAM Refresh ... 573

D.2 Clocking .. 574

xxiv Embedded Linux Primer, Second Edition

D.3 SDRAM Setup ... 575

D.4 Summary ... 580

D.4.1 Suggestions for Additional Reading ... 580

Appendix E Open Source Resources ..581

Source Repositories and Developer Information ... 582

Mailing Lists .. 582

Linux News and Developments .. 583

Open Source Legal Insight and Discussion ... 583

Appendix F Sample BDI-2000 Configuration File ..585

 Index ...593

xxv

Foreword for the First Edition

Computers are everywhere.
This fact, of course, is no surprise to anyone who hasn’t been living in a cave during the

past 25 years or so. And you probably know that computers aren’t just on our desktops, in
our kitchens, and, increasingly, in our living rooms, holding our music collections. They’re
also in our microwave ovens, our regular ovens, our cell phones, and our portable digital
music players.

And if you’re holding this book, you probably know a lot, or are interested in learning
more about, these embedded computer systems.

Until not too long ago, embedded systems were not very powerful, and they ran spe-
cial-purpose, proprietary operating systems that were very different from industry-standard
ones. (Plus, they were much harder to develop for.) Today, embedded computers are as
powerful as, if not more powerful than, a modern home computer. (Consider the high-end
gaming consoles, for example.)

Along with this power comes the capability to run a full-fl edged operating system such
as Linux. Using a system such as Linux for an embedded product makes a lot of sense. A
large community of developers are making this possible. The development environment
and the deployment environment can be surprisingly similar, which makes your life as a
developer much easier. And you have both the security of a protected address space that a
virtual memory-based system gives you and the power and fl exibility of a multiuser, multi-
process system. That’s a good deal all around.

For this reason, companies all over the world are using Linux on many devices such as
PDAs, home entertainment systems, and even, believe it or not, cell phones!

I’m excited about this book. It provides an excellent “guide up the learning curve” for the
developer who wants to use Linux for his or her embedded system. It’s clear, well-written,
and well-organized; Chris’s knowledge and understanding show through at every turn. It’s
not only informative and helpful; it’s also enjoyable to read.

I hope you learn something and have fun at the same time. I know I did.

Arnold Robbins
Series Editor

xxvi

Foreword for the
Second Edition

Smart phones. PDAs. Home routers. Smart televisions. Smart Blu-ray players.
Smart yo-yos. OK, maybe not. More and more of the everyday items in our homes
and offi ces, used for work and play, have computers embedded in them. And those
computers are running GNU/Linux.

You may be a GNU/Linux developer used to working on desktop (or notebook)
Intel Architecture systems. Or you may be an embedded systems developer used
to more traditional embedded and/or real-time operating systems. Whatever your
background, if you’re entering the world of embedded Linux development, Doro-
thy’s “Toto, I’ve a feeling we’re not in Kansas anymore” applies to you. Welcome to
the adventure!

Dorothy had a goal, and some good friends, but no guide. You, however, are bet-
ter off, since you’re holding an amazing fi eld guide to the world of embedded Linux
development. Christopher Hallinan lays it all out for you—the how, the where,
the why, and also the “what not to do.” This book will keep you out of the school
of hard knocks and get you going easily and quickly on the road to building your
product.

It is no surprise that this book has been a leader in its market. This new edition is
even better. It is up to date and brings all the author’s additional experience to bear
on the subject.

I am very proud to have this book in my series. But what’s more important is
that you will be proud of yourself for having built a better product because you read
it! Enjoy!

Arnold Robbins
Series Editor

xxvii

Preface

Although many good books cover Linux, this one brings together many dimensions
of information and advice specifi cally targeted to the embedded Linux developer.
Indeed, some very good books have been written about the Linux kernel, Linux
system administration, and so on. This book refers to many of the ones I consider to
be at the top of their categories.

Much of the material presented in this book is motivated by questions I’ve re-
ceived over the years from development engineers in my capacity as an embedded
Linux consultant and from my direct involvement in the commercial embedded
Linux market.

Embedded Linux presents the experienced software engineer with several unique
challenges. First, those with many years of experience with legacy real-time operat-
ing systems (RTOSs) fi nd it diffi cult to transition their thinking from those environ-
ments to Linux. Second, experienced application developers often have diffi culty
understanding the relative complexities of a cross-development environment.

Although this is a primer, intended for developers new to embedded Linux, I am
confi dent that even developers who are experienced in embedded Linux will benefi t
from the useful tips and techniques I have learned over the years.

PRACTICAL ADVICE FOR THE PRACTICING EMBEDDED DEVELOPER

This book describes my view of what an embedded engineer needs to know to get
up to speed fast in an embedded Linux environment. Instead of focusing on Linux
kernel internals, the kernel chapters in this book focus on the project nature of the
kernel and leave the internals to the other excellent texts on the subject. You will
learn the organization and layout of the kernel source tree. You will discover the

xxviii Embedded Linux Primer, Second Edition

binary components that make up a kernel image, how they are loaded, and what
purpose they serve on an embedded system.

In this book, you will learn how the Linux kernel build system works and how
to incorporate your own custom changes that are required for your projects. You
will learn the details of Linux system initialization, from the kernel to user space
initialization. You will learn many useful tips and tricks for your embedded project,
from bootloaders, system initialization, fi le systems, and Flash memory to advanced
kernel- and application-debugging techniques. This second edition features much
new and updated content, as well as new chapters on open source build systems,
USB and udev, highlighting how to confi gure and use these complex systems on
your embedded Linux project.

INTENDED AUDIENCE

This book is intended for programmers who have working knowledge of program-
ming in C. I assume that you have a rudimentary understanding of local area net-
works and the Internet. You should understand and recognize an IP address and
how it is used on a simple local area network. I also assume that you understand
hexadecimal and octal numbering systems and their common usage in a book such
as this.

Several advanced concepts related to C compiling and linking are explored, so
you will benefi t from having at least a cursory understanding of the role of the linker
in ordinary C programming. Knowledge of the GNU make operation and seman-
tics also will prove benefi cial.

WHAT THIS BOOK IS NOT

This book is not a detailed hardware tutorial. One of the diffi culties the embedded
developer faces is the huge variety of hardware devices in use today. The user manual
for a modern 32-bit processor with some integrated peripherals can easily exceed
3,000 pages. There are no shortcuts. If you need to understand a hardware device
from a programmer’s point of view, you need to spend plenty of hours in your fa-
vorite reading chair with hardware data sheets and reference guides, and many more
hours writing and testing code for these hardware devices!

This is also not a book about the Linux kernel or kernel internals. In this book,
you won’t learn about the intricacies of the Memory Management Unit (MMU)

 Preface xxix

used to implement Linux’s virtual memory-management policies and procedures;
there are already several good books on this subject. You are encouraged to take
advantage of the “Suggestions for Additional Reading” sections found at the end of
every chapter.

CONVENTIONS USED

Filenames, directories, utilities, tools, commands, and code statements are presented
in a monospace font. Commands that the user enters appear in bold monospace.
New terms or important concepts are presented in italics.

When you see a pathname preceded by three dots, this refers to a well-known
but unspecifi ed top-level directory. The top-level directory is context-dependent but
almost universally refers to a top-level Linux source directory. For example, .../
arch/powerpc/kernel/setup_32.c refers to the setup_32.c fi le located in the
architecture branch of a Linux source tree. The actual path might be something like
~/sandbox/linux.2.6.33/arch/power/kernel/setup_32.c.

HOW THIS BOOK IS ORGANIZED

Chapter 1, “Introduction,” provides a brief look at the factors driving the rapid
adoption of Linux in the embedded environment. Several important standards and
organizations relevant to embedded Linux are introduced.

Chapter 2, “The Big Picture,” introduces many concepts related to embedded
Linux upon which later chapters are built.

Chapter 3, “Processor Basics,” presents a high-level look at the more popular
processors and platforms that are being used to build embedded Linux systems. We
examine selected products from many of the major processor manufacturers. All the
major architecture families are represented.

Chapter 4, “The Linux Kernel: A Different Perspective,” examines the Linux
kernel from a slightly different perspective. Instead of kernel theory or internals, we
look at its structure, layout, and build construction so that you can begin learning
your way around this large software project and, more important, learn where your
own customization efforts must be focused. This includes detailed coverage of the
kernel build system.

xxx Embedded Linux Primer, Second Edition

Chapter 5, “Kernel Initialization,” details the Linux kernel’s initialization pro-
cess. You will learn how the architecture- and bootloader-specifi c image components
are concatenated to the image of the kernel proper for downloading to Flash and
booting by an embedded bootloader. The knowledge you gain here will help you
customize the Linux kernel to your own embedded application requirements.

Chapter 6, “User Space Initialization,” continues the detailed examination of the
initialization process. When the Linux kernel has completed its own initialization,
application programs continue the initialization process in a predetermined manner.
Upon completing Chapter 6, you will have the necessary knowledge to customize
your own userland application startup sequence.

Chapter 7, “Bootloaders,” is dedicated to the bootloader and its role in an em-
bedded Linux system. We examine the popular open-source bootloader U-Boot and
present a porting example. We briefl y introduce additional bootloaders in use today
so that you can make an informed choice about your particular requirements.

Chapter 8, “Device Driver Basics,” introduces the Linux device driver model and
provides enough background to launch into one of the great texts on device drivers,
listed in “Suggestions for Additional Reading” at the end of the chapter.

Chapter 9, “File Systems,” describes the more popular fi le systems being used in
embedded systems today. We include coverage of the JFFS2, an important embed-
ded fi le system used on Flash memory devices. This chapter includes a brief intro-
duction to building your own fi le system image, one of the more diffi cult tasks the
embedded Linux developer faces.

Chapter 10, “MTD Subsystem,” explores the Memory Technology Devices
(MTD) subsystem. MTD is an extremely useful abstraction layer between the Linux
fi le system and hardware memory devices, primarily Flash memory.

Chapter 11, “BusyBox,” introduces BusyBox, one of the most useful utilities for
building small embedded systems. We describe how to confi gure and build BusyBox
for your particular requirements, along with detailed coverage of system initializa-
tion unique to a BusyBox environment. Appendix C, “BusyBox Commands,” lists
the available BusyBox commands from a recent BusyBox release.

Chapter 12, “Embedded Development Environment,” takes a detailed look at
the unique requirements of a typical cross-development environment. Several tech-
niques are presented to enhance your productivity as an embedded developer, in-
cluding the powerful NFS root mount development confi guration.

 Preface xxxi

Chapter 13, “Development Tools,” examines many useful development tools.
Debugging with gdb is introduced, including coverage of core dump analysis. Many
more tools are presented and explained, with examples including strace, ltrace,
top, and ps, and the memory profi lers mtrace and dmalloc. The chapter con-
cludes with an introduction to the more important binary utilities, including the
powerful readelf utility.

Chapter 14, “Kernel Debugging Techniques,” provides a detailed examination
of many debugging techniques useful for debugging inside the Linux kernel. We
introduce the use of the kernel debugger KGDB and present many useful debugging
techniques using the combination of gdb and KGDB as debugging tools. Included
is an introduction to using hardware JTAG debuggers and some tips for analyzing
failures when the kernel won’t boot.

Chapter 15, “Debugging Embedded Linux Applications,” moves the debugging
context from the kernel to your application programs. We continue to build on the
gdb examples from the previous two chapters, and we present techniques for multi-
threaded and multiprocess debugging.

Chapter 16, “Open Source Build Systems,” replaces the kernel porting chapter
from the fi rst edition. That chapter had become hopelessly outdated, and proper
treatment of that topic in modern kernels would take a book of its own. I think
you will be pleased with the new Chapter 16, which covers the popular build sys-
tems available for building complete embedded Linux distributions. Among other
systems, we introduce OpenEmbedded, a build system that has gained signifi cant
traction in commercial and other open source projects.

Chapter 17, “Linux and Real Time,” introduces one of the more interesting chal-
lenges in embedded Linux: confi guring for real time via the PREEMPT_RT option.
We cover the features available with RT and how they can be used in a design. We
also present techniques for measuring latency in your application confi guration.

Chapter 18, “Universal Serial Bus,” describes the USB subsystem in easy-to-
understand language. We introduce concepts and USB topology and then present
several examples of USB confi guration. We take a detailed look at the role of sysfs
and USB to help you understand this powerful facility. We also present several tools
that are useful for understanding and troubleshooting USB.

Chapter 19, “udev,” takes the mystery out of this powerful system confi guration
utility. We examine udev’s default behavior as a foundation for understanding how

xxxii Embedded Linux Primer, Second Edition

to customize it. Several real-world examples are presented. For BusyBox users, we
examine BusyBox’s mdev utility.

The appendixes cover the GNU Public License, U-Boot confi gurable com-
mands, BusyBox commands, SDRAM interface considerations, resources for the
open source developer, and a sample confi guration fi le for one of the more popular
hardware JTAG debuggers, the BDI-2000.

FOLLOW ALONG

You will benefi t most from this book if you can divide your time between this book
and your favorite Linux workstation. Grab an old x86 computer to experiment on
an embedded system. Even better, if you have access to a single-board computer
based on another architecture, use that. The BeagleBoard makes an excellent low-
cost platform for experimentation. Several examples in this book are based on that
platform. You will benefi t from learning the layout and organization of a very large
code base (the Linux kernel), and you will gain signifi cant knowledge and experi-
ence as you poke around the kernel and learn by doing.

Look at the code and try to understand the examples produced in this book.
Experiment with different settings, confi guration options, and hardware devices.
You can gain much in terms of knowledge, and besides, it’s loads of fun. If you
are so inclined, please log on and contribute to the website dedicated to this book,
www.embeddedlinuxprimer.com. Feel free to create an account, add content and
comments to other contributions, and share your own successes and solutions as you
gain experience in this growing segment of the Linux community. Your input will
help others as they learn. It is a work in progress, and your contributions will help it
become a valuable community resource.

GPL COPYRIGHT NOTICE

Portions of open-source code reproduced in this book are copyrighted by a large
number of individual and corporate contributors. The code reproduced here has
been licensed under the terms of the GNU Public License (GPL).

Appendix A contains the text of the GNU Public License.

www.embeddedlinuxprimer.com

xxxiii

Acknowledgments for the
First Edition

I am constantly amazed by the graciousness of open source developers. I am hum-
bled by the talent in our community that often far exceeds my own. During the
course of this project, I reached out to many people in the Linux and open source
community with questions. Most often my questions were answered quickly and
with encouragement. In no particular order, I’d like to express my gratitude to the
following members of the Linux and open source community who contributed an-
swers to my questions:

Dan Malek provided inspiration for some of the contents of Chapter 2.
Dan Kegel and Daniel Jacobowitz patiently answered my toolchain questions.
Scott Anderson provided the original ideas for the gdb macros presented in

Chapter 14.
Brad Dixon continues to challenge and expand my technical vision through his

own.
George Davis answered my ARM questions.
Jim Lewis provided comments and suggestions on the MTD coverage.
Cal Erickson answered my gdb use questions.
John Twomey advised me on Chapter 3.
Lee Revell, Sven-Thorsten Dietrich, and Daniel Walker advised me on real-time

Linux content. Klaas van Gend provided excellent feedback and ideas for my devel-
opment tools and debugging content.

Many thanks to AMCC, Embedded Planet, Ultimate Solutions, and United
Electronic Industries for providing hardware for the examples. Many thanks to my
employer, Monta Vista Software, for tolerating the occasional distraction and for
providing software for some of the examples. Many others contributed ideas, en-
couragement, and support over the course of the project. To them I am also grateful.

xxxiv Embedded Linux Primer, Second Edition

I offer my sincere appreciation to my primary review team, who promptly read
each chapter and provided excellent feedback, comments, and ideas. Thanks to Ar-
nold Robbins, Sandy Terrace, Kurt Lloyd, and Rob Farber. Thanks also to David
Brief, who reviewed the proposal and provided valuable input on the book’s orga-
nization. Many thanks to Arnold for helping this newbie learn the ropes of writing
a technical book. Although I have made every attempt to eliminate mistakes, those
that remain are solely my own.

I want to thank Mark L. Taub for bringing this project to fruition and for his en-
couragement and infi nite patience. I want to thank the production team, including
Kristy Hart, Jennifer Cramer, Krista Hansing, and Cheryl Lenser.

Finally, a very special and heartfelt thank-you to Cary Dillman, who read each
chapter as it was written, and for her constant encouragement and occasional sacri-
fi ce throughout the project.

xxxv

Acknowledgments for the
Second Edition

First I must acknowledge the guidance, experience, and endless patience of Debra
Williams Cauley, Executive Acquisitions Editor, without whom this project would
never have happened.

Many thanks to my dedicated primary review team: Robert P.J. Day, Sandy
Terrace, Kurt Lloyd, Jon Masters, and series editor Arnold Robbins. I cannot say
enough about the value of their individual contributions to the quality of this book.

Thanks also to Professor Mark A. Yoder and his embedded Linux class for giving
the manuscript a thorough classroom test.

A special thanks to Freescale Semiconductor for providing hardware that served
as the basis for many of the examples in this book. I would not have enjoyed this
support without the efforts of Kalpesh Gala, who facilitated these arrangements.

Thanks also to Embedded Planet and Tim Van de Walle, who provided hardware
for some of the examples.

Several individuals were especially helpful with advice and answers to questions
during the project. In no particular order, my appreciation and thanks are extended
to Cedric Hombourger, Klaas van Gend, George Davis, Sven-Thorsten Dietrich,
Jason Wessels, and Dave Anders.

I also want to thank the production team who endured my sometimes-hectic
schedule. They include Alexandra Maurer, Michael Thurston, Jovana San Nicolas-
Shirley, Gayle Johnson, Heather McNeill, Tricia Bronkella, and Sarah Kearns.

With every project of this magnitude, countless people provide input in the form
of an answer to a quick question, or perhaps an idea from a conversation. They are
too numerous to mention but nonetheless deserve credit for their willing and some-
times unknowing support.

In the fi rst edition, I specifi cally thanked Cary Dillman for her tireless efforts to
review my chapters as they were written. She is now my lovely wife, Cary Hallinan.
Cary continued her support by providing much-needed inspiration, patience, and
occasional sacrifi ce throughout the second-edition project.

xxxvi

About the Author

Christopher Hallinan is a technical marketing engineer for the Embedded Sys-
tems Division of Mentor Graphics, living and working in Florida. He has spent
more than 25 years in the networking and communications industry, mostly in vari-
ous product development, management, and marketing roles, where he developed
a strong background in the space where hardware meets software. Prior to joining
Mentor Graphics, he spent nearly seven years as a fi eld applications engineer for
Monta Vista Software. Before that, Hallinan spent four years as an independent
Linux consultant, providing custom Linux board ports, device drivers, and boot-
loaders. His introduction to the open source community was through contributions
to the popular U-Boot bootloader. When not messing about with Linux, he is often
found singing and playing a Taylor or Martin.

1

1

Introduction

In This Chapter

■ 1.1 Why Linux? 2

■ 1.2 Embedded Linux Today 3

■ 1.3 Open Source and the GPL 3

■ 1.4 Standards and Relevant Bodies 5

■ 1.5 Summary 8

2

The move away from proprietary embedded operating systems is causing
quite a stir in the corporate boardrooms of many traditional embedded

operating system (OS) companies. For many well-founded reasons, Linux is
being adopted as the operating system in many products beyond its traditional
stronghold in server applications. Examples of these embedded systems include
cellular phones, DVD players, video games, digital cameras, network switches,
and wireless networking gear. It is quite likely that Linux is already in your home
or automobile. Linux has been commonly selected as the embedded operating
system in devices including set-top boxes, high-defi nition televisions, Blu-ray
DVD players, automobile infotainment centers, and many other devices en-
countered in everyday life.

1.1 Why Linux?

Because of the numerous economic and technical benefi ts, we are seeing strong
growth in the adoption of Linux for embedded devices. This trend has crossed virtu-
ally all markets and technologies. Linux has been adopted for embedded products in
the worldwide public switched telephone network, global data networks, and wire-
less cellular handsets, as well as radio node controllers and backhaul infrastructure
that operates these networks. Linux has enjoyed success in automobile applications,
consumer products such as games and PDAs, printers, enterprise switches and rout-
ers, and many other products. Tens of millions of cell phones are now shipping
worldwide with Linux as the operating system of choice. The adoption rate of em-
bedded Linux continues to grow, with no end in sight.

Here are some of the reasons for the growth of embedded Linux:

 • Linux supports a vast variety of hardware devices, probably more than any
other OS.

 • Linux supports a huge variety of applications and networking protocols.

 • Linux is scalable, from small consumer-oriented devices to large, heavy-iron,
carrier-class switches and routers.

1.3 Open Source and the GPL 3

 • Linux can be deployed without the royalties required by traditional proprietary
embedded operating systems.

 • Linux has attracted a huge number of active developers, enabling rapid support
of new hardware architectures, platforms, and devices.

 • An increasing number of hardware and software vendors, including virtually all
the top-tier chip manufacturers and independent software vendors (ISVs), now
support Linux.

For these and other reasons, we are seeing an accelerated adoption rate of Linux in
many common household items, ranging from high-defi nition televisions to cellular
handsets.

1.2 Embedded Linux Today

It may come as no surprise that Linux has experienced signifi cant growth in the em-
bedded space. Indeed, the fact that you are reading this book indicates that Linux has
touched your life. It is diffi cult to estimate the market size, because many companies
continue to build their own embedded Linux distributions.

LinuxDevices.com, the popular news and information portal founded by Rick Leh-
rbaum, now owned by Ziff Davis, conducts an annual survey of the embedded Linux
market. In its latest survey, it reports that Linux has emerged as the dominant operat-
ing system used in thousands of new designs each year. In fact, nearly half the respon-
dents reported using Linux in an embedded design. The next most popular operating
system reportedly was used by only about one in eight respondents. Commercial op-
erating systems that once dominated the embedded market were reportedly used by
fewer than one in ten respondents. Even if you fi nd reason to dispute these results, no
one can ignore the momentum in the embedded Linux marketplace today.

1.3 Open Source and the GPL

One of the fundamental factors driving the adoption of Linux is the fact that it is open
source. For a fascinating and insightful look at the history and culture of the open
source movement, read Eric S. Raymond’s book, referenced at the end of this chapter.

The Linux kernel is licensed under the terms of the GNU GPL1 (General Pub-
lic License), which leads to the popular myth that Linux is free. In fact, the second

1 See http://www.gnu.org/licenses/gpl.html for complete text of the license.

http://www.gnu.org/licenses/gpl.html

4 Chapter 1 Introduction

paragraph of the GNU GPL Version 3 declares: “When we speak of free software, we
are referring to freedom, not price.” Most professional development managers agree:
You can download Linux without charge, but development and deployment with any
OS on an embedded platform carries an (often substantial) cost. Linux is no different
in this regard.

The GPL is remarkably short and easy to read. Here are some of its most important
characteristics:

 • The license is self-perpetuating.

 • The license grants the user freedom to run the program.

 • The license grants the user the right to study and modify the source code.

 • The license grants the user permission to distribute the original code and his
modifications.

 • The license is viral. In other words, it grants these same rights to anyone to
whom you distribute GPL software.

When software is released under the terms of the GPL, it must forever carry that
license.2 Even if the code is highly modifi ed, which is allowed and even encouraged by
the license, the GPL mandates that it must be released under the same license. The
intent of this feature is to guarantee freedom of access to the software, including modi-
fi ed versions of the software (or derived works, as they are commonly called).

No matter how the software was obtained, the GPL grants the licensee unlimited
distribution rights, without the obligation to pay royalties or per-unit fees. This does
not mean that vendors can’t charge for their GPL software—this is a reasonable and
common business practice. It means that once in possession of GPL software, it is per-
missible to modify and redistribute it, whether or not it is a derived (modifi ed) work.
However, as dictated by the GPL, the authors of the modifi ed work are obligated to
release the work under the terms of the GPL if they decide to do so. Any distribution
of a derived work, such as shipment to a customer, triggers this obligation.

1.3.1 Free Versus Freedom

Two popular phrases are often repeated in the discussion about the free nature of open
source: “free as in freedom” and “free as in beer.” (The author is particularly fond of
the latter.) The GPL exists to guarantee “free as in freedom” of a particular body of

2 If all the copyright holders agreed, the software could in theory be released under a new license. This would be a very unlikely
scenario indeed, especially for a large software base with thousands of contributors.

1.4 Standards and Relevant Bodies 5

software. It guarantees your freedom to use it, study it, and change it. It also guarantees
these freedoms for anyone to whom you distribute your modifi ed code. This concept
has become fairly widely understood.

One of the misconceptions frequently heard is that Linux is “free as in beer.” You
can obtain Linux free of cost. You can download a Linux kernel in a few minutes.
However, as any professional development manager understands, certain costs are as-
sociated with any software to be incorporated into a design. These include the costs of
acquisition, integration, modifi cation, maintenance, and support. Add to that the cost
of obtaining and maintaining a properly confi gured toolchain, libraries, application
programs, and specialized cross-development tools compatible with your chosen archi-
tecture, and you can quickly see that it is a nontrivial exercise to develop the needed
software components and development environment necessary to develop and deploy
your embedded Linux-based system.

1.4 Standards and Relevant Bodies

As Linux continues to gain market share in the desktop, enterprise, and embedded
market segments, new standards and organizations have emerged to help infl uence the
use and acceptance of Linux. This section introduces the standards you might want to
familiarize yourself with.

1.4.1 Linux Standard Base

Probably the single most relevant standard for a Linux distribution maintainer is the
Linux Standard Base (LSB). The goal of the LSB is to establish a set of standards
designed to enhance the interoperability of applications among different Linux dis-
tributions. Currently, the LSB spans several architectures, including IA32/64, Power
Architecture 32- and 64-bit, AMD64, and others. The standard is divided into a core
component and the individual architectural components.

The LSB specifi es common attributes of a Linux distribution, including object for-
mat, standard library interfaces, a minimum set of commands and utilities and their
behavior, fi le system layout, system initialization, and so on.

You can learn more about the LSB at the link given at the end of this chapter.

6 Chapter 1 Introduction

1.4.2 Linux Foundation

According to its website, the Linux Foundation “is a non-profi t consortium dedicated
to fostering the growth of Linux.” The Linux Foundation sponsors the work of Linus
Torvalds, the creator of Linux. The Linux Foundation sponsors several working groups
to defi ne standards and participate in the development of features targeting many im-
portant Linux platform attributes. The next two sections introduce some of these ini-
tiatives.

1.4.3 Carrier-Grade Linux

A signifi cant number of the world’s largest networking and telecommunications equip-
ment manufacturers are either developing or shipping carrier-class equipment running
Linux as the operating system. Signifi cant features of carrier-class equipment include
high reliability, high availability, and rapid serviceability. These vendors design prod-
ucts using redundant hot-swap architectures, fault-tolerant features, clustering, and
often real-time performance.

The Linux Foundation Carrier Grade Linux workgroup has produced a specifi ca-
tion defi ning a set of requirements for carrier-class equipment. The current version of
the specifi cation covers seven functional areas:

 • Availability—Requirements that provide enhanced availability, including
online maintenance operations, redundancy, and status monitoring

 • Clusters—Requirements that facilitate redundant services, such as cluster
membership management and data checkpointing

 • Serviceability—Requirements for remote servicing and maintenance, such as
SNMP and diagnostic monitoring of fans and power supplies

 • Performance—Requirements to define performance and scalability, symmetric
multiprocessing, latencies, and more

 • Standards—Requirements that define standards to which CGL-compliant
equipment shall conform

 • Hardware—Requirements related to high-availability hardware, such as blade
servers and hardware-management interfaces

 • Security—Requirements to improve overall system security and protect the
system from various external threats

1.4 Standards and Relevant Bodies 7

1.4.4 Mobile Linux Initiative: Moblin

Several mobile handsets (cellular phones) available on the worldwide market have been
built around embedded Linux. It has been widely reported that tens of millions of
handsets have been shipped with Linux as the operating system platform. The only cer-
tainty is that more are coming. This promises to be one of the most explosive market
segments for what was formerly the role of a proprietary real-time operating system.
This speaks volumes about the readiness of Linux for commercial embedded applica-
tions.

The Linux Foundation sponsors a workgroup originally called the Mobile Linux
Initiative, now referred to as Moblin. Its purpose is to accelerate the adoption of Linux
on next-generation mobile handsets and other converged voice/data portable devices,
according to the Linux Foundation website. The areas of focus for this working group
include development tools, I/O and networking, memory management, multimedia,
performance, power management, security, and storage. The Moblin website can be
found at http://moblin.org. You can try out a Moblin release, such as Fedora/Moblin,
found at http://fedoraproject.org/wiki/Features/FedoraMoblin, or the Ubuntu Moblin
remix found on the author’s Dell Mini 10 Netbook.

The embedded Linux landscape is continuously evolving. As this second edition
was being prepared, the Moblin and Maemo project merged to become MeeGo.
You can learn more about MeeGo, and even download a MeeGo image to try out, at
http://meego.com/.

1.4.5 Service Availability Forum

If you are engaged in building products for environments in which high reliability,
availability, and serviceability (RAS) are important, you should be aware of the Service
Availability Forum (SA Forum). This organization is playing a leading role in defi ning
a common set of interfaces for use in carrier-grade and other commercial equipment
for system management. The SA Forum website is at www.saforum.org.

www.saforum.org
http://moblin.org
http://fedoraproject.org/wiki/Features/FedoraMoblin
http://meego.com/

8 Chapter 1 Introduction

1.5 Summary

Embedded Linux has won the race. Indeed, you probably have embedded Linux in
your car or home. This chapter examined the reasons why and developed a perspective
for the material to come:

 • Adoption of Linux among developers and manufacturers of embedded prod-
ucts continues to accelerate.

 • Use of Linux in embedded devices continues to grow at an exciting pace.

 • Many factors are driving the growth of Linux in the embedded market.

 • Several standards and relevant organizations are influencing embedded Linux.

1.5.1 Suggestions for Additional Reading

The Cathedral and the Bazaar
Eric S. Raymond
O’Reilly Media, Inc., 2001

Linux Standard Base Project
http://www.linuxfoundation.org/collaborate/workgroups/lsb

Linux Foundation
http://www.linuxfoundation.org/

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/

9

2

The Big Picture

In This Chapter

■ 2.1 Embedded or Not? 10

■ 2.2 Anatomy of an Embedded System 12

■ 2.3 Storage Considerations 20

■ 2.4 Embedded Linux Distributions 32

■ 2.5 Summary 34

10

Often the best path to understanding a given task is to have a good grasp
of the big picture. Many fundamental concepts can present challenges to

the newcomer to embedded systems development. This chapter takes you on
a tour of a typical embedded system and the development environment with
specifi c emphasis on the concepts and components that make developing these
systems unique and often challenging.

2.1 Embedded or Not?

Several key attributes are associated with embedded systems. You wouldn’t necessar-
ily call your desktop PC an embedded system. But consider a desktop PC hardware
platform in a remote data center that performs a critical monitoring and alarm task.
Assume that this data center normally is not staffed. This imposes a different set
of requirements on this hardware platform. For example, if power is lost and then
restored, you would expect this platform to resume its duties without operator in-
tervention.

Embedded systems come in a variety of shapes and sizes, from the largest
multiple-rack data storage or networking powerhouses to tiny modules such as your
personal MP3 player or cellular handset. Following are some of the usual character-
istics of an embedded system:

 • Contains a processing engine, such as a general-purpose microprocessor.

 • Typically designed for a specific application or purpose.

 • Includes a simple (or no) user interface, such as an automotive engine igni-
tion controller.

 • Often is resource-limited. For example, it might have a small memory foot-
print and no hard drive.

 • Might have power limitations, such as a requirement to operate from batter-
ies.

 • Not typically used as a general-purpose computing platform.

 • Generally has application software built in, not user-selected.

2.1 Embedded or Not? 11

 • Ships with all intended application hardware and software preintegrated.

 • Often is intended for applications without human intervention.

Most commonly, embedded systems are resource-constrained compared to the
typical desktop PC. Embedded systems often have limited memory, small or no hard
drives, and sometimes no external network connectivity. Frequently, the only user in-
terface is a serial port and some LEDs. These and other issues can present challenges to
the embedded system developer.

2.1.1 BIOS Versus Bootloader

When power is fi rst applied to the desktop computer, a software program called the
BIOS immediately takes control of the processor. (Historically, BIOS was an acronym
meaning Basic Input/Output Software, but the term has taken on a meaning of its own
as the functions it performs have become much more complex than the original imple-
mentations.) The BIOS might actually be stored in Flash memory (described shortly)
to facilitate fi eld upgrade of the BIOS program itself.

The BIOS is a complex set of system-confi guration software routines that have
knowledge of the low-level details of the hardware architecture. Most of us are unaware
of the extent of the BIOS and its functionality, but it is a critical piece of the desktop
computer. The BIOS fi rst gains control of the processor when power is applied. Its
primary responsibility is to initialize the hardware, especially the memory subsystem,
and load an operating system from the PC’s hard drive.

In a typical embedded system (assuming that it is not based on an industry-
standard x86 PC hardware platform), a bootloader is the software program that per-
forms the equivalent functions. In your own custom embedded system, part of your
development plan must include the development of a bootloader specifi c to your board.
Luckily, several good open source bootloaders are available that you can customize for
your project. These are introduced in Chapter 7, “Bootloaders.”

Here are some of the more important tasks your bootloader performs on power-up:

 • Initializes critical hardware components, such as the SDRAM controller, I/O
controllers, and graphics controllers.

 • Initializes system memory in preparation for passing control to the operating
system.

 • Allocates system resources such as memory and interrupt circuits to peripheral
controllers, as necessary.

12 Chapter 2 The Big Picture

 • Provides a mechanism for locating and loading your operating system image.

 • Loads and passes control to the operating system, passing any required startup
information. This can include total memory size, clock rates, serial port speeds,
and other low-level hardware-specific configuration data.

This is a simplifi ed summary of the tasks that a typical embedded-system boot-
loader performs. The important point to remember is this: If your embedded system
will be based on a custom-designed platform, these bootloader functions must be sup-
plied by you, the system designer. If your embedded system is based on a commercial
off-the-shelf (COTS) platform such as an ATCA chassis,1 the bootloader (and often
the Linux kernel) typically is included on the board. Chapter 7 discusses bootloaders
in more detail.

2.2 Anatomy of an Embedded System

Figure 2-1 is a block diagram of a typical embedded system. This is a simple example
of a high-level hardware architecture that might be found in a wireless access point.
The system is architected around a 32-bit RISC processor. Flash memory is used for
nonvolatile program and data storage. Main memory is synchronous dynamic ran-
dom-access memory (SDRAM) and might contain anywhere from a few megabytes to
hundreds of megabytes, depending on the application. A real-time clock module, often
backed up by battery, keeps the time of day (calendar/wall clock, including date). This
example includes an Ethernet and USB interface, as well as a serial port for console
access via RS-232. The 802.11 chipset or module implements the wireless modem
function.

Often the processor in an embedded system performs many functions beyond the
traditional core instruction stream processing. The hypothetical processor shown in
Figure 2-1 contains an integrated UART for a serial interface and integrated USB and
Ethernet controllers. Many processors contain integrated peripherals. Sometimes they
are referred to as system on chip (SOC). We look at several examples of integrated
processors in Chapter 3, “Processor Basics.”

1 ATCA platforms are introduced in Chapter 3.

 2.2 Anatomy of an Embedded System 13

FIGURE 2-1 Embedded system

2.2.1 Typical Embedded Linux Setup

Often the fi rst question posed by the newcomer to embedded Linux is, just what do
you need to begin development? To answer that question, Figure 2-2 shows a typical
embedded Linux development setup.

Figure 2-2 is a common arrangement. It shows a host development system, running
your favorite desktop Linux distribution, such as Red Hat, SUSE, or Ubuntu Linux.
The embedded Linux target board is connected to the development host via an RS-232
serial cable. You plug the target board’s Ethernet interface into a local Ethernet hub
or switch, to which your development host is also attached via Ethernet. The develop-
ment host contains your development tools and utilities along with target fi les, which
normally are obtained from an embedded Linux distribution.

Flash Memory Main Memory Wireless Modem

SDRAM

802.11
Chipset

Flash

Real Time
(TOD)
Clock

Serial
Port

Ethernet
(LAN)

USB

32-Bit
RISC Processor

Serial
UART

USB
Controller

Ethernet
Controller

14 Chapter 2 The Big Picture

FIGURE 2-2 Embedded Linux development setup

For this example, our primary connection to the embedded Linux target is via the
RS-232 connection. A serial terminal program is used to communicate with the target
board. Minicom is one of the most commonly used serial terminal applications and
is available on virtually all desktop Linux distributions.2 The author has switched to
using screen as his terminal of choice, replacing the functionality of minicom. It of-
fers much more fl exibility, especially for capturing traces, and it’s more forgiving of
serial line garbage often encountered during system bringup or troubleshooting. To use
screen in this manner on a USB-attached serial dongle, simply invoke it on your serial
terminal and specify the speed:

$ screen /dev/ttyUSB0 115200

2.2.2 Starting the Target Board

When power is fi rst applied, a bootloader supplied with your target board takes imme-
diate control of the processor. It performs some very low-level hardware initialization,
including processor and memory setup, initialization of the UART controlling the
serial port, and initialization of the Ethernet controller. Listing 2-1 displays the char-
acters received from the serial port, resulting from power being applied to the target.

2 You may have to install minicom from your distribution’s repository. On Ubuntu, for example, you would execute sudo
apt-get install minicom to install minicom on your desktop.

Host Development System Ethernet Hub

RS-232

Embedded
Linux Target

Serial Terminal

+Ethernet eth0: NAC address 00:0s:0c:00:82:fB
IP: 192:168:0.64/255.255.255.0, Gateway: 0.0.0.0
Default server: 192.168.0.3, DNX server: 0.0.0.0
RedBoot (tm) bootstrap and debug environment (RCM)
Red Hat certified release, version 1.92 - built
Platform: ADI Coyote (XScale)
IDE/Parallel Port CPLD Version: 1.0
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.
RAM: 0x00000000-0x04000000, 0x0001f560-0x03fd1000
FLASH: 0x500000000 - 0x51000000, 128

RedBoot>

 2.2 Anatomy of an Embedded System 15

For this example, we have chosen a target board from Freescale Semiconductor, the
PowerQUICC III MPC8548 Confi gurable Development System (CDS). It contains
the MPC8548 PowerQUICC III processor. It ships from Freescale with the U-Boot
bootloader preinstalled.

LISTING 2-1 Initial Bootloader Serial Output

U-Boot 2009.01 (May 20 2009 - 09:45:35)

CPU: 8548E, Version: 2.1, (0x80390021)

Core: E500, Version: 2.2, (0x80210022)

Clock Configuration:

 CPU:990 MHz, CCB:396 MHz,

 DDR:198 MHz (396 MT/s data rate), LBC:49.500 MHz

L1: D-cache 32 kB enabled

 I-cache 32 kB enabled

Board: CDS Version 0x13, PCI Slot 1

CPU Board Revision 0.0 (0x0000)

I2C: ready

DRAM: Initializing

 SDRAM: 64 MB

 DDR: 256 MB

FLASH: 16 MB

L2: 512 KB enabled

Invalid ID (ff ff ff ff)

 PCI: 64 bit, unknown MHz, async, host, external-arbiter

 Scanning PCI bus 00

PCI on bus 00 - 02

 PCIE connected to slot as Root Complex (base address e000a000)

PCIE on bus 3 - 3

In: serial

Out: serial

Err: serial

Net: eTSEC0, eTSEC1, eTSEC2, eTSEC3

=>

When power is applied to the MPC8548CDS board, U-Boot performs some low-
level hardware initialization, which includes confi guring a serial port. It then prints
a banner line, as shown in the fi rst line of Listing 2-1. Next the CPU and core are
displayed, followed by some confi guration data describing clocks and cache confi gura-
tion. This is followed by a text string describing the board.

16 Chapter 2 The Big Picture

When the initial hardware confi guration is complete, U-Boot confi gures any hard-
ware subsystems as directed by its static confi guration. Here we see I2C, DRAM,
FLASH, L2 cache, PCI, and network subsystems being confi gured by U-Boot. Finally,
U-Boot waits for input from the console over the serial port, as indicated by the =>
prompt.

2.2.3 Booting the Kernel

Now that U-Boot has initialized the hardware, serial port, and Ethernet network inter-
faces, it has only one job left in its short but useful life span: to load and boot the Linux
kernel. All bootloaders have a command to load and execute an operating system im-
age. Listing 2-2 shows one of the more common ways U-Boot is used to manually load
and boot a Linux kernel.

LISTING 2-2 Loading the Linux Kernel

=> tftp 600000 uImage

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.103; our IP address is 192.168.0.18

Filename ‘uImage’.

Load address: 0x600000

Loading: ###

 ###

done

Bytes transferred = 1838553 (1c0dd9 hex)

=> tftp c00000 dtb

Speed: 1000, full duplex

Using eTSEC0 device

TFTP from server 192.168.0.103; our IP address is 192.168.0.18

Filename ‘dtb’.

Load address: 0xc00000

Loading: ##

done

Bytes transferred = 16384 (4000 hex)

=> bootm 600000 - c00000

Booting kernel from Legacy Image at 00600000 ...

 Image Name: MontaVista Linux 6/2.6.27/freesc

 Image Type: PowerPC Linux Kernel Image (gzip compressed)

 Data Size: 1838489 Bytes = 1.8 MB

 Load Address: 00000000

 Entry Point: 00000000

 2.2 Anatomy of an Embedded System 17

LISTING 2-2 Continued

 Verifying Checksum ... OK

Flattened Device Tree blob at 00c00000

 Booting using the fdt blob at 0xc00000

 Uncompressing Kernel Image ... OK

 Loading Device Tree to 007f9000, end 007fffff ... OK

Using MPC85xx CDS machine description

Memory CAM mapping: CAM0=256Mb, CAM1=0Mb, CAM2=0Mb residual: 0Mb

...

< Lots of Linux kernel boot messages, removed for clarity >

...

freescale-8548cds login: <<--- Linux login prompt

The tftp command at the start of Listing 2-2 instructs U-Boot to load the kernel
image uImage into memory over the network using the TFTP3 protocol. The kernel
image, in this case, is located on the development workstation (usually the same ma-
chine that has the serial port connected to the target board). The tftp command is
passed an address that is the physical address in the target board’s memory where the
kernel image will be loaded. Don’t worry about the details now; Chapter 7 covers U-
Boot in much greater detail.

The second invocation of the tftp command loads a board confi guration fi le called
a device tree. It is referred to by other names, including fl at device tree and device tree
binary or dtb. You will learn more about this fi le in Chapter 7. For now, it is enough for
you to know that this fi le contains board-specifi c information that the kernel requires
in order to boot the board. This includes things such as memory size, clock speeds,
onboard devices, buses, and Flash layout.

Next, the bootm (boot from memory image) command is issued, to instruct U-Boot
to boot the kernel we just loaded from the address specifi ed by the tftp command.
In this example of using the bootm command, we instruct U-Boot to load the kernel
that we put at 0x600000 and pass the device tree binary (dtb) we loaded at 0xc00000 to
the kernel. This command transfers control to the Linux kernel. Assuming that your
kernel is properly confi gured, this results in booting the Linux kernel to a console com-
mand prompt on your target board, as shown by the login prompt.

Note that the bootm command is the death knell for U-Boot. This is an important
concept. Unlike the BIOS in a desktop PC, most embedded systems are architected

3 This and other servers you will be using are covered in detail in Chapter 12, “Embedded Development Environment.”

18 Chapter 2 The Big Picture

in such a way that when the Linux kernel takes control, the bootloader ceases to exist.
The kernel claims any memory and system resources that the bootloader previously
used. The only way to pass control back to the bootloader is to reboot the board.

One fi nal observation is worth noting. All the serial output in Listing 2-2 up to and
including this line is produced by the U-Boot bootloader:

Loading Device Tree to 007f9000, end 007fffff ... OK

The rest of the boot messages are produced by the Linux kernel. We’ll have much more
to say about this later, but it is worth noting where U-Boot leaves off and where the
Linux kernel image takes over.

2.2.4 Kernel Initialization: Overview

When the Linux kernel begins execution, it spews out numerous status messages
during its rather comprehensive boot process. In the example being discussed here,
the Linux kernel displayed approximately 200 printk4 lines before it issues the login
prompt. (We omitted them from the listing to clarify the point being discussed.) List-
ing 2-3 reproduces the last several lines of output before the login prompt. The goal of
this exercise is not to delve into the details of the kernel initialization (this is covered
in Chapter 5, “Kernel Initialization”). The goal is to gain a high-level understanding
of what is happening and what components are required to boot a Linux kernel on an
embedded system.

LISTING 2-3 Linux Final Boot Messages

...

Looking up port of RPC 100005/1 on 192.168.0.9

VFS: Mounted root (nfs filesystem).

Freeing unused kernel memory: 152k init

INIT: version 2.86 booting

...

freescale-8548cds login:

Shortly before issuing a login prompt on the serial terminal, Linux mounts a root
fi le system. In Listing 2-3, Linux goes through the steps required to mount its root
fi le system remotely (via Ethernet) from an NFS5 server on a machine with the IP

4 printk() is the function in the kernel responsible for displaying messages to the system console.
5 NFS and other required servers are covered in Chapter 12.

 2.2 Anatomy of an Embedded System 19

address 192.168.0.9. Usually, this is your development workstation. The root fi le sys-
tem contains the application programs, system libraries, and utilities that make up a
Linux system.

The important point in this discussion should not be understated: Linux requires a
fi le system. Many legacy embedded operating systems did not require a fi le system. This
fact is a frequent surprise to engineers making the transition from legacy embedded
OSs to embedded Linux. A fi le system consists of a predefi ned set of system directories
and fi les in a specifi c layout on a hard drive or other medium that the Linux kernel
mounts as its root fi le system.

Note that Linux can mount a root fi le system from other devices. The most com-
mon, of course, is to mount a partition from a hard drive as the root fi le system, as is
done on your Linux laptop or workstation. Indeed, NFS is pretty useless when you
ship your embedded Linux widget out the door and away from your development en-
vironment. However, as you progress through this book, you will come to appreciate
the power and fl exibility of NFS root mounting as a development environment.

2.2.5 First User Space Process: init

Another important point should be made before we move on. Notice in Listing 2-3
this line:

INIT: version 2.86 booting

Until this point, the kernel itself was executing code, performing the numerous initial-
ization steps in a context known as kernel context. In this operational state, the kernel
owns all system memory and operates with full authority over all system resources. The
kernel has access to all physical memory and to all I/O subsystems. It executes code in
kernel virtual address space, using a stack created and owned by the kernel itself.

When the Linux kernel has completed its internal initialization and mounted its
root fi le system, the default behavior is to spawn an application program called init.
When the kernel starts init, it is said to be running in user space or user space context.
In this operational mode, the user space process has restricted access to the system and
must use kernel system calls to request kernel services such as device and fi le I/O. These
user space processes, or programs, operate in a virtual memory space picked at random6

and managed by the kernel. The kernel, in cooperation with specialized memory-
management hardware in the processor, performs virtual-to-physical address transla-
tion for the user space process. The single biggest benefi t of this architecture is that an

6 It’s not actually random, but for purposes of this discussion, it might as well be. This topic will be covered in more detail later.

20 Chapter 2 The Big Picture

error in one process can’t trash the memory space of another. This is a common pitfall
in legacy embedded OSs that can lead to bugs that are some of the most diffi cult to
track down.

Don’t be alarmed if these concepts seem foreign. The objective of this section is to
paint a broad picture from which you will develop more detailed knowledge as you
progress through the book. These and other concepts are covered in great detail in later
chapters.

2.3 Storage Considerations

One of the most challenging aspects of embedded Linux development is that most em-
bedded systems have limited physical resources. Although the Core™ 2 Duo machine
on your desktop might have 500GB of hard drive space, it is not uncommon to fi nd
embedded systems with a fraction of that amount. In many cases, the hard drive typi-
cally is replaced by smaller and less expensive nonvolatile storage devices. Hard drives
are bulky, have rotating parts, are sensitive to physical shock, and require multiple
power supply voltages, which makes them unsuitable for many embedded systems.

2.3.1 Flash Memory

Nearly everyone is familiar with Compact Flash and SD cards used in a wide variety of
consumer devices, such as digital cameras and PDAs (both great examples of embed-
ded systems). These modules, based on Flash memory technology, can be thought of
as solid-state hard drives, capable of storing many megabytes—and even gigabytes—of
data in a tiny footprint. They contain no moving parts, are relatively rugged, and oper-
ate on a single common power supply voltage.

Several manufacturers of Flash memory exist. Flash memory comes in a variety of
electrical formats, physical packages, and capacities. It is not uncommon to see embed-
ded systems with as little as 4MB or 8MB of nonvolatile storage. More typical storage
requirements for embedded Linux systems range from 16MB to 256MB or more. An
increasing number of embedded Linux systems have nonvolatile storage into the giga-
byte range.

Flash memory can be written to and erased under software control. Rotational
hard drive technology remains the fastest writable medium. Flash writing and erasing
speeds have improved considerably over time, although Flash write and erase time is
still considerably slower. You must understand some fundamental differences between
hard drive and Flash memory technology to properly use the technology.

2.3 Storage Considerations 21

Flash memory is divided into relatively large erasable units, referred to as erase
blocks. One of the defi ning characteristics of Flash memory is how data in Flash is
written and erased. In a typical NOR7 Flash memory chip, data can be changed from
a binary 1 to a binary 0 under software control using simple data writes directly to the
cell’s address, one bit or word at a time. However, to change a bit from a 0 back to a
1, an entire erase block must be erased using a special sequence of control instructions
to the Flash chip.

A typical NOR Flash memory device contains many erase blocks. For example, a
4MB Flash chip might contain 64 erase blocks of 64KB each. Flash memory is also
available with nonuniform erase block sizes, to facilitate fl exible data-storage layouts.
These are commonly called boot block or boot sector Flash chips. Often the bootload-
er is stored in the smaller blocks, and the kernel and other required data are stored in
the larger blocks. Figure 2-3 illustrates the block size layout for a typical top boot Flash.

FIGURE 2-3 Boot block Flash architecture

7 There are several types of Flash technologies. NOR Flash is one of the most commonly used in small embedded systems.

Top of Flash

Parameter Blocks

Main Blocks

Bottom of Flash

8 KB

8 KB

64 KB

64 KB

22 Chapter 2 The Big Picture

To modify data stored in a Flash memory array, the block in which the modifi ed
data resides must be completely erased. Even if only 1 byte in a block needs to be
changed, the entire block must be erased and rewritten.8 Flash block sizes are relatively
large compared to traditional hard-drive sector sizes. In comparison, a typical high-
performance hard drive has writable sectors of 512 or 1024 bytes. The ramifi cations
of this might be obvious: Write times for updating data in Flash memory can be many
times that of a hard drive, due in part to the relatively large quantity of data that must
be erased and written back to the Flash for each update. In the worst case, these write
cycles can take several seconds.

Another limitation of Flash memory that must be considered is Flash memory cell
write lifetime. A NOR Flash memory cell has a limited number of write cycles before
failure. Although the number of cycles is fairly large (100,000 cycles per block is typi-
cal), it is easy to imagine a poorly designed Flash storage algorithm (or even a bug)
that can quickly destroy Flash devices. It goes without saying that you should avoid
confi guring your system loggers to output to a Flash-based device.

2.3.2 NAND Flash

NAND Flash is a relatively new Flash technology. When NAND Flash hit the market,
traditional Flash memory such as that described in the preceding section was called
NOR Flash. These distinctions relate to the internal Flash memory cell architecture.
NAND Flash devices improve on some of the limitations of traditional (NOR) Flash
by offering smaller block sizes, resulting in faster and more effi cient writes and gener-
ally more effi cient use of the Flash array.

NOR Flash devices interface to the microprocessor in a fashion similar to many mi-
croprocessor peripherals. That is, they have a parallel data and address bus that are con-
nected directly9 to the microprocessor data/address bus. Each byte or word in the Flash
array can be individually addressed in a random fashion. In contrast, NAND devices
are accessed serially through a complex interface that varies among vendors. NAND
devices present an operational model more similar to that of a traditional hard drive
and associated controller. Data is accessed in serial bursts, which are far smaller than
NOR Flash block size. Write cycle lifetime for NAND Flash is an order of magnitude
greater than for NOR Flash, although erase times are signifi cantly smaller.

8 Remember, you can change a 1 to a 0 a byte at a time, but you must erase the entire block to change any bit from a 0 to a 1.
9 Directly in the logical sense. The actual circuitry may contain bus buffers or bridge devices and so on.

2.3 Storage Considerations 23

In summary, NOR Flash can be directly accessed by the microprocessor, and code
can even be executed directly out of NOR Flash. (However, for performance reasons,
this is rarely done, and then only on systems in which resources are extremely scarce.)
In fact, many processors cannot cache instruction accesses to Flash, as they can with
DRAM. This further degrades execution speed. In contrast, NAND Flash is more suit-
able for bulk storage in fi le system format than raw binary executable code and data
storage.

2.3.3 Flash Usage

An embedded system designer has many options in the layout and use of Flash mem-
ory. In the simplest of systems, in which resources are not overly constrained, raw
binary data (perhaps compressed) can be stored on the Flash device. When booted, a
fi le system image stored in Flash is read into a Linux ramdisk block device, mounted
as a fi le system, and accessed only from RAM. This is often a good design choice when
the data in Flash rarely needs to be updated. Any data that does need to be updated is
relatively small compared to the size of the ramdisk. It is important to realize that any
changes to fi les in the ramdisk are lost upon reboot or power cycle.

Figure 2-4 illustrates a common Flash memory organization that is typical of a
simple embedded system in which nonvolatile storage requirements of dynamic data
are small and infrequent.

FIGURE 2-4 Typical Flash memory layout

The bootloader is often placed in the top or bottom of the Flash memory array. Fol-
lowing the bootloader, space is allocated for the Linux kernel image and the ramdisk

Top of Flash
Bootloader

and
Configuration

Linux Kernel

Ramdisk
File System Image

Upgrade Space

24 Chapter 2 The Big Picture

fi le system image,10 which holds the root fi le system. Typically, the Linux kernel and
ramdisk fi le system images are compressed, and the bootloader handles the decompres-
sion task during the boot cycle.

For dynamic data that needs to be saved between reboots and power cycles, another
small area of Flash can be dedicated, or another type of nonvolatile storage11 can be
used. This is a typical confi guration for embedded systems that have requirements to
store confi guration data, as might be found in a wireless access point aimed at the con-
sumer market, for example.

2.3.4 Flash File Systems

The limitations of the simple Flash layout scheme just described can be overcome by
using a Flash fi le system to manage data on the Flash device in a manner similar to
how data is organized on a hard drive. Early implementations of fi le systems for Flash
devices consisted of a simple block device layer that emulated the 512-byte sector
layout of a common hard drive. These simple emulation layers allowed access to data
in fi le format rather than unformatted bulk storage, but they had some performance
limitations.

One of the fi rst enhancements to Flash fi le systems was the incorporation of wear
leveling. As discussed earlier, Flash blocks are subject to a fi nite write lifetime. Wear-
leveling algorithms are used to distribute writes evenly over the physical erase blocks of
the Flash memory in order to extend the life of the Flash memory chip.

Another limitation that arises from the Flash architecture is the risk of data loss
during a power failure or premature shutdown. Consider that the Flash block sizes are
relatively large and that average fi le sizes being written are often much smaller relative
to the block size. You learned previously that Flash blocks must be written one block at
a time. Therefore, to write a small 8KB fi le, you must erase and rewrite an entire Flash
block, perhaps 64KB or 128KB in size; in the worst case, this can take several seconds
to complete. This opens a signifi cant window to risk of data loss due to power failure.

One of the more popular Flash fi le systems in use today is JFFS2, or Journaling
Flash File System 2. It has several important features aimed at improving overall per-
formance, increasing Flash lifetime, and reducing the risk of data loss in the case of
power failure. The more signifi cant improvements in the latest JFFS2 fi le system in-
clude improved wear leveling, compression and decompression to squeeze more data

10 We discuss ramdisk fi le systems in more detail in Chapter 9, “File Systems.”
11 Real-time clock modules and serial EEPROMs are often choices for nonvolatile storage of small amounts of data.

2.3 Storage Considerations 25

into a given Flash size, and support for Linux hard links. This topic is covered in detail
in Chapter 9 and in Chapter 10, “MTD Subsystem,” when we discuss the Memory
Technology Device (MTD) subsystem.

2.3.5 Memory Space

Virtually all legacy embedded operating systems view and manage system memory as
a single large, fl at address space. That is, a microprocessor’s address space exists from
0 to the top of its physical address range. For example, if a microprocessor had 24
physical address lines, its top of memory would be 16MB. Therefore, its hexadecimal
address would range from 0x00000000 to 0x00ffffff. Hardware designs commonly
place DRAM starting at the bottom of the range, and Flash memory from the top
down. Unused address ranges between the top of DRAM and bottom of Flash would
be allocated for addressing of various peripheral chips on the board. This design ap-
proach is often dictated by the choice of microprocessor. Figure 2-5 shows a typical
memory layout for a simple embedded system.

FIGURE 2-5 Typical embedded system memory map

FFFF_FFFF

16 MB Flash

PCI Address Range

Peripherals Base Address

64 MB RAM

FF00_0000

F000_0000

0000_0000

8000_0000

03FF_FFFF

Flash Memory

PCI Bus Addresses

DRAM

26 Chapter 2 The Big Picture

In traditional embedded systems based on legacy operating systems, the OS and all
the tasks12 had equal access rights to all resources in the system. A bug in one process
could wipe out memory contents anywhere in the system, whether it belonged to it-
self, the OS, another task, or even a hardware register somewhere in the address space.
Although this approach had simplicity as its most valuable characteristic, it led to bugs
that could be challenging to diagnose.

High-performance microprocessors contain complex hardware engines called
Memory Management Units (MMUs). Their purpose is to enable an operating system
to exercise a high degree of management and control over its address space and the
address space it allocates to processes. This control comes in two primary forms: access
rights and memory translation. Access rights allow an operating system to assign specifi c
memory-access privileges to specifi c tasks. Memory translation allows an operating
system to virtualize its address space, which has many benefi ts.

The Linux kernel takes advantage of these hardware MMUs to create a virtual
memory operating system. One of the biggest benefi ts of virtual memory is that it can
make more effi cient use of physical memory by presenting the appearance that the sys-
tem has more memory than is physically present. The other benefi t is that the kernel
can enforce access rights to each range of system memory that it allocates to a task or
process, to prevent one process from errantly accessing memory or other resources that
belong to another process or to the kernel itself.

The next section examines in more detail how this works. A tutorial on the com-
plexities of virtual memory systems is beyond the scope of this book.13 Instead, we
examine the ramifi cations of a virtual memory system as it appears to an embedded
systems developer.

2.3.6 Execution Contexts

One of the very fi rst chores that Linux performs is to confi gure the hardware MMU on
the processor and the data structures used to support it, and to enable address transla-
tion. When this step is complete, the kernel runs in its own virtual memory space. The
virtual kernel address selected by the kernel developers in recent Linux kernel versions
defaults to 0xC0000000. In most architectures, this is a confi gurable parameter.14 If we

12 In this discussion, the word task is used to denote any thread of execution, regardless of the mechanism used to spawn, man-
age, or schedule it.
13 Many good books cover the details of virtual memory systems. See the last section of this chapter for recommendations.
14 However, there is seldom a good reason to change it.

2.3 Storage Considerations 27

looked at the kernel’s symbol table, we would fi nd kernel symbols linked at an address
starting with 0xC0xxxxxx. As a result, any time the kernel executes code in kernel space,
the processor’s instruction pointer (program counter) contains values in this range.

In Linux, we refer to two distinctly separate operational contexts, based on the
environment in which a given thread15 is executing. Threads executing entirely within
the kernel are said to be operating in kernel context. Application programs are said to
operate in user space context. A user space process can access only memory it owns, and
it is required to use kernel system calls to access privileged resources such as fi le and
device I/O. An example might make this more clear.

Consider an application that opens a fi le and issues a read request, as shown in
Figure 2-6. The read function call begins in user space, in the C library read() func-
tion. The C library then issues a read request to the kernel. The read request results in
a context switch from the user’s program to the kernel, to service the request for the
fi le’s data. Inside the kernel, the read request results in a hard-drive access requesting
the sectors containing the fi le’s data.

FIGURE 2-6 Simple fi le read request

15 The term thread is used here in the generic sense to indicate any sequential fl ow of instructions.

Application
Program

C Library

IDE Driver

Hard
Disk

IDE H/W Interrupt

Read Request

Linux Kernel

28 Chapter 2 The Big Picture

Usually the hard-drive read request is issued asynchronously to the hardware itself.
That is, the request is posted to the hardware, and when the data is ready, the hardware
interrupts the processor. The application program waiting for the data is blocked on a
wait queue until the data is available. Later, when the hard disk has the data ready, it
posts a hardware interrupt. (This description is intentionally simplifi ed for the pur-
poses of this illustration.) When the kernel receives the hardware interrupt, it suspends
whatever process was executing and proceeds to read the waiting data from the drive.

To summarize this discussion, we have identifi ed two general execution contexts—
user space and kernel space. When an application program executes a system call that
results in a context switch and enters the kernel, it is executing kernel code on behalf
of a process. You will often hear this referred to as process context within the kernel. In
contrast, the interrupt service routine (ISR) handling the IDE drive (or any other ISR,
for that matter) is kernel code that is not executing on behalf of any particular process.
This is typically called interrupt context.

Several limitations exist in this operational context, including the limitation that
the ISR cannot block (sleep) or call any kernel functions that might result in blocking.
For further reading on these concepts, consult the references at the end of this chapter.

2.3.7 Process Virtual Memory

When a process is spawned—for example, when the user types ls at the Linux com-
mand prompt—the kernel allocates memory for the process and assigns a range of
virtual-memory addresses to the process. The resulting address values bear no fi xed
relationship to those in the kernel, nor to any other running process. Furthermore,
there is no direct correlation between the physical memory addresses on the board and
the virtual memory as seen by the process. In fact, it is not uncommon for a process to
occupy multiple different physical addresses in main memory during its lifetime as a
result of paging and swapping.

Listing 2-4 is the venerable “Hello World,” modifi ed to illustrate the concepts just
discussed. The goal of this example is to illustrate the address space that the kernel as-
signs to the process. This code was compiled and run on an embedded system contain-
ing 256MB of DRAM memory.

2.3 Storage Considerations 29

LISTING 2-4 Hello World, Embedded Style

#include <stdio.h>

int bss_var; /* Uninitialized global variable */

int data_var = 1; /* Initialized global variable */

int main(int argc, char **argv)

{

 void *stack_var; /* Local variable on the stack */

 stack_var = (void *)main; /* Don’t let the compiler */

 /* optimize it out */

 printf(“Hello, World! Main is executing at %p\n”, stack_var);

 printf(“This address (%p) is in our stack frame\n”, &stack_var);

 /* bss section contains uninitialized data */

 printf(“This address (%p) is in our bss section\n”, &bss_var);

 /* data section contains initializated data */

 printf(“This address (%p) is in our data section\n”, &data_var);

 return 0;

}

Listing 2-5 shows the console output that this program produces. Notice that the
process called hello thinks it is executing somewhere in high RAM just above the
256MB boundary (0x10000418). Notice also that the stack address is roughly halfway
into a 32-bit address space, well beyond our 256MB of RAM (0x7ff8ebb0). How can
this be? DRAM is usually contiguous in systems like these. To the casual observer, it
appears that we have nearly 2GB of DRAM available for our use. These virtual ad-
dresses were assigned by the kernel and are backed by physical RAM somewhere within
the 256MB range of available memory on our embedded board.

LISTING 2-5 Hello Output

root@192.168.4.9:~# ./hello

Hello, World! Main is executing at 0x10000418

This address (0x7ff8ebb0) is in our stack frame

This address (0x10010a1c) is in our bss section

This address (0x10010a18) is in our data section

root@192.168.4.9:~#

