

Praise for
The Ruby Way, Third Edition

“Sticking to its tried and tested formula of cutting right to the techniques the modern
day Rubyist needs to know, the latest edition of The Ruby Way keeps its strong
reputation going for the latest generation of the Ruby language.”

Peter Cooper
Editor of Ruby Weekly

“The authors’ excellent work and meticulous attention to detail continues in this lat-
est update; this book remains an outstanding reference for the beginning Ruby pro-
grammer—as well as the seasoned developer who needs a quick refresh on Ruby.
Highly recommended for anyone interested in Ruby programming.”

Kelvin Meeks
Enterprise Architect

Praise for Previous Editions of
The Ruby Way

“Among other things, this book excels at explaining metaprogramming, one of the
most interesting aspects of Ruby. Many of the early ideas for Rails were inspired by
the first edition, especially what is now Chapter 11. It puts you on a rollercoaster ride
between ‘How could I use this?’ and ‘This is so cool!’ Once you get on that roller-
coaster, there’s no turning back.”

David Heinemeier Hansson
Creator of Ruby on Rails,
Founder at Basecamp

“The appearance of the second edition of this classic book is an exciting event for
Rubyists—and for lovers of superb technical writing in general. Hal Fulton brings a
lively erudition and an engaging, lucid style to bear on a thorough and meticulously
exact exposition of Ruby. You palpably feel the presence of a teacher who knows a
tremendous amount and really wants to help you know it too.”

David Alan Black
Author of The Well-Grounded Rubyist

“This is an excellent resource for gaining insight into how and why Ruby works. As
someone who has worked with Ruby for several years, I still found it full of new tricks
and techniques. It’s accessible both as a straight read and as a reference that one can
dip into and learn something new.”

Chet Hendrickson
Agile software pioneer

“Ruby’s a wonderful language—but sometimes you just want to get something done.
Hal’s book gives you the solution and teaches a good bit about why that solution is
good Ruby.”

Martin Fowler
Chief Scientist, ThoughtWorks
Author of Patterns of Enterprise
Application Architecture

THE RUBY WAY

Third Edition

Hal Fulton
with André Arko

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all
capitals.
The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.
For information about buying this title in bulk quantities, or for
special sales opportunities (which may include electronic versions;
custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-
3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
international@pearsoned.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2014945504
Copyright © 2015 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publica-
tion is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-
3290.
ISBN-13: 978-0-321-71463-3
ISBN-10: 0-321-71463-6
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana
First printing: March 2015

Editor-in-Chief
Mark Taub
Executive Editor
Debra Williams-Cauley
Development Editor
Songlin Qiu
Managing Editor
Kristy Hart
Project Editor
Andy Beaster
Copy Editor
Bart Reed
Indexer
Ken Johnson
Proofreader
Sarah Kearns
Cover Designer
Chuti Prasertsith
Senior Compositor
Gloria Schurick

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

To my parents, without whom I would not be possible
—Hal

This page intentionally left blank

Contents

Foreword xxiv
Acknowledgments xxviii
About the Authors xxxii
Introduction xxxiii

1 Ruby in Review 1
1.1 An Introduction to Object Orientation 2

1.1.1 What Is an Object? 2
1.1.2 Inheritance 4
1.1.3 Polymorphism 6
1.1.4 A Few More Terms 7

1.2 Basic Ruby Syntax and Semantics 8
1.2.1 Keywords and Identifiers 9
1.2.2 Comments and Embedded Documentation 10
1.2.3 Constants, Variables, and Types 11
1.2.4 Operators and Precedence 13
1.2.5 A Sample Program 14
1.2.6 Looping and Branching 17
1.2.7 Exceptions 22

1.3 OOP in Ruby 25
1.3.1 Objects 26
1.3.2 Built-in Classes 26
1.3.3 Modules and Mixins 28
1.3.4 Creating Classes 29
1.3.5 Methods and Attributes 34

vii

1.4 Dynamic Aspects of Ruby 36
1.4.1 Coding at Runtime 36
1.4.2 Reflection 38
1.4.3 Missing Methods 40
1.4.4 Garbage Collection 40

1.5 Training Your Intuition: Things to Remember 41
1.5.1 Syntax Issues 41
1.5.2 Perspectives in Programming 44
1.5.3 Ruby’s FDVH Statement 47
1.5.4 Rubyisms and Idioms 50
1.5.5 Expression Orientation and Other Miscellaneous Issues 57

1.6 Ruby Jargon and Slang 59
1.7 Conclusion 62

2 Working with Strings 63
2.1 Representing Ordinary Strings 64
2.2 Representing Strings with Alternate Notations 65
2.3 Using Here-Documents 65
2.4 Finding the Length of a String 67
2.5 Processing a Line at a Time 68
2.6 Processing a Character or Byte at a Time 68
2.7 Performing Specialized String Comparisons 69
2.8 Tokenizing a String 71
2.9 Formatting a String 73
2.10 Using Strings as IO Objects 74
2.11 Controlling Uppercase and Lowercase 74
2.12 Accessing and Assigning Substrings 75
2.13 Substituting in Strings 78
2.14 Searching a String 79
2.15 Converting Between Characters and ASCII Codes 80
2.16 Implicit and Explicit Conversion 80
2.17 Appending an Item onto a String 83
2.18 Removing Trailing Newlines and Other Characters 83
2.19 Trimming Whitespace from a String 84
2.20 Repeating Strings 85
2.21 Embedding Expressions within Strings 85

viii Contents

2.22 Delayed Interpolation of Strings 86
2.23 Parsing Comma-Separated Data 86
2.24 Converting Strings to Numbers (Decimal and Otherwise) 87
2.25 Encoding and Decoding URW�� Text 89
2.26 Encrypting Strings 90
2.27 Compressing Strings 91
2.28 Counting Characters in Strings 92
2.29 Reversing a String 92
2.30 Removing Duplicate Characters 93
2.31 Removing Specific Characters 93
2.32 Printing Special Characters 93
2.33 Generating Successive Strings 94
2.34 Calculating a 32-Bit CRC 94
2.35 Calculating the SHA-256 Hash of a String 95
2.36 Calculating the Levenshtein Distance Between Two Strings 96
2.37 Encoding and Decoding Base64 Strings 98
2.38 Expanding and Compressing Tab Characters 98
2.39 Wrapping Lines of Text 99
2.40 Conclusion 100

3 Working with Regular Expressions 101
3.1 Regular Expression Syntax 102
3.2 Compiling Regular Expressions 104
3.3 Escaping Special Characters 105
3.4 Using Anchors 105
3.5 Using Quantifiers 106
3.6 Positive and Negative Lookahead 109
3.7 Positive and Negative Lookbehind 110
3.8 Accessing Backreferences 111
3.9 Named Matches 114
3.10 Using Character Classes 116
3.11 Extended Regular Expressions 118
3.12 Matching a Newline with a Dot 119
3.13 Using Embedded Options 119
3.14 Using Embedded Subexpressions 120

3.14.1 Recursion in Regular Expressions 121

Contents ix

3.15 A Few Sample Regular Expressions 122
3.15.1 Matching an IP Address 122
3.15.2 Matching a Keyword-Value Pair 123
3.15.3 Matching Roman Numerals 124
3.15.4 Matching Numeric Constants 125
3.15.5 Matching a Date/Time String 125
3.15.6 Detecting Doubled Words in Text 126
3.15.7 Matching All-Caps Words 127
3.15.8 Matching Version Numbers 127
3.15.9 A Few Other Patterns 127

3.16 Conclusion 128

4 Internationalization in Ruby 129
4.1 Background and Terminology 131
4.2 Working with Character Encodings 135

4.2.1 Normalization 136
4.2.2 Encoding Conversions 139
4.2.3 Transliteration 141
4.2.4 Collation 141

4.3 Translations 144
4.3.1 Defaults 146
4.3.2 Namespaces 147
4.3.3 Interpolation 148
4.3.4 Pluralization 149

4.4 Localized Formatting 151
4.4.1 Dates and Times 151
4.4.2 Numbers 152
4.4.3 Currencies 153

4.5 Conclusion 153

5 Performing Numerical Calculations 155
5.1 Representing Numbers in Ruby 156
5.2 Basic Operations on Numbers 157
5.3 Rounding Floating Point Values 158
5.4 Comparing Floating Point Numbers 160
5.5 Formatting Numbers for Output 162

x Contents

5.6 Formatting Numbers with Commas 162
5.7 Working with Very Large Integers 163
5.8 Using %LJ'HFLPDO 163
5.9 Working with Rational Values 166
5.10 Matrix Manipulation 167
5.11 Working with Complex Numbers 171
5.12 Using PDWKQ 172
5.13 Finding Prime Factorization, GCD, and LCM 173
5.14 Working with Prime Numbers 174
5.15 Implicit and Explicit Numeric Conversion 175
5.16 Coercing Numeric Values 176
5.17 Performing Bit-Level Operations on Numbers 177
5.18 Performing Base Conversions 179
5.19 Finding Cube Roots, Fourth Roots, and So On 180
5.20 Determining the Architecture’s Byte Order 181
5.21 Numerical Computation of a Definite Integral 182
5.22 Trigonometry in Degrees, Radians, and Grads 183
5.23 Finding Logarithms with Arbitrary Bases 184
5.24 Finding the Mean, Median, and Mode of a Data Set 185
5.25 Variance and Standard Deviation 187
5.26 Finding a Correlation Coefficient 187
5.27 Generating Random Numbers 189
5.28 Caching Functions with Memoization 190
5.29 Conclusion 191

6 Symbols and Ranges 193
6.1 Symbols 193

6.1.1 Symbols as Enumerations 195
6.1.2 Symbols as Metavalues 196
6.1.3 Symbols, Variables, and Methods 197
6.1.4 Converting to/from Symbols 197

6.2 Ranges 199
6.2.1 Open and Closed Ranges 199
6.2.2 Finding Endpoints 200
6.2.3 Iterating Over Ranges 200
6.2.4 Testing Range Membership 201
6.2.5 Converting to Arrays 202

Contents xi

6.2.6 Backward Ranges 202
6.2.7 The Flip-Flop Operator 203
6.2.8 Custom Ranges 206

6.3 Conclusion 209

7 Working with Times and Dates 211
7.1 Determining the Current Time 212
7.2 Working with Specific Times (Post-Epoch) 212
7.3 Determining the Day of the Week 214
7.4 Determining the Date of Easter 215
7.5 Finding the Nth Weekday in a Month 215
7.6 Converting Between Seconds and Larger Units 217
7.7 Converting to and from the Epoch 217
7.8 Working with Leap Seconds: Don’t! 218
7.9 Finding the Day of the Year 219
7.10 Validating a Date or Time 219
7.11 Finding the Week of the Year 220
7.12 Detecting Leap Years 221
7.13 Obtaining the Time Zone 222
7.14 Working with Hours and Minutes Only 222
7.15 Comparing Time Values 223
7.16 Adding Intervals to Time Values 223
7.17 Computing the Difference in Two Time Values 224
7.18 Working with Specific Dates (Pre-Epoch) 224
7.19 Time, Date, and DateTime 225
7.20 Parsing a Date or Time String 225
7.21 Formatting and Printing Time Values 226
7.22 Time Zone Conversions 227
7.23 Determining the Number of Days in a Month 228
7.24 Dividing a Month into Weeks 229
7.25 Conclusion 230

8 Arrays, Hashes, and Other Enumerables 231
8.1 Working with Arrays 232

8.1.1 Creating and Initializing an Array 232
8.1.2 Accessing and Assigning Array Elements 233
8.1.3 Finding an Array’s Size 235

xii Contents

8.1.4 Comparing Arrays 235
8.1.5 Sorting an Array 237
8.1.6 Selecting from an Array by Criteria 240
8.1.7 Using Specialized Indexing Functions 242
8.1.8 Implementing a Sparse Matrix 244
8.1.9 Using Arrays as Mathematical Sets 244
8.1.10 Randomizing an Array 248
8.1.11 Using Multidimensional Arrays 249
8.1.12 Finding Elements in One Array But Not Another 250
8.1.13 Transforming or Mapping Arrays 250
8.1.14 Removing QLO Values from an Array 251
8.1.15 Removing Specific Array Elements 251
8.1.16 Concatenating and Appending onto Arrays 253
8.1.17 Using an Array as a Stack or Queue 254
8.1.18 Iterating over an Array 254
8.1.19 Interposing Delimiters to Form a String 255
8.1.20 Reversing an Array 256
8.1.21 Removing Duplicate Elements from an Array 256
8.1.22 Interleaving Arrays 256
8.1.23 Counting Frequency of Values in an Array 257
8.1.24 Inverting an Array to Form a Hash 257
8.1.25 Synchronized Sorting of Multiple Arrays 258
8.1.26 Establishing a Default Value for New Array Elements 259

8.2 Working with Hashes 260
8.2.1 Creating a New Hash 260
8.2.2 Specifying a Default Value for a Hash 261
8.2.3 Accessing and Adding Key-Value Pairs 262
8.2.4 Deleting Key-Value Pairs 264
8.2.5 Iterating Over a Hash 264
8.2.6 Inverting a Hash 265
8.2.7 Detecting Keys and Values in a Hash 265
8.2.8 Extracting Hashes into Arrays 266
8.2.9 Selecting Key-Value Pairs by Criteria 266
8.2.10 Sorting a Hash 267
8.2.11 Merging Two Hashes 268
8.2.12 Creating a Hash from an Array 268

Contents xiii

8.2.13 Finding Difference or Intersection of Hash Keys 268
8.2.14 Using a Hash as a Sparse Matrix 269
8.2.15 Implementing a Hash with Duplicate Keys 270
8.2.16 Other Hash Operations 273

8.3 Enumerables in General 273
8.3.1 The LQMHFW Method 274
8.3.2 Using Quantifiers 275
8.3.3 The SDUWLWLRQ Method 276
8.3.4 Iterating by Groups 277
8.3.5 Converting to Arrays or Sets 278
8.3.6 Using Enumerator Objects 278

8.4 More on Enumerables 280
8.4.1 Searching and Selecting 280
8.4.2 Counting and Comparing 281
8.4.3 Iterating 282
8.4.4 Extracting and Converting 283
8.4.5 Lazy Enumerators 284

8.5 Conclusion 285

9 More Advanced Data Structures 287
9.1 Working with Sets 288

9.1.1 Simple Set Operations 288
9.1.2 More Advanced Set Operations 290

9.2 Working with Stacks and Queues 291
9.2.1 Implementing a Stricter Stack 293
9.2.2 Detecting Unbalanced Punctuation in Expressions 294
9.2.3 Understanding Stacks and Recursion 295
9.2.4 Implementing a Stricter Queue 297

9.3 Working with Trees 298
9.3.1 Implementing a Binary Tree 298
9.3.2 Sorting Using a Binary Tree 300
9.3.3 Using a Binary Tree as a Lookup Table 302
9.3.4 Converting a Tree to a String or Array 303

9.4 Working with Graphs 304
9.4.1 Implementing a Graph as an Adjacency Matrix 304
9.4.2 Determining Whether a Graph Is Fully Connected 307

xiv Contents

9.4.3 Determining Whether a Graph Has an Euler Circuit 308
9.4.4 Determining Whether a Graph Has an Euler Path 309
9.4.5 Graph Tools in Ruby 310

9.5 Conclusion 310

10 I/O and Data Storage 311
10.1 Working with Files and Directories 313

10.1.1 Opening and Closing Files 313
10.1.2 Updating a File 314
10.1.3 Appending to a File 315
10.1.4 Random Access to Files 315
10.1.5 Working with Binary Files 316
10.1.6 Locking Files 318
10.1.7 Performing Simple I/O 318
10.1.8 Performing Buffered and Unbuffered I/O 320
10.1.9 Manipulating File Ownership and Permissions 321
10.1.10 Retrieving and Setting Timestamp Information 323
10.1.11 Checking File Existence and Size 325
10.1.12 Checking Special File Characteristics 326
10.1.13 Working with Pipes 328
10.1.14 Performing Special I/O Operations 329
10.1.15 Using Nonblocking I/O 330
10.1.16 Using UHDGSDUWLDO 331
10.1.17 Manipulating Pathnames 331
10.1.18 Using the 3DWKQDPH Class 333
10.1.19 Command-Level File Manipulation 334
10.1.20 Grabbing Characters from the Keyboard 336
10.1.21 Reading an Entire File into Memory 336
10.1.22 Iterating Over a File by Lines 337
10.1.23 Iterating Over a File by Byte or Character 337
10.1.24 Treating a String As a File 338
10.1.25 Copying a Stream 339
10.1.26 Working with Character Encodings 339
10.1.27 Reading Data Embedded in a Program 339
10.1.28 Reading Program Source 340
10.1.29 Working with Temporary Files 340

Contents xv

10.1.30 Changing and Setting the Current Directory 341
10.1.31 Changing the Current Root 342
10.1.32 Iterating Over Directory Entries 342
10.1.33 Getting a List of Directory Entries 342
10.1.34 Creating a Chain of Directories 342
10.1.35 Deleting a Directory Recursively 343
10.1.36 Finding Files and Directories 343

10.2 Higher-Level Data Access 344
10.2.1 Simple Marshaling 345
10.2.2 “Deep Copying” with 0DUVKDO 346
10.2.3 More Complex Marshaling 346
10.2.4 Marshaling with <$0/ 347
10.2.5 Persisting Data with -621 349
10.2.6 Working with CSV Data 350
10.2.7 SQLite3 for SQL Data Storage 352

10.3 Connecting to External Data Stores 353
10.3.1 Connecting to MySQL Databases 354
10.3.2 Connecting to PostgreSQL Databases 356
10.3.3 Object-Relational Mappers (ORMs) 358
10.3.4 Connecting to Redis Data Stores 359

10.4 Conclusion 360

11 OOP and Dynamic Features in Ruby 361
11.1 Everyday OOP Tasks 362

11.1.1 Using Multiple Constructors 362
11.1.2 Creating Instance Attributes 364
11.1.3 Using More Elaborate Constructors 366
11.1.4 Creating Class-Level Attributes and Methods 368
11.1.5 Inheriting from a Superclass 372
11.1.6 Testing Classes of Objects 374
11.1.7 Testing Equality of Objects 377
11.1.8 Controlling Access to Methods 378
11.1.9 Copying an Object 381
11.1.10 Using LQLWLDOL]HBFRS\ 383
11.1.11 Understanding DOORFDWH 384

xvi Contents

11.1.12 Working with Modules 384
11.1.13 Transforming or Converting Objects 388
11.1.14 Creating Data-Only Classes (Structs) 390
11.1.15 Freezing Objects 391
11.1.16 Using WDS in Method Chaining 393

11.2 More Advanced Techniques 394
11.2.1 Sending an Explicit Message to an Object 394
11.2.2 Specializing an Individual Object 396
11.2.3 Nesting Classes and Modules 399
11.2.4 Creating Parametric Classes 400
11.2.5 Storing Code as 3URF Objects 403
11.2.6 Storing Code as 0HWKRG Objects 405
11.2.7 Using Symbols as Blocks 406
11.2.8 How Module Inclusion Works 406
11.2.9 Detecting Default Parameters 409
11.2.10 Delegating or Forwarding 409
11.2.11 Defining Class-Level Readers and Writers 412
11.2.12 Working in Advanced Programming Disciplines 414

11.3 Working with Dynamic Features 416
11.3.1 Evaluating Code Dynamically 416
11.3.2 Retrieving a Constant by Name 418
11.3.3 Retrieving a Class by Name 418
11.3.4 Using GHILQHBPHWKRG 419
11.3.5 Obtaining Lists of Defined Entities 423
11.3.6 Removing Definitions 425
11.3.7 Handling References to Nonexistent Constants 427
11.3.8 Handling Calls to Nonexistent Methods 429
11.3.9 Improved Security with WDLQW 430
11.3.10 Defining Finalizers for Objects 432

11.4 Program Introspection 433
11.4.1 Traversing the Object Space 434
11.4.2 Examining the Call Stack 435
11.4.3 Tracking Changes to a Class or Object Definition 435
11.4.4 Monitoring Program Execution 439

11.5 Conclusion 441

Contents xvii

12 Graphical Interfaces for Ruby 443
12.1 Shoes 4 444

12.1.1 Starting Out with Shoes 444
12.1.2 An Interactive Button 445
12.1.3 Text and Input 446
12.1.4 Layout 448
12.1.5 Images and Shapes 450
12.1.6 Events 450
12.1.7 Other Notes 451

12.2 Ruby/Tk 452
12.2.1 Overview 452
12.2.2 A Simple Windowed Application 453
12.2.3 Working with Buttons 455
12.2.4 Working with Text Fields 459
12.2.5 Working with Other Widgets 463
12.2.6 Other Notes 467

12.3 Ruby/GTK3 467
12.3.1 Overview 467
12.3.2 A Simple Windowed Application 468
12.3.3 Working with Buttons 469
12.3.4 Working with Text Fields 471
12.3.5 Working with Other Widgets 474
12.3.6 Other Notes 479

12.4 QtRuby 480
12.4.1 Overview 480
12.4.2 A Simple Windowed Application 480
12.4.3 Working with Buttons 481
12.4.4 Working with Text Fields 483
12.4.5 Working with Other Widgets 485
12.4.6 Other Notes 490

12.5 Swing 491
12.6 Other GUI Toolkits 493

12.6.1 UNIX and X11 493
12.6.2 FXRuby (FOX) 493

xviii Contents

12.6.3 RubyMotion for iOS and Mac OS X 494
12.6.4 The Windows Win32API 494

12.7 Conclusion 494

13 Threads and Concurrency 495
13.1 Creating and Manipulating Threads 497

13.1.1 Creating Threads 497
13.1.2 Accessing Thread-Local Variables 498
13.1.3 Querying and Changing Thread Status 500
13.1.4 Achieving a Rendezvous (and Capturing a Return Value) 505
13.1.5 Dealing with Exceptions 506
13.1.6 Using a Thread Group 508

13.2 Synchronizing Threads 509
13.2.1 Performing Simple Synchronization 511
13.2.2 Synchronizing Access with a Mutex 512
13.2.3 Using the Built-in Queue Classes 515
13.2.4 Using Condition Variables 517
13.2.5 Other Synchronization Techniques 518
13.2.6 Setting a Timeout for an Operation 522
13.2.7 Waiting for an Event 524
13.2.8 Collection Searching in Parallel 525
13.2.9 Recursive Deletion in Parallel 526

13.3 Fibers and Cooperative Multitasking 527
13.4 Conclusion 530

14 Scripting and System Administration 531
14.1 Running External Programs 532

14.1.1 Using V\VWHP and H[HF 532
14.1.2 Capturing Command Output 533
14.1.3 Manipulating Processes 534
14.1.4 Manipulating Standard Input and Output 537

14.2 Command-Line Options and Arguments 538
14.2.1 Working with $5*9 538
14.2.2 Working with $5*) 539
14.2.3 Parsing Command-Line Options 540

Contents xix

14.3 The 6KHOO Library 542
14.3.1 Using 6KHOO for I/O Redirection 542
14.3.2 Other Notes on 6KHOO 544

14.4 Accessing Environment Variables 545
14.4.1 Getting and Setting Environment Variables 545
14.4.2 Storing Environment Variables as an Array or Hash 546

14.5 Working with Files, Directories, and Trees 547
14.5.1 A Few Words on Text Filters 547
14.5.2 Copying a Directory Tree 548
14.5.3 Deleting Files by Age or Other Criteria 549
14.5.4 Determining Free Space on a Disk 550

14.6 Other Scripting Tasks 551
14.6.1 Distributing Ruby Programs 551
14.6.2 Piping into the Ruby Interpreter 552
14.6.3 Testing Whether a Program Is Running Interactively 553
14.6.4 Determining the Current Platform or Operating System 554
14.6.5 Using the (WF Module 554

14.7 Conclusion 555

15 Ruby and Data Formats 557
15.1 Parsing JSON 558

15.1.1 Navigating JSON Data 559
15.1.2 Handling Non-JSON Data Types 560
15.1.3 Other JSON Libraries 560

15.2 Parsing XML (and HTML) 561
15.2.1 Document Parsing 561
15.2.2 Stream Parsing 564

15.3 Working with RSS and Atom 566
15.3.1 Parsing Feeds 567
15.3.2 Generating Feeds 568

15.4 Manipulating Image Data with RMagick 569
15.4.1 Common Graphics Tasks 570
15.4.2 Special Effects and Transformations 573
15.4.3 The Drawing API 576

xx Contents

15.5 Creating PDF Documents with Prawn 579
15.5.1 Basic Concepts and Techniques 579
15.5.2 An Example Document 580

15.6 Conclusion 584

16 Testing and Debugging 585
16.1 Testing with RSpec 586
16.2 Testing with Minitest 589
16.3 Testing with Cucumber 594
16.4 Using the E\HEXJ Debugger 596
16.5 Using SU\ for Debugging 600
16.6 Measuring Performance 601
16.7 Pretty-Printing Objects 606
16.8 Not Covered Here 608
16.9 Conclusion 609

17 Packaging and Distributing Code 611
17.1 Libraries and Rubygems 612

17.1.1 Using Rubygems 612
17.1.2 Creating Gems 613

17.2 Managing Dependencies with Bundler 614
17.2.1 Semantic Versioning 615
17.2.2 Dependencies from Git 616
17.2.3 Creating Gems with Bundler 617
17.2.4 Private Gems 617

17.3 Using RDoc 618
17.3.1 Simple Markup 620
17.3.2 Advanced Documentation with Yard 622

17.4 Conclusion 623

18 Network Programming 625
18.1 Network Servers 627

18.1.1 A Simple Server: Time of Day 627
18.1.2 Implementing a Threaded Server 629
18.1.3 Case Study: A Peer-to-Peer Chess Server 630

Contents xxi

18.2 Network Clients 638
18.2.1 Retrieving Truly Random Numbers from the Web 638
18.2.2 Contacting an Official Timeserver 641
18.2.3 Interacting with a POP Server 642
18.2.4 Sending Mail with SMTP 644
18.2.5 Interacting with an IMAP Server 647
18.2.6 Encoding/Decoding Attachments 649
18.2.7 Case Study: A Mail-News Gateway 651
18.2.8 Retrieving a Web Page from a URL 657
18.2.9 Using the Open-URI Library 658

18.3 Conclusion 658

19 Ruby and Web Applications 661
19.1 HTTP Servers 662

19.1.1 A Simple HTTP Server 662
19.1.2 Rack and Web Servers 664

19.2 Application Frameworks 667
19.2.1 Routing in Sinatra 668
19.2.2 Routing in Rails 669
19.2.3 Parameters in Sinatra 671
19.2.4 Parameters in Rails 672

19.3 Storing Data 673
19.3.1 Databases 674
19.3.2 Data Stores 676

19.4 Generating HTML 677
19.4.1 ERB 678
19.4.2 Haml 680
19.4.3 Other Templating Systems 681

19.5 The Asset Pipeline 681
19.5.1 CSS and Sass 682
19.5.2 JavaScript and CoffeeScript 683

19.6 Web Services via HTTP 686
19.6.1 JSON for APIs 686
19.6.2 REST (and REST-ish) APIs 687

xxii Contents

19.7 Generating Static Sites 688
19.7.1 Middleman 688
19.7.2 Other Static Site Generators 690

19.8 Conclusion 690

20 Distributed Ruby 691
20.1 An Overview: Using GUE 692
20.2 Case Study: A Stock Ticker Simulation 695
20.3 Rinda: A Ruby Tuplespace 698
20.4 Service Discovery with Distributed Ruby 703
20.5 Conclusion 704

21 Ruby Development Tools 705
21.1 Using Rake 706
21.2 Using LUE 710
21.3 The Basics of SU\ 715
21.4 The UL Utility 716
21.5 Editor Support 717

21.5.1 Vim 717
21.5.2 Emacs 718

21.6 Ruby Version Managers 719
21.6.1 Using UYP 719
21.6.2 Using UEHQY 720
21.6.3 Using FKUXE\ 721

21.7 Conclusion 722

22 The Ruby Community 723
22.1 Web Resources 723
22.2 Mailing Lists, Podcasts, and Forums 724
22.3 Ruby Bug Reports and Feature Requests 724
22.4 IRC Channels 725
22.5 Ruby Conferences 725
22.6 Local Ruby Groups 726
22.7 Conclusion 726

Index 727

Contents xxiii

Foreword

Foreword to the Third Edition
Yesterday I was reading an article about geek fashion in :LUHG�FRP. According to it,
wearing a Rubyconf 2012 t-shirt these days signals to people: “I work for Oracle.”

Wow. How far we’ve come in the last 10 years!
For quite some time, using Ruby set you apart from the mainstream. Now it

seems we are the mainstream. And what a long, strange journey it has been to get
there.

Ruby adoption took a long time by today’s standards. I read this book in 2005,
and at that point, the first edition was over four years old. Ruby had just begun its sec-
ond wave of adoption thanks to DHH and the start of Rails mania. It seemed like
there might be a couple hundred people in the entire (English-speaking) world that
used Ruby. Amazingly, at that point, the first edition of this book was already four
years old. That’s how ahead of its time it was.

This new edition keeps the writing style that has made the book such a hit with
experienced programmers over the years. The long first chapter covers fundamental
basics of object-orientation and the Ruby language. It’s a must read for anyone new to
the language. But it does so in concise, fast-moving narrative that assumes you already
know how to create software.

From there, the chapters follow a distinctive pattern. A bit of backstory narrative,
followed by rapid-fire bits of knowledge about the Ruby language. Snippets of exam-
ple code are abundant and help to illuminate the concept under discussion. You can
lift code samples verbatim into your programs. Especially once you get into the more
practical applications chapters later in the book.

A brief bit of personal backstory seems appropriate. I owe a huge debt of grati-
tude to Hal for this book and the way that he wrote it. In 2005, I started work on a
manuscript for Addison Wesley about the use of Ruby on Rails in the enterprise. It
was my first attempt at authoring a book, and after penning about two chapters, I got
stuck. Few people were using Ruby or Rails in the enterprise at that time and I had to
remind myself that I was attempting to write non-fiction.

After discussing options with my editor, we determined that the best course of
action might be to ditch the idea and start on a new one. The Rails Way was to cover
the nascent Ruby on Rails framework in the style of this book. I employed terse nar-
rative accompanying plentiful code examples. Instead of long listings, I interspersed
commentary between sprinkles of code that provided just enough samples of the
framework to make sense.

Like The Ruby Way, I aimed for breadth of coverage rather than depth. I wanted
The Rails Way to claim permanent real estate on the desk of the serious Rails pro-
grammer. Like The Ruby Way, I wanted my book to be a default go-to reference.
In contrast to other Rails books, I skipped tutorial material and ignored complete
beginners.

And it was a huge success! Safe to say that without Hal’s book, my own book
would not exist and my career would have taken a less successful trajectory.

But enough congratulatory retrospective! Let’s get back to the present day and the
newest edition of The Ruby Way that you’re currently reading. The immensely talented
André Arko joins Hal this time around. What a great team! They deliver a painstak-
ing revision that brings the book up to date with the latest edition of our beloved
Ruby language.

My personal highlights of this edition include the following:

• A whole chapter of in-depth coverage of the new Onigmo regular expression
engine. I love its beautiful and concise explanations of concepts such as positive
and negative lookahead and lookbehind.

• The Internationalization chapter tackles thorny issues around String encoding
and Unicode normalization. Bloggers have covered the subject in spotty fashion
over the years, but having it all presented in one place is invaluable.

• The Ruby and Web Applications chapter manages to squeeze a crash-course in
Rack, Sinatra, and Rails into less than 30 pages.

Foreword xxv

* Want proof of André’s ingenuity? See how he cuts the load time for a real Rails app down to
500ms or less at http://andre.arko.net/2014/06/27/rails-in-05-seconds/.

http://andre.arko.net/2014/06/27/rails-in-05-seconds/

I predict that this edition of The Ruby Way will be as successful as its predecessors.
It gives me great joy to make it the latest addition to our Professional Ruby Series.

Obie Fernandez
September 15, 2014

Foreword to the Second Edition
In ancient China, people, especially philosophers, thought that something was hidden
behind the world and every existence. It can never be told, nor explained, nor
described in concrete words. They called it Tao in Chinese and Do in Japanese. If you
translate it into English, it is the word for Way. It is the Do in Judo, Kendo, Karatedo,
and Aikido. They are not only martial arts, but they also include a philosophy and a
way of life.

Likewise, Ruby the programming language has its philosophy and way of think-
ing. It enlightens people to think differently. It helps programmers have more fun in
their work. It is not because Ruby is from Japan but because programming is an
important part of the human being (well, at least some human beings), and Ruby is
designed to help people have a better life.

As always, “Tao” is difficult to describe. I feel it but have never tried to explain it
in words. It’s just too difficult for me, even in Japanese, my native tongue. But a guy
named Hal Fulton tried, and his first try (the first edition of this book) was pretty
good. This second version of his trial to describe the Tao of Ruby becomes even bet-
ter with help from many people in the Ruby community. As Ruby becomes more pop-
ular (partly due to Ruby on Rails), it becomes more important to understand the
secret of programmers’ productivity. I hope this book helps you to become an efficient
programmer.

Happy Hacking.

Yukihiro “Matz” Matsumoto
August 2006, Japan

Foreword to the First Edition
Shortly after I first met with computers in the early 80s, I became interested in pro-
gramming languages. Since then I have been a “language geek.” I think the reason for
this interest is that programming languages are ways to express human thought. They
are fundamentally human-oriented.

xxvi Foreword

Despite this fact, programming languages have tended to be machine-oriented.
Many languages were designed for the convenience of the computer.

But as computers became more powerful and less expensive, this situation gradu-
ally changed. For example, look at structured programming. Machines do not care
whether programs are structured well; they just execute them bit by bit. Structured
programming is not for machines, but for humans. This is true of object-oriented pro-
gramming as well.

The time for language design focusing on humans has been coming.
In 1993, I was talking with a colleague about scripting languages, about their

power and future. I felt scripting to be the way future programming should be—
human-oriented.

But I was not satisfied with existing languages such as Perl and Python. I wanted
a language that was more powerful than Perl and more object-oriented than Python.
I couldn’t find the ideal language, so I decided to make my own.

Ruby is not the simplest language, but the human soul is not simple in its natu-
ral state. It loves simplicity and complexity at the same time. It can’t handle too many
complex things, nor too many simple things. It’s a matter of balance.

So to design a human-oriented language, Ruby, I followed the Principle of Least
Surprise. I consider that everything that surprises me less is good. As a result, I feel a
natural feeling, even a kind of joy, when programming in Ruby. And since the first
release of Ruby in 1995, many programmers worldwide have agreed with me about
the joy of Ruby programming.

As always I’d like to express my greatest appreciation to the people in the Ruby
community. They are the heart of Ruby’s success.

I am also thankful to the author of this book, Hal E. Fulton, for declaring the
Ruby Way to help people.

This book explains the philosophy behind Ruby, distilled from my brain and the
Ruby community. I wonder how it can be possible for Hal to read my mind to know
and reveal this secret of the Ruby Way. I have never met him face to face; I hope to
meet him soon.

I hope this book and Ruby both serve to make your programming fun and happy.

Yukihiro “Matz” Matsumoto
September 2001, Japan

Foreword xxvii

Acknowledgments

Acknowledgments for the Third Edition
As can be expected by now, the process of updating this book for the third edition
turned out to be somewhat monumental. Ruby has changed dramatically since the
days of 1.8, and being a Ruby programmer is far more popular now than it has ever
been before.

Verifying, updating, and rewriting this book took quite some time longer than
expected. Ruby has progressed from 1.9 through 2.0 and 2.1, and this book has pro-
gressed through at least as many edits and rewrites along the way.

Many people contributed to making this book possible. At Addison-Wesley,
Debra Williams Cauley, Songlin Qiu, Andy Beaster, and Bart Reed provided the
encouragement, coordination, and editing needed to complete this edition. The con-
tributions of Russ Olsen and André Arko were absolutely invaluable.

This edition was technically edited by Russ Olsen and Steve Klabnik, providing
feedback and suggestions that made the book more accurate and understandable. Russ
also provided the Ruby libraries and scripts that compiled the latest version of the
book itself. As always, any errors are mine, not theirs.

Suggestions, code samples, or simply helpful explanations were provided by Dave
Thomas, David Alan Black, Eric Hodel, Chad Fowler, Brad Ediger, Sven Fuchs, Jesse
Storimer, Luke Francl, and others over the years.

Special thanks go to Paul Harrison and the rest of my colleagues at Simpli.fi for
their encouragement and support.

I also wish to honor the memory of Guy Decoux and more recently Jim Weirich.
Jim in particular made significant contributions to this book and to our community.

Final thanks are owed, as always, to Matz himself for creating Ruby, and to you,
the reader of this book. I hope it is able to teach, inform, and maybe even amuse you.

Acknowledgments for the Second Edition
Common sense says that a second edition will only require half as much work as the
first edition required. Common sense is wrong.

Even though a large part of this book came directly from the first edition, even
that part had to be tweaked and tuned. Every single sentence in this book had to pass
through (at the very least) a filter that asked: Is what was true in 2001 still true in
2006? And that, of course, was only the beginning.

In short, I put in many hundreds of hours of work on this second edition—nearly
as much time as on the first. And yet I am “only the author.”

A book is possible only through the teamwork of many people. On the publisher’s
side, I owe thanks to Debra Williams-Cauley, Songlin Qiu, and Mandie Frank for
their hard work and infinite patience. Thanks go to Geneil Breeze for her tireless copy
editing and picking bits of lint from my English. There are also others I can’t name
because their work was completely behind the scenes, and I never talked with them.

Technical editing was done primarily by Shashank Date and Francis Hwang.
They did a great job, and I appreciate it. Errors that slipped through are my responsi-
bility, of course.

Thanks go to the people who supplied explanations, wrote sample code, and
answered numerous questions for me. These include Matz himself (Yukihiro
Matsumoto), Dave Thomas, Christian Neukirchen, Chad Fowler, Curt Hibbs, Daniel
Berger, Armin Roehrl, Stefan Schmiedl, Jim Weirich, Ryan Davis, Jenny W., Jim
Freeze, Lyle Johnson, Martin DeMello, Matt Lawrence, the infamous why the lucky
stiff, Ron Jeffries, Tim Hunter, Chet Hendrickson, Nathaniel Talbott, and Bil Kleb.

Special thanks goes to the heavier contributors. Andrew Johnson greatly enhanced
my regular expression knowledge. Paul Battley made great contributions to the inter-
nationalization chapter. Masao Mutoh added to that same chapter and also con-
tributed material on GTK. Austin Ziegler taught me the secrets of writing PDF files.
Caleb Tennis added to the Qt material. Eric Hodel added to the Rinda and Ring
material, and James Britt contributed heavily to the web development chapter.

Thanks and appreciation again must go to Matz, not only for his assistance but
for creating Ruby in the first place. Domo arigato gozaimasu !

Again I have to thank my parents. They have encouraged me without ceasing and
are looking forward to seeing this book. I will make programmers of them both yet.

And once again, I have to thank all of the Ruby community for their tireless
energy, productivity, and community spirit. I particularly thank the readers of this
book (in both editions). I hope you find it informative, useful, and perhaps even
entertaining.

Acknowledgments xxix

Acknowledgments for the First Edition
Writing a book is truly a team effort; this is a fact I could not fully appreciate until I
wrote one myself. I recommend the experience, although it is a humbling one. It is a
simple truth that without the assistance of many other people, this book would not
have existed.

Thanks and appreciation must first go to Matz (Yukihiro Matsumoto), who
created the Ruby language in the first place. Domo arigato gozaimasu!

Thanks goes to Conrad Schneiker for conceiving the overall idea for the book and
helping to create its overall structure. He also did me the service of introducing me to
the Ruby language in 1999.

Several individuals have contributed material to the body of the book. The fore-
most of these was Guy Hurst, who wrote substantial parts of the earlier chapters as
well as two of the appendices. His assistance was absolutely invaluable.

Thanks also goes to the other contributors, whom I’ll name in no particular order.
Kevin Smith did a great job on the GTK section of Chapter 6, saving me from a
potentially steep learning curve on a tight schedule. Patrick Logan, in the same chap-
ter, shed light on the mysteries of the FOX GUI. Chad Fowler, in Chapter 9, plumbed
the depths of XML and also contributed to the CGI section.

Thanks to those who assisted in proofreading or reviewing or in other miscella-
neous ways: Don Muchow, Mike Stok, Miho Ogishima, and others already men-
tioned. Thanks to David Eppstein, the mathematics professor, for answering questions
about graph theory.

One of the great things about Ruby is the support of the community. There were
many on the mailing list and the newsgroup who answered questions and gave me
ideas and assistance. Again in no particular order, these are Dave Thomas, Andy Hunt,
Hee-Sob Park, Mike Wilson, Avi Bryant, Yasushi Shoji (“Yashi”), Shugo Maeda, Jim
Weirich, “arton,” and Masaki Suketa. I’m sorry to say I have probably overlooked
someone.

To state the obvious, a book would never be published without a publisher. Many
people behind the scenes worked hard to produce this book; primarily I have to thank
William Brown, who worked closely with me and was a constant source of encour-
agement; and Scott Meyer, who delved deeply into the details of putting the material
together. Others I cannot even name because I have never heard of them. You know
who you are.

xxx Acknowledgments

I have to thank my parents, who watched this project from a distance, encouraged
me along the way, and even bothered to learn a little bit of computer science for my
sake.

A writer friend of mine once told me, “If you write a book and nobody reads it,
you haven’t really written a book.” So, finally, I want to thank the reader. This book
is for you. I hope it is of some value.

Acknowledgments xxxi

About the Authors

Hal Fulton first began using Ruby in 1999. In 2001, he started work on The Ruby
Way, which was the second Ruby book published in English. Fulton was an attendee
at the very first Ruby conference in 2001 and has presented at numerous other Ruby
conferences on three continents, including the first European Ruby Conference in
2003. He holds two degrees in computer science from the University of Mississippi
and taught computer science for four years. He has worked for more than 25 years
with various forms of UNIX and Linux. He is now at Simpli.fi in Fort Worth, Texas,
where he works primarily in Ruby.

André Arko first encountered Ruby as a student in 2004, and reading the first edition
of this book helped him decide to pursue a career as a Ruby programmer. He is team
lead of Bundler, the Ruby dependency manager, and has created or contributes to
dozens of other open source projects. He works at Cloud City Development as a con-
sultant providing team training and expertise on Ruby and Rails as well as developing
web applications.

André enjoys sharing hard-won knowledge and experience with other developers,
and has spoken at over a dozen Ruby conferences on four continents. He is a regular
volunteer at RailsBridge and RailsGirls programming outreach events, and works to
increase diversity and inclusiveness in both the Ruby community and technology as a
field. He lives in San Francisco, California.

Introduction

The way that can be named is not the true Way.

—Lao Tse, Tao Te Ching

The title of this book is The Ruby Way. This is a title that begs for a disclaimer.
It has been my aim to align this book with the philosophy of Ruby as well as I

could. That has also been the aim of the other contributors. Credit for success must
be shared with these others, but the blame for any mistakes must rest solely with me.

Of course, I can’t presume to tell you with exactness what the spirit of Ruby is all
about. That is primarily for Matz to say, and I think even he would have difficulty
communicating all of it in words.

In short, The Ruby Way is only a book, but the Ruby Way is the province of the
language creator and the community as a whole. This is something difficult to capture
in a book.

Still, I have tried in this introduction to pin down a little of the ineffable spirit of
Ruby. The wise student of Ruby will not take it as totally authoritative.

About the Third Edition
Everything changes, and Ruby is no exception. There are many changes and much
new material in this edition. In a larger sense, every single chapter in this book is
“new.” I have revised and updated every one of them, making hundreds of minor
changes and dozens of major changes. I deleted items that were obsolete or of lesser
importance; I changed material to fit changes in Ruby itself; I added examples and
commentary to every chapter.

As the second Ruby book in the English language (after Programming Ruby, by
Dave Thomas and Andy Hunt), The Ruby Way was designed to be complementary to
that book rather than overlap with it; that is still true today.

There have been numerous changes between Ruby 1.8, covered in the second edi-
tion, and Ruby 2.1, covered here. It’s important to realize, however, that these were
made with great care, over several years. Ruby is still Ruby. Much of the beauty of
Ruby is derived from the fact that it changes slowly and deliberately, crafted by the
wisdom of Matz and the other developers.

Today we have a proliferation of books on Ruby and more articles published than
we can bother to notice. Web-based tutorials and documentation resources abound.

New tools and libraries have appeared. The most common of these seem to be
tools by developers for other developers: web frameworks, blogging tools, markup
tools, and interfaces to exotic data stores. But there are many others, of course—GUIs,
number-crunching, web services, image manipulation, source control, and more.

Ruby editor support is widespread and sophisticated. IDEs are available that are
useful and mature (and which share some overlap with the GUI builders).

It’s also undeniable that the community has grown and changed. Ruby is by no
means a niche language today; it is used in government departments such as NASA
and NOAA, enterprise companies such as IBM and Motorola, and well-known web-
sites such as Wikipedia, GitHub, and Twitter. It is used for graphics work, database
work, numerical analysis, web development, and more. In short—and I mean this in
the positive sense—Ruby has gone mainstream.

Updating this book has been a labor of love. I hope it is useful to you.

How This Book Works
You probably won’t learn Ruby from this book. There is relatively little in the way of
introductory or tutorial information. If you are totally new to Ruby, you might want
start with another book.

Having said that, programmers are a tenacious bunch, and I grant that it might
be possible to learn Ruby from this book. Chapter 1, “Ruby in Review,” does contain
a brief introduction and some tutorial information.

Chapter 1 also contains a comprehensive “gotcha” list (which has been difficult to
keep up to date). The usefulness of this list in Chapter 1 will vary widely from one
reader to another because we cannot all agree on what is intuitive.

This book is largely intended to answer questions of the form “How do I…?.” As
such, you can expect to do a lot of skipping around. I’d be honored if everyone read
every page from front to back, but I don’t expect that. It’s more my expectation that

xxxiv Introduction

you will browse the table of contents in search of techniques you need or things you
find interesting.

As it turns out, I have talked to many people since the first edition, and they did
in fact read it cover to cover. What’s more, I have had more than one person report to
me that they did learn Ruby here. So anything is possible.

Some things this book covers may seem elementary. That is because people vary
in background and experience; what is obvious to one person may not be to another.
I have tried to err on the side of completeness. On the other hand, I have tried to keep
the book at a reasonable size (obviously a competing goal).

This book can be viewed as a sort of “inverted reference.” Rather than looking up
the name of a method or a class, you will look things up by function or purpose. For
example, the 6WULQJ class has several methods for manipulating case: FDSLWDOL]H,
XSFDVH, FDVHFPS, GRZQFDVH, and VZDSFDVH. In a reference work, these would quite
properly be listed alphabetically, but in this book they are all listed together.

Of course, in striving for completeness, I have sometimes wandered onto the turf
of the reference books. In many cases, I have tried to compensate for this by offering
more unusual or diverse examples than you might find in a reference.

I have tried for a high code-to-commentary ratio. Overlooking the initial chapter,
I think I’ve achieved this. Writers may grow chatty, but programmers always want to
see the code. (If not, they should want to.)

The examples here are sometimes contrived, for which I must apologize. To illus-
trate a technique or principle in isolation from a real-world problem can be difficult.
However, the more complex or high level the task was, the more I attempted a real-
world solution. Thus, if the topic is concatenating strings, you may find an unimagi-
native code fragment involving �IRR� and �EDU�, but when the topic is something
like parsing XML, you will usually find a much more meaningful and realistic piece
of code.

This book has two or three small quirks to which I’ll confess up front. One is the
avoidance of the “ugly” Perl-like global variables such as �B and the others. These are
present in Ruby, and they work fine; they are used daily by most or all Ruby pro-
grammers. But in nearly all cases, their use can be avoided, and I have taken the lib-
erty of omitting them in most of the examples.

Another quirk is that I avoid using standalone expressions when they don’t have
side effects. Ruby is expression oriented, and that is a good thing; I have tried to take
advantage of that feature. But in a code fragment, I prefer to not write expressions that
merely return a value that is not usable. For example, the expression �DEF� � �GHI�
can illustrate string concatenation, but I would write something like VWU �DEF� �
�GHI� instead. This may seem wordy to some, but it may seem more natural to you

Introduction xxxv

if you are a C programmer who really notices when functions are void or nonvoid (or
an old-time Pascal programmer who thinks in procedures and functions).

My third quirk is that I don’t like the “pound” notation to denote instance meth-
ods. Many Rubyists will think I am being verbose in saying “instance method FU\SW
of class 6WULQJ” rather than saying 6WULQJ�FU\SW, but I think no one will be con-
fused. (Actually, I am slowly being converted to this usage, as it is obvious the pound
notation is not going away.)

I have tried to include “pointers” to outside resources whenever appropriate. Time
and space did not allow putting everything into this book that I wanted, but I hope I
have partially made up for that by telling you where to find related materials. The
ruby-doc.org and rdoc.info websites are probably the foremost of these sources; you
will see them referenced many times in this book.

Here, at the front of the book, there is usually a gratuitous reference to the type-
faces used for code, and how to tell code fragments from ordinary text. But I won’t
insult your intelligence; you’ve read computer books before.

I want to point out that roughly 10 percent of this book was written by other peo-
ple. That does not even include tech editing and copy editing. You should read the
acknowledgments in this (and every) book. Most readers skip them. Go read them
now. They’re good for you, like vegetables.

About the Book’s Source Code
Every significant code fragment has been collected into an archive for the reader to
download. Look for this archive on the informit.com site or at the book’s own site,
therubyway.io.

It is offered both as a �WJ] file and as a �]LS file. Code fragments that are very
short or can’t be run “out of context” will usually not appear in the archive.

What Is the “Ruby Way”?

Let us prepare to grapple with the ineffable itself, and see if we may not eff it after all.

—Douglas Adams, Dirk Gently’s Holistic Detective Agency

What do we mean by the Ruby Way? My belief is that there are two related aspects:
One is the philosophy of the design of Ruby; the other is the philosophy of its usage.
It is natural that design and use should be interrelated, whether in software or

xxxvi Introduction

hardware; why else should there be such a field as ergonomics? If I build a device and
put a handle on it, it is because I expect someone to grab that handle.

Ruby has a nameless quality that makes it what it is. We see that quality present
in the design of the syntax and semantics of the language, but it is also present in the
programs written for that interpreter. Yet as soon as we make this distinction, we
blur it.

Clearly Ruby is not just a tool for creating software, but it is a piece of software
in its own right. Why should the workings of Ruby programs follow laws different
from those that guide the workings of the interpreter? After all, Ruby is highly dynamic
and extensible. There might be reasons that the two levels should differ here and there,
probably for accommodating to the inconvenience of the real world. But in general,
the thought processes can and should be the same. Ruby could be implemented in
Ruby, in true Hofstadter-like fashion, though it is not at the time of this writing.

We don’t often think of the etymology of the word way, but there are two impor-
tant senses in which it is used. On the one hand, it means a method or technique, but
it can also mean a road or path. Obviously these two meanings are interrelated, and I
think when I say “the Ruby Way,” I mean both of them.

So what we are talking about is a thought process, but it is also a path that we fol-
low. Even the greatest software guru cannot claim to have reached perfection but only
to follow the path. And there may be more than one path, but here I can only talk
about one.

The conventional wisdom says that form follows function. And the conventional
wisdom is, of course, conventionally correct. But Frank Lloyd Wright (speaking in his
own field) once said, “Form follows function—that has been misunderstood. Form
and function should be one, joined in a spiritual union.”

What did Wright mean? I would say that this truth is not something you learn
from a book, but from experience.

However, I would argue that Wright expressed this truth elsewhere in pieces eas-
ier to digest. He was a great proponent of simplicity, saying once, “An architect’s most
useful tools are an eraser at the drafting board and a wrecking bar at the site.”

So, one of Ruby’s virtues is simplicity. Shall I quote other thinkers on the subject?
According to Antoine de St. Exupéry, “Perfection is achieved, not when there is noth-
ing left to add, but when there is nothing left to take away.”

But Ruby is a complex language. How can I say that it is simple?
If we understood the universe better, we might find a “law of conservation of

complexity”—a fact of reality that disturbs our lives like entropy so that we cannot
avoid it but can only redistribute it.

Introduction xxxvii

And that is the key. We can’t avoid complexity, but we can push it around. We can
bury it out of sight. This is the old “black box” principle at work; a black box performs
a complex task, but it possesses simplicity on the outside.

If you haven’t already lost patience with my quotations, a word from Albert
Einstein is appropriate here: “Everything should be as simple as possible, but no
simpler.”

So in Ruby, we see simplicity embodied from the programmer’s view (if not from
the view of those maintaining the interpreter). Yet we also see the capacity for com-
promise. In the real world, we must bend a little. For example, every entity in a Ruby
program should be a true object, but certain values such as integers are stored as
immediate values. In a trade-off familiar to computer science students for decades, we
have traded elegance of design for practicality of implementation. In effect, we have
traded one kind of simplicity for another.

What Larry Wall said about Perl holds true: “When you say something in a small
language, it comes out big. When you say something in a big language, it comes out
small.” The same is true for English. The reason that biologist Ernst Haeckel could say
“Ontogeny recapitulates phylogeny” in only three words was that he had these pow-
erful words with highly specific meanings at his disposal. We allow inner complexity
of the language because it enables us to shift the complexity away from the individual
utterance.

I would state this guideline this way: Don’t write 200 lines of code when ten
will do.

I’m taking it for granted that brevity is generally a good thing. A short program
fragment will take up less space in the programmer’s brain; it will be easier to grasp as
a single entity. As a happy side effect, fewer bugs will be injected while the code is
being written.

Of course, we must remember Einstein’s warning about simplicity. If we put
brevity too high on our list of priorities, we will end up with code that is hopelessly
obfuscated. Information theory teaches us that compressed data is statistically similar
to random noise; if you have looked at C or APL or regular expression notation—
especially badly written—you have experienced this truth firsthand. “Simple, but not
too simple”; that is the key. Embrace brevity, but do not sacrifice readability.

It is a truism that both brevity and readability are good. But there is an underly-
ing reason for this—one so fundamental that we sometimes forget it. The reason is
that computers exist for humans, not humans for computers.

In the old days, it was almost the opposite. Computers cost millions of dollars and
ate electricity at the rate of many kilowatts. People acted as though the computer was

xxxviii Introduction

a minor deity and the programmers were humble supplicants. An hour of the com-
puter’s time was more expensive than an hour of a person’s time.

When computers became smaller and cheaper, high-level languages also became
more popular. These were inefficient from the computer’s point of view but efficient
from the human perspective. Ruby is simply a later development in this line of
thought. Some, in fact, have called it a VHLL (Very High-Level Language); though
this term is not well-defined, I think its use is justified here.

The computer is supposed to be the servant, not the master, and, as Matz has said,
a smart servant should do a complex task with a few short commands. This has been
true through all the history of computer science. We started with machine languages
and progressed to assembly language and then to high-level languages.

What we are talking about here is a shift from a machine-centered paradigm to a
human-centered one. In my opinion, Ruby is an excellent example of human-centric
programming.

I’ll shift gears a little. There was a wonderful little book from the 1980s called The
Tao of Programming (by Geoffrey James). Nearly every line is quotable, but I’ll repeat
only this: “A program should follow the ‘Law of Least Astonishment.’ What is this
law? It is simply that the program should always respond to the user in the way that
astonishes him least.” (Of course, in the case of a language interpreter, the user is the
programmer.)

I don’t know whether James coined this term, but his book was my first intro-
duction to the phrase. This is a principle that is well known and often cited in the
Ruby community, though it is usually called the Principle of Least Surprise, or POLS.
(I myself stubbornly prefer the acronym LOLA.)

Whatever you call it, this rule is a valid one, and it has been a guideline through-
out the ongoing development of the Ruby language. It is also a useful guideline for
those who develop libraries or user interfaces.

The only problem, of course, is that different people are surprised by different
things; there is no universal agreement on how an object or method “ought” to
behave. We can strive for consistency and strive to justify our design decisions, and
each person can train his own intuition.

For the record, Matz has said that “least surprise” should refer to him as the
designer. The more you think like him, the less Ruby will surprise you. And I assure
you, imitating Matz is not a bad idea for most of us.

No matter how logically constructed a system may be, your intuition needs to be
trained. Each programming language is a world unto itself, with its own set of assump-
tions, and human languages are the same. When I took German, I learned that all

Introduction xxxix

nouns were capitalized, but the word deutsch was not. I complained to my professor;
after all, this was the name of the language, wasn’t it? He smiled and said, “Don’t
fight it.”

What he taught me was to let German be German. By extension, that is good
advice for anyone coming to Ruby from some other language. Let Ruby be Ruby.
Don’t expect it to be Perl, because it isn’t; don’t expect it to be LISP or Smalltalk,
either. On the other hand, Ruby has common elements with all three of these. Start
by following your expectations, but when they are violated, don’t fight it (unless Matz
agrees it’s a needed change).

Every programmer today knows the orthogonality principle (which would better
be termed the orthogonal completeness principle). Suppose we have an imaginary pair of
axes with a set of comparable language entities on one and a set of attributes or capa-
bilities on the other. When we talk of “orthogonality,” we usually mean that the space
defined by these axes is as “full” as we can logically make it.

Part of the Ruby Way is to strive for this orthogonality. An array is in some ways
similar to a hash, so the operations on each of them should be similar. The limit is
reached when we enter the areas where they are different.

Matz has said that “naturalness” is to be valued over orthogonality. But to fully
understand what is natural and what is not may take some thinking and some coding.

Ruby strives to be friendly to the programmer. For example, there are aliases or
synonyms for many method names; VL]H and OHQJWK will both return the number
of entries in an array. Some consider this sort of thing to be an annoyance or anti-fea-
ture, but I consider it a good design.

Ruby strives for consistency and regularity. There is nothing mysterious about
this; in every aspect of life, we yearn for things to be regular and parallel. What makes
it a little more tricky is learning when to violate this principle.

For instance, Ruby has the habit of appending a question mark (") to the name
of a predicate-like method. This is well and good; it clarifies the code and makes the
namespace a little more manageable. But what is more controversial is the similar use
of the exclamation point in marking methods that are “destructive” or “dangerous” in
the sense that they modify their receivers. The controversy arises because not all of the
destructive methods are marked in this way. Shouldn’t we be consistent?

No, in fact we should not. Some of the methods by their very nature change their
receiver (such as the $UUD\ methods UHSODFH and FRQFDW). Some of them are
“writer” methods allowing assignment to a class attribute; we should not append an
exclamation point to the attribute name or the equal sign. Some methods arguably
change the state of the receiver, such as UHDG; this occurs too frequently to be marked

xl Introduction

Introduction xli

in this way. If every destructive method name ended in a �, our programs soon would
look like sales brochures for a multilevel marketing firm.

Do you notice a kind of tension between opposing forces, a tendency for all rules
to be violated? Let me state this as Fulton’s Second Law: Every rule has an exception,
except Fulton’s Second Law. (Yes, there is a joke there, a very small one.)

What we see in Ruby is not a “foolish consistency” nor a rigid adherence to a set
of simple rules. In fact, perhaps part of the Ruby Way is that it is not a rigid and inflex-
ible approach. In language design, as Matz once said, you should “follow your heart.”

Yet another aspect of the Ruby philosophy is, do not fear change at runtime; do not
fear what is dynamic. The world is dynamic; why should a programming language be
static? Ruby is one of the most dynamic languages in existence.

I would also argue that another aspect is, do not be a slave to performance issues.
When performance is unacceptable, the issue must be addressed, but it should nor-
mally not be the first thing you think about. Prefer elegance over efficiency where effi-
ciency is less than critical. Then again, if you are writing a library that may be used in
unforeseen ways, performance may be critical from the start.

When I look at Ruby, I perceive a balance between different design goals, a com-
plex interaction reminiscent of the n-body problem in physics. I can imagine it might
be modeled as an Alexander Calder mobile. It is perhaps this interaction itself, the har-
mony, that embodies Ruby’s philosophy rather than just the individual parts.
Programmers know that their craft is not just science and technology but art. I hesi-
tate to say that there is a spiritual aspect to computer science, but just between you
and me, there certainly is. (If you have not read Robert Pirsig’s Zen and the Art of
Motorcycle Maintenance, I recommend that you do so.)

Ruby arose from the human urge to create things that are useful and beautiful.
Programs written in Ruby should spring from the same source. That, to me, is the
essence of the Ruby Way.

This page intentionally left blank

1

CHAPTER 1
Ruby in Review

Language shapes the way we think and determines what we can think about.

—Benjamin Lee Whorf

It is worth remembering that a new programming language is sometimes viewed as a
panacea, especially by its adherents. But no one language will supplant all the others;
no one tool is unarguably the best for every possible task. There are many different
problem domains in the world and many possible constraints on problems within
those domains.

Above all, there are different ways of thinking about these problems, stemming
from the diverse backgrounds and personalities of the programmers themselves. For
these reasons, there is no foreseeable end to the proliferation of languages. And as long
as there is a multiplicity of languages, there will be a multiplicity of personalities
defending and attacking them. In short, there will always be “language wars”; in this
book, however, we do not intend to participate in them.

Yet in the constant quest for newer and better program notations, we have stum-
bled across ideas that endure, that transcend the context in which they were created.
Just as Pascal borrowed from Algol, just as Java borrowed from C, so will every lan-
guage borrow from its predecessors.

A language is both a toolbox and a playground; it has a practical side, but it also
serves as a test bed for new ideas that may or may not be widely accepted by the com-
puting community.

One of the most far-reaching of these ideas is the concept of object-oriented pro-
gramming (OOP). Although many would argue that the overall significance of OOP
is evolutionary rather than revolutionary, no one can say that it has not had an impact
on the industry. Twenty-five years ago, object orientation was for the most part an aca-
demic curiosity; today it is a universally accepted paradigm.

In fact, the ubiquitous nature of OOP has led to a significant amount of “hype”
in the industry. In a classic paper of the late 1980s, Roger King observed, “If you want
to sell a cat to a computer scientist, you have to tell him it’s object-oriented.”
Additionally, there are differences of opinion about what OOP really is, and even
among those who are essentially in agreement, there are differences in terminology.

It is not our purpose here to contribute to the hype. We do find OOP to be a use-
ful tool and a meaningful way of thinking about problems; we do not claim that it
cures cancer.

As for the exact nature of OOP, we have our pet definitions and favorite termi-
nology; but we make these known only to communicate effectively, not to quibble
over semantics.

We mention all this because it is necessary to have a basic understanding of OOP
to proceed to the bulk of this book and understand the examples and techniques.
Whatever else might be said about Ruby, it is definitely an object-oriented language.

1.1 An Introduction to Object Orientation
Before talking about Ruby specifically, it is a good idea to talk about object-oriented
programming in the abstract. These first few pages review those concepts with only
cursory references to Ruby before we proceed to a review of the Ruby language itself.

1.1.1 What Is an Object?
In object-oriented programming, the fundamental unit is the object. An object is an
entity that serves as a container for data and also controls access to the data. Associated
with an object is a set of attributes, which are essentially no more than variables
belonging to the object. (In this book, we will loosely use the ordinary term variable
for an attribute.) Also associated with an object is a set of functions that provide an
interface to the functionality of the object, called methods.

It is essential that any OOP language provide encapsulation. As the term is com-
monly used, it means first that the attributes and methods of an object are associated
specifically with that object, or bundled with it; second, it means that the scope of

2 1. Ruby in Review

those attributes and methods is by default the object itself (an application of the prin-
ciple of data hiding).

An object is considered to be an instance or manifestation of an object class (usu-
ally simply called a class). The class may be thought of as the blueprint or pattern; the
object itself is the thing created from that blueprint or pattern. A class is often thought
of as an abstract type—a more complex type than, for example, an integer or character
string.

When an object (an instance of a class) is created, it is said to be instantiated.
Some languages have the notion of an explicit constructor and destructor for an
object—functions that perform whatever tasks are needed to initialize an object and
(respectively) to “destroy” it. We may as well mention prematurely that Ruby has what
might be considered a constructor but certainly does not have any concept of a
destructor (because of its well-behaved garbage collection mechanism).

Occasionally a situation arises in which a piece of data is more “global” in scope
than a single object, and it is inappropriate to put a copy of the attribute into each
instance of the class. For example, consider a class called 0\'RJV, from which three
objects are created: ILGR, URYHU, and VSRW. For each dog, there might be such attrib-
utes as age and date of vaccination. But suppose that we want to store the owner’s
name (the owner of all the dogs). We could certainly put it in each object, but that is
wasteful of memory and at the very least a misleading design. Clearly the owner_name
attribute belongs not to any individual object but to the class itself. When it is defined
that way (and the syntax varies from one language to another), it is called a class attrib-
ute (or class variable).

Of course, there are many situations in which a class variable might be needed.
For example, suppose that we wanted to keep a count of how many objects of a cer-
tain class had been created. We could use a class variable that was initialized to zero
and incremented with every instantiation; the class variable would be associated with
the class and not with any particular object. In scope, this variable would be just like
any other attribute, but there would only be one copy of it for the entire class and the
entire set of objects created from that class.

To distinguish between class attributes and ordinary attributes, the latter are
sometimes explicitly called object attributes (or instance attributes). We use the con-
vention that any attribute is assumed to be an instance attribute unless we explicitly
call it a class attribute.

Just as an object’s methods are used to control access to its attributes and provide
a clean interface to them, so is it sometimes appropriate or necessary to define a
method associated with a class. A class method, not surprisingly, controls access to the

1.1 An Introduction to Object Orientation 3

class variables and also performs any tasks that might have classwide effects rather than
merely objectwide. As with data attributes, methods are assumed to belong to the
object rather than the class unless stated otherwise.

It is worth mentioning that there is a sense in which all methods are class meth-
ods. We should not suppose that when 100 objects are created, we actually copy the
code for the methods 100 times! But the rules of scope assure us that each object
method operates only on the object whose method is being called, providing us with
the necessary illusion that object methods are associated strictly with their objects.

1.1.2 Inheritance
We come now to one of the real strengths of OOP, which is inheritance. Inheritance
is a mechanism that allows us to extend a previously existing entity by adding features
to create a new entity. In short, inheritance is a way of reusing code. (Easy, effective
code reuse has long been the Holy Grail of computer science, resulting in the inven-
tion decades ago of parameterized subroutines and code libraries. OOP is only one of
the later efforts in realizing this goal.)

Typically we think of inheritance at the class level. If we have a specific class in
mind, and there is a more general case already in existence, we can define our new class
to inherit the features of the old one. For example, suppose that we have a class named
3RO\JRQ that describes convex polygons. If we then find ourselves dealing with a
5HFWDQJOH class, we can inherit from 3RO\JRQ so that 5HFWDQJOH has all the attrib-
utes and methods that 3RO\JRQ has. For example, there might be a method that cal-
culates perimeter by iterating over all the sides and adding their lengths. Assuming
that everything was implemented properly, this method would automatically work for
the new class; the code would not have to be rewritten.

When a class B inherits from a class A, we say that B is a subclass of A, or con-
versely A is the superclass of B. In slightly different terminology, we may say that A is
a base class or parent class, and B is a derived class or child class.

A derived class, as we have seen, may treat a method inherited from its base class
as if it were its own. On the other hand, it may redefine that method entirely if it is
necessary to provide a different implementation; this is referred to as overriding a
method. In addition, most languages provide a way for an overridden method to call
its namesake in the parent class; that is, the method IRR in B knows how to call
method IRR in A if it wants to. (Any language that does not provide this feature is
under suspicion of not being truly object oriented.) Essentially the same is true for
data attributes.

4 1. Ruby in Review

The relationship between a class and its superclass is interesting and important; it
is usually described as the is-a relationship, because a 6TXDUH “is a” 5HFWDQJOH, and
a 5HFWDQJOH “is a” 3RO\JRQ, and so on. Thus, if we create an inheritance hierarchy
(which tends to exist in one form or another in any OOP language), we see that the
more specific entity “is a” subclass of the more general entity at any given point in the
hierarchy. Note that this relationship is transitive—in the previous example, we easily
see that a 6TXDUH “is a” 3RO\JRQ. Note also that the relationship is not commuta-
tive—we know that every 5HFWDQJOH is a 3RO\JRQ, but not every 3RO\JRQ is a
5HFWDQJOH.

This brings us to the topic of multiple inheritance (MI). It is conceivable that a
new class could inherit from more than one class. For example, the classes 'RJ and
&DW can both inherit from the class 0DPPDO, and 6SDUURZ and 5DYHQ can inherit
from :LQJHG&UHDWXUH. But what if we want to define a %DW? It can reasonably inherit
from both the classes 0DPPDO and :LQJHG&UHDWXUH. This corresponds well with our
real-life experience in which things are not members of just one category but of many
non-nested categories.

MI is probably the most controversial area in OOP. One camp will point out the
potential for ambiguity that must be resolved. For example, if 0DPPDO and
:LQJHG&UHDWXUH both have an attribute called VL]H (or a method called HDW), which
one will be referenced when we refer to it from a %DW object? Another related diffi-
culty is the diamond inheritance problem—so called because of the shape of its inheri-
tance diagram, with both superclasses inheriting from a single common superclass. For
example, imagine that 0DPPDO and :LQJHG&UHDWXUH both inherit from 2UJDQLVP;
the hierarchy from 2UJDQLVP to %DW forms a diamond. But what about the attributes
that the two intermediate classes both inherit from their parent? Does %DW get two
copies of each of them? Or are they merged back into single attributes because they
come from a common ancestor in the first place?

These are both issues for the language designer rather than the programmer.
Different OOP languages deal with the issues differently. Some provide rules allowing
one definition of an attribute to “win out,” or a way to distinguish between attributes
of the same name, or even a way of aliasing or renaming the identifiers. This in itself
is considered by many to be an argument against MI—the mechanisms for dealing
with name clashes and the like are not universally agreed upon but are language
dependent. C++ offers a minimal set of features for dealing with ambiguities; those of
Eiffel are probably better, and those of Perl are different from both.

The alternative, of course, is to disallow MI altogether. This is the approach taken
by such languages as Java and Ruby. This sounds like a drastic compromise; however,

1.1 An Introduction to Object Orientation 5

as we shall see later, it is not as bad as it sounds. We will look at a viable alternative to
traditional MI, but we must first discuss polymorphism, yet another OOP buzzword.

1.1.3 Polymorphism
Polymorphism is the term that perhaps inspires the most semantic disagreement in the
field. Everyone seems to know what it is, but everyone has a different definition. (In
recent years, “What is polymorphism?” has become a popular interview question. If it
is asked of you, I recommend quoting an expert such as Bertrand Meyer or Bjarne
Stroustrup; that way, if the interviewer disagrees, his beef is with the expert and not
with you.)

The literal meaning of polymorphism is “the ability to take on multiple forms or
shapes.” In its broadest sense, this refers to the ability of different objects to respond
in different ways to the same message (or method invocation).

Damian Conway, in his book Object-Oriented Perl, distinguishes meaningfully
between two kinds of polymorphism. The first, inheritance polymorphism, is what most
programmers are referring to when they talk about polymorphism.

When a class inherits from its superclass, we know (by definition) that any
method present in the superclass is also present in the subclass. Thus, a chain of inher-
itance represents a linear hierarchy of classes that can respond to the same set of meth-
ods. Of course, we must remember that any subclass can redefine a method; that is
what gives inheritance its power. If I call a method on an object, typically it will be
either the one it inherited from its superclass or a more appropriate (more specialized)
method tailored for the subclass.

In statically typed languages such as C++, inheritance polymorphism establishes
type compatibility down the chain of inheritance (but not in the reverse direction).
For example, if B inherits from A, a pointer to an A object can also point to a B object;
but the reverse is not true. This type compatibility is an essential OOP feature in such
languages—indeed it almost sums up polymorphism—but polymorphism certainly
exists in the absence of static typing (as in Ruby).

The second kind of polymorphism Conway identifies is interface polymorphism.
This does not require any inheritance relationship between classes; it only requires that
the interfaces of the objects have methods of a certain name. The treatment of such
objects as being the same “kind” of thing is thus a kind of polymorphism (though in
most writings, it is not explicitly referred to as such).

Readers familiar with Java will recognize that it implements both kinds of poly-
morphism. A Java class can extend another class, inheriting from it via the H[WHQGV
keyword; or it may implement an interface, acquiring a known set of methods (which

6 1. Ruby in Review

must then be overridden) via the LPSOHPHQWV keyword. Because of syntax require-
ments, the Java interpreter can determine at compile time whether a method can be
invoked on a particular object.

Ruby supports interface polymorphism but in a different way, providing modules
whose methods may be mixed in to existing classes (interfacing to user-defined meth-
ods that are expected to exist). This, however, is not the way modules are usually used.
A module consists of methods and constants that may be used as though they were
actual parts of that class or object; when a module is mixed in via the LQFOXGH state-
ment, this is considered to be a restricted form of multiple inheritance. According to
the language designer, Yukihiro Matsumoto (often called Matz), it can be viewed as
single inheritance with implementation sharing. This is a way of preserving the benefits
of MI without suffering all the consequences.

1.1.4 A Few More Terms
In languages such as C++, there is the concept of abstract classes—classes that must be
inherited from and cannot be instantiated on their own. This concept does not exist
in the more dynamic Ruby language, although if the programmer really wants, it is
possible to fake this kind of behavior by forcing the methods to be overridden.
Whether this is useful is left as an exercise for the reader.

The creator of C++, Bjarne Stroustrup, also identifies the concept of a concrete
type. This is a class that exists only for convenience; it is not designed to be inherited
from, nor is it expected that there will ever be another class derived from it. In other
words, the benefits of OOP are basically limited to encapsulation. Ruby does not
specifically support this concept through any special syntax (nor does C++), but it is
naturally well suited for the creation of such classes.

Some languages are considered to be more “pure” OO than others. (We also use
the term radically object oriented.) This refers to the concept that every entity in the lan-
guage is an object; every primitive type is represented as a full-fledged class, and vari-
ables and constants alike are recognized as object instances. This is in contrast to such
languages as Java, C++, and Eiffel. In these, the more primitive data types (especially
constants) are not first-class objects, though they may sometimes be treated that way
with “wrapper” classes. Arguably there are languages that are more radically object ori-
ented than Ruby, but they are relatively few.

Most OO languages are static; the methods and attributes belonging to a class,
the global variables, and the inheritance hierarchy are all defined at compile time.
Perhaps the largest conceptual leap for a Ruby programmer is that these are all han-
dled dynamically in Ruby. Definitions and even inheritance can happen at runtime—

1.1 An Introduction to Object Orientation 7

in fact, we can truly say that every declaration or definition is actually executed during
the running of the program. Among many other benefits, this obviates the need for
conditional compilation and can produce more efficient code in many circumstances.

This sums up the whirlwind tour of OOP. Throughout the rest of the book, we
have tried to make consistent use of the terms introduced here. Let’s proceed now to
a brief review of the Ruby language itself.

1.2 Basic Ruby Syntax and Semantics
In the previous pages, we have already seen that Ruby is a pure, dynamic OOP
language. Let’s look briefly at some other attributes before summarizing the syntax and
semantics.

Ruby is an agile language. It is “malleable” and encourages frequent, easy (man-
ual) refactoring.

Ruby is an interpreted language. Of course, there may be later implementations of
a Ruby compiler for performance reasons, but we maintain that an interpreter yields
great benefits not only in rapid prototyping but also in the shortening of the devel-
opment cycle overall.

Ruby is an expression-oriented language. Why use a statement when an expression
will do? This means, for instance, that code becomes more compact as the common
parts are factored out and repetition is removed.

Ruby is a very high-level language (VHLL). One principle behind the language
design is that the computer should work for the programmer rather than vice versa.
The “density” of Ruby means that sophisticated and complex operations can be car-
ried out with relative ease as compared to lower-level languages.

Let’s start by examining the overall look and feel of the language and some of its
terminology. We’ll briefly examine the nature of a Ruby program before looking at
examples.

To begin with, Ruby is essentially a line-oriented language—more so than lan-
guages such as C but not so much as antique languages such as FORTRAN. Tokens
can be crowded onto a single line as long as they are separated by whitespace as
needed. Statements may share a single line if they are separated by semicolons; this is
the only time the terminating semicolon is really needed. A line may be continued to
the next line by ending it with a backslash or by letting the parser know that the state-
ment is not complete—for example, by ending a line with a comma.

8 1. Ruby in Review

There is no main program as such; execution proceeds in general from top to bot-
tom. In more complex programs, there may be numerous definitions at the top, fol-
lowed by the (conceptual) main program at the bottom; but even in that case,
execution proceeds from the top down because definitions in Ruby are executed.

1.2.1 Keywords and Identifiers
The keywords (or reserved words) in Ruby typically cannot be used for other pur-
poses. These are as follows:

%(*,1 (1' DOLDV DQG EHJLQ

EUHDN FDVH FODVV GHI GHILQHG"

GR HOVH HOVLI HQG HQVXUH

IDOVH IRU LI LQ PRGXOH

QH[W QLO QRW RU UHGR

UHVFXH UHWU\ UHWXUQ VHOI VXSHU

WKHQ WUXH XQGHI XQOHVV XQWLO

ZKHQ ZKLOH \LHOG

Variables and other identifiers normally start with an alphabetic letter or a special
modifier. The basic rules are as follows:

• Local variables (and pseudovariables such as VHOI and QLO) begin with a lower-
case letter or an underscore.

• Global variables begin with � (a dollar sign).

• Instance variables (within an object) begin with # (an at sign).

• Class variables (within a class) begin with ## (two at signs).

• Constants begin with capital letters.

• For purposes of forming identifiers, the underscore (_) may be used as a lowercase
letter.

• Special variables starting with a dollar sign (such as �� and ��) are set by the Ruby
interpreter itself.

1.2 Basic Ruby Syntax and Semantics 9

Here are some examples of each of these:

• Local variables DOSKD BLGHQW VRPHBYDU

• Pseudovariables VHOI�QLO�BB),/(BB

• Constants .�FKLS�/HQJWK�/(1*7+

• Instance variables #IRREDU�#WK[�����#127B&2167

• Class variable ##SK\GHDX[�##P\BYDU�##127B&2167

• Global variables �EHWD��%��YLWDPLQ��127B&2167

1.2.2 Comments and Embedded Documentation
Comments in Ruby begin with a pound sign (�) outside a string or character constant
and proceed to the end of the line:

[� �\�������7KLV�LV�D�FRPPHQW�
��7KLV�LV�DQRWKHU�FRPPHQW�
SXWV����%XW�WKLV�LVQ±W��

Comments immediately before definitions typically document the thing that is
about to be defined. This embedded documentation can often be retrieved from the
program text by external tools. Typical documentation comments can run to several
comment lines in a row.

��7KH�SXUSRVH�RI�WKLV�FODVV
��LV�WR�FXUH�FDQFHU
��DQG�LQVWLJDWH�ZRUOG�SHDFH
FODVV�,PSUHVVLYH&ODVV

Given two lines starting with EHJLQ and HQG, everything between those lines
(inclusive) is treated as a comment. (These can’t be preceded by whitespace.)

 EHJLQ
(YHU\WKLQJ�RQ�OLQHV
LQVLGH�KHUH�ZLOO�EH�D
FRPPHQW�DV�ZHOO�
 HQG

10 1. Ruby in Review

1.2.3 Constants, Variables, and Types
In Ruby, variables do not have types, but the objects they refer to do have types. The
simplest data types are character, numeric, and string.

Numeric constants are mostly intuitive, as are strings. Generally, a double-quoted
string is subject to additional interpretation, and a single-quoted string is more “as is,”
allowing only an escaped backslash.

In double-quoted strings, we can do “interpolation” of variables and expressions,
as shown here:

D� ��
E� ���
SXWV���^D`�WLPHV��^E`� ��^DE`���������WLPHV���� ����

For more information on literals (numbers, strings, regular expressions, and so
on), refer to later chapters.

There is a special kind of string worth mentioning, primarily useful in small
scripts used to glue together larger programs. The command output string is sent to
the operating system as a command to be executed, whereupon the output of the com-
mand is substituted back into the string. The simple form of this string uses the grave
accent (sometimes called a back-tick or back-quote) as a beginning and ending delim-
iter; the more complex form uses the �[notation:

ZKRDPL

OV��O

�[>JUHS��L�PHWD��KWPO�_�ZF��O@

Regular expressions in Ruby look similar to character strings, but they are used dif-
ferently. The usual delimiter is a slash character.

For those familiar with Perl, regular expression handling is similar in Ruby.
Incidentally, we’ll use the abbreviation regex throughout the remainder of the book;
many people abbreviate it as regexp, but that is not as pronounceable. For details on
regular expressions, see Chapter 3, “Working with Regular Expressions.”

Arrays in Ruby are a powerful construct; they may contain data of any type or
may even mix types. As we shall see in Chapter 8, “Arrays, Hashes, and Other
Enumerables,” all arrays are instances of the class $UUD\ and thus have a rich set of
methods that can operate on them. An array constant is delimited by brackets; the fol-
lowing are all valid array expressions:

1.2 Basic Ruby Syntax and Semantics 11

>�������@
>�������EXFNOH�P\�VKRH�@
>������>���@���@
>�DOSKD����EHWD����JDPPD����GHOWD�@

The second example shows an array containing both integers and strings; the
third example in the preceding code shows a nested array, and the fourth example
shows an array of strings. As in most languages, arrays are zero based; for instance, in
the last array in the preceding code, �JDPPD� is element number 2. Arrays are
dynamic and do not need to have a size specified when they are created.

Because the array of strings is so common (and so inconvenient to type), a special
syntax has been set aside for it, similar to what we have seen already:

�Z>DOSKD�EHWD�JDPPD�GHOWD@
�Z�-DQ�)HE�0DU�$SU�0D\�-XQ�-XO�$XJ�6HS�2FW�1RY�'HF�
�Z�DP�LV�DUH�ZDV�ZHUH�EH�EHLQJ�EHHQ�

Such a shorthand is frequently called “syntax sugar” because it offers a more con-
venient alternative to another syntactic form. In this case, the quotes and commas are
not needed; only whitespace separates the individual elements. In the case of an ele-
ment that contains whitespace, of course, this would not work.

An array variable can use brackets to index into the array. The resulting expres-
sion can be both examined and assigned to:

YDO� �P\DUUD\>�@
SULQW�VWDWV>M@
[>L@� �[>L��@

Another powerful construct in Ruby is the hash, also known in other circles as an
associative array or dictionary. A hash is a set of associations between paired pieces of
data; it is typically used as a lookup table or a kind of generalized array in which the
index need not be an integer. Each hash is an instance of the class +DVK.

A hash constant is typically represented between delimiting braces, with the sym-
bol ! separating the individual keys and values. The key can be thought of as an
index where the corresponding value is stored. There is no restriction on types of the
keys or the corresponding values. Here are some hashes:

^�� !������ !������ !������ !������� !������� !���`
^�FDW�� !��FDWV����R[�� !��R[HQ����EDFWHULXP�� !��EDFWHULD�`
^�RGGV�� !�>�������@���HYHQV�� !�>�������@`
^�IRR�� !������>�����@� !��P\�DUUD\�������������� !��-HQQ\�`

12 1. Ruby in Review

Hashes also have an additional syntax that creates keys that are instances of the
6\PERO class (which is explained further in later material):

^K\GURJHQ�����KHOLXP�����FDUERQ����`

A hash variable can have its contents accessed by essentially the same bracket
notation that arrays use:

SULQW�SKRQHBQXPEHUV>�-HQQ\�@
SOXUDOV>�RFWRSXV�@� ��RFWRSL�
DWRPLFBQXPEHUV>�KHOLXP@�� !��

It should be stressed, however, that both arrays and hashes have many methods
associated with them; these methods give them their real usefulness. The section
“OOP in Ruby,” later in the chapter, will expand on this a little more.

1.2.4 Operators and Precedence
Now that we have established our most common data types, let’s look at Ruby’s oper-
ators. They are arranged here in order from highest to lowest precedence:

�� Scope

>@ Indexing

 Exponentiation

������a Unary positive/negative, not, …

���� Multiplication, division, …

��� Addition/subtraction

���!! Logical shifts, …

	 Bitwise AND

_�A Bitwise OR, XOR

!�! ���� Comparison

 � �� !�� � a��a Equality, inequality, …

		 Boolean AND

__ Boolean OR

1.2 Basic Ruby Syntax and Semantics 13

������ Range operators

 (also � , � , …) Assignment

"� Ternary decision

QRW Boolean negation

DQG�RU Boolean AND, OR

Some of the preceding symbols serve more than one purpose; for example, the
operator << is a bitwise left shift but is also an append operator (for arrays, strings, and
so on) and a marker for a here-document. Likewise, the + is for numeric addition as
well as for string concatenation. As we shall see later, many of these operators are just
shortcuts for method names.

Now we have defined most of our data types and many of the possible operations
on them. Before going any further, let’s look at a sample program.

1.2.5 A Sample Program
In a tutorial, the first program is always +HOOR��ZRUOG� But in a whirlwind tour like
this one, let’s start with something slightly more advanced. Here is a small interactive
console-based program to convert between Fahrenheit and Celsius temperatures:

SULQW��3OHDVH�HQWHU�D�WHPSHUDWXUH�DQG�VFDOH��&�RU�)����
67'287�IOXVK
VWU� �JHWV
H[LW�LI�VWU�QLO"�__�VWU�HPSW\"
VWU�FKRPS�
WHPS��VFDOH� �VWU�VSOLW�����

DERUW���^WHPS`�LV�QRW�D�YDOLG�QXPEHU���LI�WHPS��a���"?G��

WHPS� �WHPS�WRBI
FDVH�VFDOH
ZKHQ��&����F�
I� ����WHPS�����

ZKHQ��)����I�
F� �����������WHPS����

HOVH
DERUW��0XVW�VSHFLI\�&�RU�)��

HQG

LI�I�QLO"
SXWV���^F`�GHJUHHV�&�

14 1. Ruby in Review

HOVH
SXWV���^I`�GHJUHHV�)�

HQG

Here are some examples of running this program. These show that the program
can convert from Fahrenheit to Celsius, convert from Celsius to Fahrenheit, and han-
dle an invalid scale or an invalid number:

3OHDVH�HQWHU�D�WHPSHUDWXUH�DQG�VFDOH��&�RU�)��������)
�����GHJUHHV�&

3OHDVH�HQWHU�D�WHPSHUDWXUH�DQG�VFDOH��&�RU�)�������&
������GHJUHHV�)

3OHDVH�HQWHU�D�WHPSHUDWXUH�DQG�VFDOH��&�RU�)������*
0XVW�VSHFLI\�&�RU�)�

3OHDVH�HQWHU�D�WHPSHUDWXUH�DQG�VFDOH��&�RU�)���MXQN�)
MXQN�LV�QRW�D�YDOLG�QXPEHU�

Now, as for the mechanics of the program: We begin with a SULQW statement,
which is actually a call to the .HUQHO method SULQW, to write to standard output.
This is an easy way of leaving the cursor “hanging” at the end of the line.

Following this, we call JHWV (get string from standard input), assigning the value
to VWU. We then do a FKRPS� to remove the trailing newline.

Note that any apparently “free-standing” function calls such as SULQW and JHWV
are actually methods of 2EMHFW (probably originating in .HUQHO). In the same way,
FKRPS is a method called with VWU as a receiver. Method calls in Ruby usually can
omit the parentheses; for example, SULQW��IRR� is the same as SULQW��IRR��.

The variable VWU refers to (or informally, it “holds”) a character string, but there
is no reason it could not hold some other type instead. In Ruby, data have types, but
variables do not. A variable springs into existence as soon as the interpreter sees an
assignment to that variable; there are no “variable declarations” as such.

The H[LW is a call to a method that terminates the program. On this same line
there is a control structure called an if-modifier. This is like the LI statement that exists
in most languages, but backwards; it comes after the action, does not permit an HOVH,
and does not require closing. As for the condition, we are checking two things: Does
VWU have a value (is it non-QLO) and is it a non-null string? In the case of an immedi-
ate end-of-file, our first condition will hold; in the case of a newline with no preced-
ing data, the second condition will hold.

1.2 Basic Ruby Syntax and Semantics 15

The __ operator has the same effect as RU, but is preferred because it has higher
precedence and produces less-confusing results. The same statement could be written
this way:

H[LW�LI�QRW�VWU�RU�QRW�VWU>�@

The reason these tests work is that a variable can have a QLO value, and QLO eval-
uates to false in Ruby. In fact, QLO and IDOVH evaluate as false, and everything else
evaluates as true. Specifically, the null string �� and the number � do not evaluate as
false.

The next statement performs a FKRPS� operation on the string (to remove the
trailing newline). The exclamation point as a prefix serves as a warning that the oper-
ation actually changes the value of its receiver rather than just returning a value. The
exclamation point is used in many such instances to remind the programmer that a
method has a side effect or is more “dangerous” than its unmarked counterpart. The
method FKRPS, for example, returns the same result but does not modify its receiver.

The next statement is an example of multiple assignment. The VSOLW method
splits the string into an array of values, using the space as a delimiter. The two assign-
able entities on the left-hand side will be assigned the respective values resulting on the
right-hand side.

The LI statement that follows uses a simple regex to determine whether the num-
ber is valid; if the string fails to match a pattern consisting of an optional minus sign
followed by one or more digits, it is an invalid number (for our purposes), and the
program exits. Note that the LI statement is terminated by the keyword HQG; though
it was not needed here, we could have had an HOVH clause before the HQG. The key-
word WKHQ is optional; we tend not to use it in this book.

The WRBI method is used to convert the string to a floating point number. We are
actually assigning this floating point value back to WHPS, which originally held a
string.

The FDVH statement chooses between three alternatives—the cases in which the
user specified a C, specified an F, or used an invalid scale. In the first two instances, a
calculation is done; in the third, we print an error and exit. When printing, the SXWV
method will automatically add a newline after the string that is given.

Ruby’s FDVH statement, by the way, is far more general than the example shown
here. There is no limitation on the data types, and the expressions used are all arbi-
trary and may even be ranges or regular expressions.

16 1. Ruby in Review

There is nothing mysterious about the computation. But consider the fact that
the variables F and I are referenced first inside the branches of the case. There are no
declarations as such in Ruby; because a variable only comes into existence when it is
assigned, this means that when we fall through the FDVH statement, only one of these
variables actually has a valid value.

We use this fact to determine after the fact which branch was followed, so that we
can do a slightly different output in each instance. Testing I for a QLO is effectively a
test of whether the variable has a meaningful value. We do this here only to show that
it can be done; obviously, two different SULQW statements could be used inside the
FDVH statement if we wanted.

The perceptive reader will notice that we used only “local” variables here. This
might be confusing because their scope certainly appears to cover the entire program.
What is happening here is that the variables are all local to the top level of the program
(written toplevel by some). The variables appear global because there are no lower-level
contexts in a program this simple; but if we declared classes and methods, these top-
level variables would not be accessible within those.

1.2.6 Looping and Branching
Let’s spend some time looking at control structures. We have already seen the simple
LI statement and the LI-modifier; there are also corresponding structures based on
the keyword XQOHVV (which also has an optional HOVH), as well as expression-oriented
forms of LI and XQOHVV. To summarize these forms, these two statements are equiv-
alent:

LI�[����
VWDWHPHQW�

HQG

XQOHVV�[�! ��
VWDWHPHQW�

HQG

And so are these:

LI�[����
VWDWHPHQW�

HOVH
VWDWHPHQW�

HQG

1.2 Basic Ruby Syntax and Semantics 17

XQOHVV�[����
VWDWHPHQW�

HOVH
VWDWHPHQW�

HQG

And these:

VWDWHPHQW��LI�\� ��

VWDWHPHQW��XQOHVV�\�� �����

And these are also equivalent:

[� �LI�D�!���WKHQ�E�HOVH�F�HQG

[� �XQOHVV�D�� ���WKHQ�F�HOVH�E�HQG

Note that the keyword WKHQ may always be omitted except in the final (expres-
sion-oriented) cases. Note also that the modifier form cannot have an HOVH clause.

The FDVH statement in Ruby is more powerful than in most languages. This
multiway branch can even test for conditions other than equality—for example,
a matched pattern. The test used by the FDVH statement is called the case equality
operator (===), and its behavior varies from one object to another. Let’s look at this
example:

FDVH��7KLV�LV�D�FKDUDFWHU�VWULQJ��
ZKHQ��VRPH�YDOXH�
SXWV��%UDQFK���

ZKHQ��VRPH�RWKHU�YDOXH�
SXWV��%UDQFK���

ZKHQ��FKDU�
SXWV��%UDQFK���

HOVH
SXWV��%UDQFK���

HQG

The preceding code prints %UDQFK� �. Why? It first tries to check for equality
between the tested expression and one of the strings �VRPH�YDOXH� or �VRPH�RWKHU
YDOXH�; this fails, so it proceeds. The third test is for a pattern within the string; ZKHQ
�FKDU� is equivalent to LI��FKDU�� ��7KLV�LV�D�FKDUDFWHU�VWULQJ��. The

18 1. Ruby in Review

test succeeds, and the third SULQW statement is performed. The HOVH clause always
handles the default case in which none of the preceding tests succeeds.

If the tested expression is an integer, the compared value can be an integer range
(for example, ����). In this case, the expression is tested for membership in that
range. In all instances, the first successful branch will be taken.

Although the FDVH statement usually behaves predictably, there are a few sub-
tleties you should appreciate. We will look at these later.

As for looping mechanisms, Ruby has a rich set. The ZKLOH and XQWLO control
structures are both pretest loops, and both work as expected: One specifies a contin-
uation condition for the loop, and the other specifies a termination condition. They
also occur in “modifier” form, such as LI and XQOHVV. There is also the ORRS method
of the .HUQHO module (by default an infinite loop), and there are iterators associated
with various classes.

The examples here assume an array called OLVW, defined something like this:

OLVW� ��Z>DOSKD�EUDYR�FKDUOLH�GHOWD�HFKR@

They all step through the array and write out each element.

L� �������������������������/RRS����ZKLOH�
ZKLOH�L���OLVW�VL]H�GR
SULQW���^OLVW>L@`��
L�� ��

HQG

L� �������������������������/RRS����XQWLO�
XQWLO�L� �OLVW�VL]H�GR
SULQW���^OLVW>L@`��
L�� ��

HQG

L� �������������������������/RRS����SRVW�WHVW�ZKLOH�
EHJLQ
SULQW���^OLVW>L@`��
L�� ��

HQG�ZKLOH�L���OLVW�VL]H

L� �������������������������/RRS����SRVW�WHVW�XQWLO�
EHJLQ
SULQW���^OLVW>L@`��

1.2 Basic Ruby Syntax and Semantics 19

L�� ��
HQG�XQWLO�L� �OLVW�VL]H

IRU�[�LQ�OLVW�GR������������/RRS����IRU�
SULQW���^[`��

HQG

OLVW�HDFK�GR�_[_������������/RRS����°HDFK±�LWHUDWRU�
SULQW���^[`��

HQG

L� �������������������������/RRS����°ORRS±�PHWKRG�
Q OLVW�VL]H��
ORRS�GR
SULQW���^OLVW>L@`��
L�� ��
EUHDN�LI�L�!�Q

HQG

L� �������������������������/RRS����°ORRS±�PHWKRG�
Q OLVW�VL]H��
ORRS�GR
SULQW���^OLVW>L@`��
L�� ��
EUHDN�XQOHVV�L�� �Q

HQG

Q OLVW�VL]H�����������������/RRS����°WLPHV±�LWHUDWRU�
Q�WLPHV�GR�_L_
SULQW���^OLVW>L@`��

HQG

Q� �OLVW�VL]H���������������/RRS�����°XSWR±�LWHUDWRU�
��XSWR�Q��GR�_L_
SULQW���^OLVW>L@`��

HQG

Q� �OLVW�VL]H���������������/RRS�����IRU�
IRU�L�LQ����Q�GR
SULQW���^OLVW>L@`��

HQG

OLVW�HDFKBLQGH[�GR�_[_������/RRS�����°HDFKBLQGH[±�LWHUDWRU�

20 1. Ruby in Review

SULQW���^OLVW>[@`��
HQG

Let’s examine these in detail. Loops 1 and 2 are the “standard” forms of the ZKLOH
and XQWLO loops; they behave essentially the same, but their conditions are negations
of each other. Loops 3 and 4 are the same thing in “post-test” versions; the test is per-
formed at the end of the loop rather than at the beginning. Note that the use of EHJLQ
and HQG in this context is strictly a kludge or hack; what is really happening is that a
EHJLQ/HQG block (used for exception handling) is followed by a ZKLOH or XQWLO
modifier. In other words, this is only an illustration. Don’t code this way.

Loop 6 is arguably the “proper” way to write this loop. Note the simplicity of 5
and 6 compared with the others; there is no explicit initialization and no explicit test
or increment. This is because an array “knows” its own size, and the standard iterator
HDFK (loop 6) handles such details automatically. Indeed, loop 3 is merely an indirect
reference to this same iterator because the IRU loop works for any object having the
iterator each defined. The IRU loop is only another way to call HDFK.

Loops 7 and 8 both use the loop construct; as stated previously, ORRS looks like
a keyword introducing a control structure, but it is really a method of the module
.HUQHO, not a control structure at all.

Loops 9 and 10 take advantage of the fact that the array has a numeric index; the
WLPHV iterator executes a specified number of times, and the XSWR iterator carries its
parameter up to the specified value. Neither of these is truly suitable for this instance.

Loop 11 is a IRU loop that operates specifically on the index values, using a range,
and loop 12 likewise uses the HDFKBLQGH[iterator to run through the list of array
indices.

In the preceding examples, we have not laid enough emphasis on the “modifier”
form of the ZKLOH and XQWLO loops. These are frequently useful, and they have the
virtue of being concise. These two additional fragments both mean the same:

SHUIRUPBWDVN���XQWLO�ILQLVKHG

SHUIRUPBWDVN���ZKLOH�QRW�ILQLVKHG

Another fact is largely ignored in these examples: Loops do not always run
smoothly from beginning to end, in a predictable number of iterations, or ending in
a single predictable way. We need ways to control these loops further.

1.2 Basic Ruby Syntax and Semantics 21

The first way is the EUHDN keyword, shown in loops 7 and 8. This is used to
“break out” of a loop; in the case of nested loops, only the innermost one is halted.
This will be intuitive for C programmers.

The UHGR keyword is jumps to the start of the loop body in ZKLOH and XQWLO
loops.

The QH[W keyword effectively jumps to the end of the innermost loop and
resumes execution from that point. It works for any loop or iterator.

The iterator is an important concept in Ruby, as we have already seen. What we
have not seen is that the language allows user-defined iterators in addition to the pre-
defined ones.

The default iterator for any object is called HDFK. This is significant partly because
it allows the IRU loop to be used. But iterators may be given different names and used
for varying purposes.

It is also possible to pass parameters via \LHOG, which will be substituted into the
block’s parameter list (between vertical bars). As a somewhat contrived example, the
following iterator does nothing but generate integers from 1 to 10, and the call of the
iterator generates the first ten cubes:

GHI�P\BVHTXHQFH
��������HDFK�GR�_L_
\LHOG�L

HQG
HQG

P\BVHTXHQFH�^_[_�SXWV�[��`

Note that GR and HQG may be substituted for the braces that delimit a block.
There are differences, but they are fairly subtle.

1.2.7 Exceptions
Ruby supports exceptions, which are standard means of handling unexpected errors in
modern programming languages.

By using exceptions, special return codes can be avoided, as well as the nested LI
HOVH “spaghetti logic” that results from checking them. Even better, the code that
detects the error can be distinguished from the code that knows how to handle the
error (because these are often separate anyway).

22 1. Ruby in Review

The UDLVH statement raises an exception. Note that UDLVH is not a reserved word
but a method of the module .HUQHO. (There is an alias named IDLO.)

UDLVH��([DPSOH��
UDLVH��6RPH�HUURU�PHVVDJH��������������������([DPSOH��
UDLVH�$UJXPHQW(UURU��������������������������([DPSOH��
UDLVH�$UJXPHQW(UURU���%DG�GDWD���������������([DPSOH��
UDLVH�$UJXPHQW(UURU�QHZ��%DG�GDWD������������([DPSOH��
UDLVH�$UJXPHQW(UURU���%DG�GDWD���FDOOHU>�@���([DPSOH��

In the first example in the preceding code, the last exception encountered is re-
raised. In example 2, a 5XQWLPH(UURU (the default error) is created using the string
6RPH�HUURU PHVVDJH.

In example 3, an $UJXPHQW(UURU is raised; in example 4, this same error is raised
with the message “Bad data” associated with it. Example 5 behaves exactly the same as
example 4. Finally, example 6 adds traceback information of the form
�ILOHQDPH�OLQH� or �ILOHQDPH�OLQH�LQ�
PHWKRG
� (as stored in the FDOOHU
array).

Now, how do we handle exceptions in Ruby? The EHJLQ-HQG block is used for
this purpose. The simplest form is a EHJLQ�HQG block with nothing but our code
inside:

EHJLQ
��-XVW�UXQV�RXU�FRGH�
�����

HQG

This is of no value in catching errors. The block, however, may have one or more
UHVFXH clauses in it. If an error occurs at any point in the code, between EHJLQ and
UHVFXH, control will be passed immediately to the appropriate UHVFXH clause:

EHJLQ
[� �0DWK�VTUW�\�]�
�����

UHVFXH�$UJXPHQW(UURU
SXWV��(UURU�WDNLQJ�VTXDUH�URRW��

UHVFXH�=HUR'LYLVLRQ(UURU
SXWV��$WWHPSWHG�GLYLVLRQ�E\�]HUR��

HQG

1.2 Basic Ruby Syntax and Semantics 23

Essentially the same thing can be accomplished by this fragment:

EHJLQ
[� �0DWK�VTUW�\�]�
�����

UHVFXH� !�HUU
SXWV�HUU

HQG

Here, the variable HUU is used to store the value of the exception; printing it causes
it to be translated to some meaningful character string. Note that because the error
type is not specified, the UHVFXH clause will catch any descendant of 6WDQGDUG(UURU.
The notation UHVFXH� !� YDULDEOH can be used with or without an error type
before the ! symbol.

In the event that error types are specified, it may be that an exception does not
match any of these types. For that situation, we are allowed to use an HOVH clause after
all the UHVFXH clauses:

EHJLQ
��(UURU�SURQH�FRGH���

UHVFXH�7\SH�
�����

UHVFXH�7\SH�
�����

HOVH
��2WKHU�H[FHSWLRQV���

HQG

In many cases, we want to do some kind of recovery. In that event, the keyword
UHWU\ (within the body of a UHVFXH clause) restarts the EHJLQ block and tries those
operations again:

EHJLQ
��(UURU�SURQH�FRGH���

UHVFXH
��$WWHPSW�UHFRYHU\���
UHWU\����1RZ�WU\�DJDLQ

HQG

Finally, it is sometimes necessary to write code that “cleans up” after a EHJLQ-HQG
block. In the event this is necessary, an HQVXUH clause can be specified:

24 1. Ruby in Review

EHJLQ
��(UURU�SURQH�FRGH���

UHVFXH
��+DQGOH�H[FHSWLRQV

HQVXUH
��7KLV�FRGH�LV�DOZD\V�H[HFXWHG

HQG

The code in an HQVXUH clause is always executed before the EHJLQ-HQG block
exits. This happens regardless of whether an exception occurred.

Exceptions may be caught in two other ways. First, there is a modifier form of the
rescue clause:

[� �D�E�UHVFXH�SXWV��'LYLVLRQ�E\�]HUR���

In addition, the body of a method definition is an implicit EHJLQ-HQG block; the
EHJLQ is omitted, and the entire body of the method is subject to exception handling,
ending with the HQG of the method:

GHI�VRPHBPHWKRG
��&RGH���

UHVFXH
��5HFRYHU\���

HQG

This sums up the basics of exception handling as well as the discussion of funda-
mental syntax and semantics.

There are numerous aspects of Ruby we have not discussed here. The rest of this
chapter is devoted to the more advanced features of the language, including a collec-
tion of Ruby lore that will help the intermediate programmer learn to “think in Ruby.”

1.3 OOP in Ruby
Ruby has all the elements more generally associated with OOP languages, such as
objects with encapsulation and data hiding, methods with polymorphism and over-
riding, and classes with hierarchy and inheritance. It goes further and adds limited
metaclass features, singleton methods, modules, and mixins.

Similar concepts are known by other names in other OOP languages, but
concepts of the same name may have subtle differences from one language to another.
This section elaborates on the Ruby understanding and usage of these elements of
OOP.

1.3 OOP in Ruby 25

1.3.1 Objects
In Ruby, all numbers, strings, arrays, regular expressions, and many other entities are
actually objects. Work is done by executing the methods belonging to the object:

��VXFF����������������������
�DEF��XSFDVH����������������$%&�
>���������@�VRUW�����������>���������@
VRPHBREMHFW�VRPHBPHWKRG����VRPH�UHVXOW

In Ruby, every object is an instance of some class; the class contains the imple-
mentation of the methods:

�DEF��FODVV����������6WULQJ
�DEF��FODVV�FODVV����&ODVV

In addition to encapsulating its own attributes and operations, an object in Ruby
has an identity:

�DEF��REMHFWBLG�������������

This object ID is usually of limited usefulness to the programmer.

1.3.2 Built-in Classes
More than 30 built-in classes are predefined in the Ruby class hierarchy. Like many
other OOP languages, Ruby does not allow multiple inheritance, but that does not
necessarily make it any less powerful. Modern OO languages frequently follow the
single inheritance model. Ruby does support modules and mixins, which are discussed
in the next section. It also implements object IDs, as we just saw, which support the
implementation of persistent, distributed, and relocatable objects.

To create an object from an existing class, the QHZ method is typically used:

P\)LOH� �)LOH�QHZ��WH[WILOH�W[W���Z��
P\6WULQJ� �6WULQJ�QHZ��7KLV�LV�D�VWULQJ�REMHFW��

This is not always explicitly required, however. When using object literals, you do
not need to bother with calling QHZ, as we did in the previous example:

\RXUBVWULQJ� ��7KLV�LV�DOVR�D�VWULQJ�REMHFW�
QXPEHU� ������QHZ�QRW�QHHGHG�KHUH��HLWKHU

26 1. Ruby in Review

Variables are used to hold references to objects. As previously mentioned, vari-
ables themselves have no type, nor are they objects themselves; they are simply refer-
ences to objects:

[� ��DEF�

An exception to this is that small immutable objects of some built-in classes, such
as)L[QXP, are copied directly into the variables that refer to them. (These objects are
no bigger than pointers, and it is more efficient to deal with them in this way.) In this
case, assignment makes a copy of the object, and the heap is not used.

Variable assignment causes object references to be shared:

\� ��DEF�
[� �\
[������������DEF�

After [� �\ is executed, variables [and \ both refer to the same object:

[�REMHFWBLG���������������
\�REMHFWBLG���������������

If the object is mutable, a modification done to one variable will be reflected in
the other:

[�JVXE���D���[��
\��������������������[EF�

Reassigning one of these variables has no effect on the other, however:

��&RQWLQXLQJ�SUHYLRXV�H[DPSOH���
[� ��DEF�
\�������������������VWLOO�KDV�YDOXH��[EF�

A mutable object can be made immutable using the IUHH]H method:

[�IUHH]H
[�JVXE���E���\������(UURU�

A symbol is a little unusual; it’s like an atom in Lisp. It acts like a kind of
immutable string, and multiple uses of a symbol all reference the same value. A sym-
bol can be converted to a string with the WRBV method:

1.3 OOP in Ruby 27

VXLWV� �>�KHDUWV���FOXEV���GLDPRQGV���VSDGHV@
OHDG� �VXLWV>�@�WRBV������FOXEV�

Similar to arrays of strings, arrays of symbols can be created using the syntax
shortcut �L:

VXLWV� ��L>KHDUWV�FOXEV�GLDPRQGV�VSDGHV@���DQ�DUUD\�RI�V\PEROV

1.3.3 Modules and Mixins
Many built-in methods are available from class ancestors. Of special note are the
.HUQHO methods mixed-in to the 2EMHFW class; because 2EMHFW is the universal par-
ent class, the methods added to it from .HUQHO are also universally available. These
methods form an important part of Ruby.

The terms module and mixin are nearly synonymous. A module is a collection of
methods and constants that is external to the Ruby program. It can be used simply for
namespace management, but the most common use of a module is to have its features
“mixed” into a class (by using LQFOXGH). In this case, it is used as a mixin.

This term was apparently borrowed most directly from Python. (It is sometimes
written as mix-in, but we write it as a single word.) It is worth noting that some Lisp
variants have had this feature for more than two decades.

Do not confuse this usage of the term module with another usage common in
computing. A Ruby module is not an external source or binary file (though it may be
stored in one of these). A Ruby module instead is an OOP abstraction similar to a
class.

An example of using a module for namespace management is the frequent use of
the 0DWK module. To use the definition of pi, for example, it is not necessary to
LQFOXGH the 0DWK module; you can simply use 0DWK��3, as the constant.

A mixin is a way of getting some of the benefits of multiple inheritance without
dealing with all the difficulties. It can be considered a restricted form of multiple
inheritance, but the language creator Matz has called it “single inheritance with imple-
mentation sharing.”

Note that LQFOXGH adds features of a module to the current space; the H[WHQG
method adds features of a module to an object. With LQFOXGH, the module’s methods
become available as instance methods; with H[WHQG, they become available as class
methods.

28 1. Ruby in Review

We should mention that ORDG and UHTXLUH do not relate to modules but rather
to Ruby source and binary files (statically or dynamically loadable). A ORDG operation
reads a file and runs it in the current context so that its definitions become available
at that point. A UHTXLUH operation is similar to a load, but it will not load a file if it
has already been loaded.

The Ruby novice, especially from a C background, may be tripped up by
UHTXLUH and LQFOXGH, which are basically unrelated to each other. You may easily
find yourself doing a UHTXLUH followed by an LQFOXGH to use some externally stored
module.

1.3.4 Creating Classes
Ruby has numerous built-in classes, and additional classes may be defined in a Ruby
program. To define a new class, the following construct is used:

FODVV�&ODVV1DPH
�����

HQG

The name of the class is itself a global constant and therefore must begin with an
uppercase letter. The class definition can contain class constants, class variables, class
methods, instance variables, and instance methods. Class-level information is available
to all objects of the class, whereas instance-level information is available only to the
one object.

By the way, classes in Ruby do not, strictly speaking, have names. The “name” of
a class is just a constant that is a reference to an object of type &ODVV (because, in
Ruby, &ODVV is a class). There can certainly be more than one constant referring to a
class, and these can be assigned to variables just as we can with any other object
(because, in Ruby, &ODVV is an object). If all this confuses you, don’t worry about it.
For the sake of convenience, the novice can think of a Ruby class name as being like
a C++ class name.

Here we define a simple class:

FODVV�)ULHQG
##P\QDPH� ��)UHG����D�FODVV�YDULDEOH

GHI�LQLWLDOL]H�QDPH��JHQGHU��SKRQH�
#QDPH��#VH[��#SKRQH� �QDPH��JHQGHU��SKRQH
��7KHVH�DUH�LQVWDQFH�YDULDEOHV

HQG

1.3 OOP in Ruby 29

GHI�KHOOR�����DQ�LQVWDQFH�PHWKRG
SXWV��+L��,±P��^#QDPH`��

HQG

GHI�)ULHQG�RXUBFRPPRQBIULHQG�����D�FODVV�PHWKRG
SXWV��:H�DUH�DOO�IULHQGV�RI��^##P\QDPH`��

HQG

HQG

I�� �)ULHQG�QHZ��6XVDQ����IHPDOH��������������
I�� �)ULHQG�QHZ��7RP����PDOH��������������

I��KHOOR��������������������+L��,±P�6XVDQ�
I��KHOOR��������������������+L��,±P�7RP�
)ULHQG�RXUBFRPPRQBIULHQG����:H�DUH�DOO�IULHQGV�RI�)UHG�

Because class-level data is accessible throughout the class, it can be initialized at
the time the class is defined. If an instance method named LQLWLDOL]H is defined, it
is guaranteed to be executed right after an instance is allocated. The LQLWLDOL]H
method is similar to the traditional concept of a constructor, but it does not have to
handle memory allocation. Allocation is handled internally by QHZ, and deallocation
is handled transparently by the garbage collector.

Now consider this fragment, and pay attention to the JHWP\YDU, VHWP\YDU, and
P\YDU methods:

FODVV�0\&ODVV

1$0(� ��&ODVV�1DPH����FODVV�FRQVWDQW
##FRXQW� �������������LQLWLDOL]H�D�FODVV�YDULDEOH

GHI�LQLWLDOL]H��������FDOOHG�ZKHQ�REMHFW�LV�DOORFDWHG
##FRXQW�� ��
#P\YDU� ���

HQG

GHI�VHOI�JHWFRXQW�����FODVV�PHWKRG
##FRXQW�������������FODVV�YDULDEOH

HQG

GHI�JHWFRXQW����������LQVWDQFH�UHWXUQV�FODVV�YDULDEOH�
##FRXQW�������������FODVV�YDULDEOH

HQG

30 1. Ruby in Review

GHI�JHWP\YDU����������LQVWDQFH�PHWKRG
#P\YDU��������������LQVWDQFH�YDULDEOH

HQG

GHI�VHWP\YDU�YDO������LQVWDQFH�PHWKRG�VHWV�#P\YDU
#P\YDU� �YDO

HQG

GHI�P\YDU �YDO��������$QRWKHU�ZD\�WR�VHW�#P\YDU
#P\YDU� �YDO

HQG
HQG

IRR� �0\&ODVV�QHZ����#P\YDU�LV���
IRR�VHWP\YDU���������#P\YDU�LV���
IRR�P\YDU� ����������#P\YDU�LV���

Instance variables are different for each object that is an instance of the class. Class
variables are shared between the class itself and every instance of the class. To create a
variable that belongs only to the class, use an instance variable inside a class method.
This class instance variable will not be shared with instances and is therefore often pre-
ferred over class variables.

In the preceding code, we see that JHWP\YDU returns the value of #P\YDU and that
VHWP\YDU sets it. (In the terminology of many programmers, these would be referred
to as a getter and a setter, respectively.) These work fine, but they do not exemplify the
“Ruby way” of doing things. The method P\YDU looks like assignment overloading
(though strictly speaking, it isn’t); it is a better replacement for VHWP\YDU, but there
is a better way yet.

The class 0RGXOH contains methods called DWWU, DWWUBDFFHVVRU,
DWWUBUHDGHU, and DWWUBZULWHU. These can be used (with symbols as parameters) to
automatically handle controlled access to the instance data. For example, the three
methods JHWP\YDU, VHWP\YDU, and P\YDU can be replaced by a single line in the
class definition:

DWWUBDFFHVVRU��P\YDU

This creates a method P\YDU that returns the value of #P\YDU and a method
P\YDU that enables the setting of the same variable. The methods DWWUBUHDGHU and
DWWUBZULWHU create read-only and write-only versions of an attribute, respectively.

1.3 OOP in Ruby 31

Within the instance methods of a class, the pseudovariable VHOI can be used as
needed. This is only a reference to the current receiver, the object on which the
instance method is invoked.

The modifying methods SULYDWH, SURWHFWHG, and SXEOLF can be used to con-
trol the visibility of methods in a class. (Instance variables are always private and inac-
cessible from outside the class, except by means of accessors.) Each of these modifiers
takes a symbol like �IRR as a parameter; if this is omitted, the modifier applies to all
subsequent definitions in the class. Here is an example:

FODVV�0\&ODVV

GHI�PHWKRG�
�����
HQG

GHI�PHWKRG�
�����
HQG

GHI�PHWKRG�
�����
HQG

SULYDWH��PHWKRG�
SXEOLF��PHWKRG�
SURWHFWHG��PHWKRG�

SULYDWH

GHI�P\BPHWKRG
�����
HQG

GHI�DQRWKHUBPHWKRG
�����
HQG

HQG

In the preceding class, PHWKRG� will be private, PHWKRG� will be public, and
PHWKRG� will be protected. Because of the SULYDWH method with no parameters, both
P\BPHWKRG and DQRWKHUBPHWKRG will be private.

32 1. Ruby in Review

The SXEOLF access level is self-explanatory; there are no restrictions on access or
visibility. The SULYDWH level means that the method is accessible only within the class
or its subclasses, and it is callable only in “function form”—with VHOI, implicit or
explicit, as a receiver. The SURWHFWHG level means that a method can be called by
other objects of the class or its subclasses, unlike a private method (which can only be
called on VHOI).

The default visibility for the methods defined in a class is SXEOLF. The exception
is the instance-initializing method LQLWLDOL]H. Methods defined at the top level are
also public by default; if they are private, they can be called only in function form (as,
for example, the methods defined in 2EMHFW).

Ruby classes are themselves objects, being instances of the parent class &ODVV.
Ruby classes are always concrete; there are no abstract classes. However, it is theoreti-
cally possible to implement abstract classes in Ruby if you really want to do so.

The class 2EMHFW is at the root of the hierarchy. It provides all the methods
defined in the built-in Kernel module. (Technically, BasicObject is the parent of
Object . It acts as a kind of “blank slate” object that does not have all the baggage of
a normal object.)

To create a class that inherits from another class, define it in this way:

FODVV�0\&ODVV���2WKHU&ODVV
�����

HQG

In addition to using built-in methods, it is only natural to define your own and
also to redefine and override existing ones. When you define a method with the same
name as an existing one, the previous method is overridden. If a method needs to call
the “parent” method that it overrides (a frequent occurrence), the keyword VXSHU can
be used for this purpose.

Operator overloading is not strictly an OOP feature, but it is familiar to C++ pro-
grammers and certain others. Because most operators in Ruby are simply methods
anyway, it should come as no surprise that these operators can be overridden or
defined for user-defined classes. Overriding the meaning of an operator for an exist-
ing class may be rare, but it is common to want to define operators for new classes.

It is possible to create aliases or synonyms for methods. The syntax (used inside a
class definition) is as follows:

DOLDVBPHWKRG��QHZQDPH���ROGQDPH

1.3 OOP in Ruby 33

The number of parameters will be the same as for the old name, and it will be
called in the same way. An alias creates a copy of the method, so later changes to the
original method will not be reflected in aliases created beforehand.

There is also a Ruby keyword called DOLDV, which is similar; unlike the method,
it can alias global variables as well as methods, and its arguments are not separated by
a comma.

1.3.5 Methods and Attributes
As we’ve seen, methods are typically used with simple class instances and variables by
separating the receiver from the method with a period (UHFHLYHU�PHWKRG). In the
case of method names that are punctuation, the period is omitted. Methods can take
arguments:

7LPH�PNWLPH��������$XJ�������������

Because every expression returns a value, method calls may typically be chained
or stacked:

��VXFF�WRBV
��[�]��"�[�]��"��PDWFK��[�]B�D�B[�]B�E�B���WRBD>����@
����VXFF

Note that there can be problems if the cumulative expression is of a type that does
not support that particular method. Specifically, some methods return QLO under cer-
tain conditions, and this usually causes any methods tacked onto that result to fail.
(Of course, QLO is an object in its own right, but it will not have all the same meth-
ods that, for example, an array would have.)

Certain methods may have blocks passed to them. This is true of all iterators,
whether built in or user defined. A block is usually passed as a GR-HQG block or a
brace-delimited block; it is not treated like the other parameters preceding it, if any.
See especially the)LOH�RSHQ example:

P\BDUUD\�HDFK�GR�_[_
[�VRPHBDFWLRQ

HQG

)LOH�RSHQ�ILOHQDPH��^�_I_�I�VRPHBDFWLRQ�`

34 1. Ruby in Review

Methods may take a variable number of arguments:

UHFHLYHU�PHWKRG�DUJ���PRUHBDUJV�

In this case, the method called treats PRUHBDUJV as an array that it deals with as
it would any other array. In fact, an asterisk in the list of formal parameters (on the
last or only parameter) can likewise “collapse” a sequence of actual parameters into an
array:

GHI�P\PHWKRG�D��E��F�
SULQW�D��E
F�HDFK�GR�_[_�SULQW�[�HQG

HQG

P\PHWKRG���������������

��D ���E ���F >���������@

Ruby also supports named parameters, which are called keyword arguments in the
Python realm; the concept dates back at least as far as the Ada language developed in
the 1960s and 70s. Named parameters simultaneously set default values and allow
arguments to be given in any order because they are explicitly labeled:

GHI�P\PHWKRG�QDPH���GHIDXOW���RSWLRQV��^`�
RSWLRQV�PHUJH��QDPH��QDPH�
VRPHBDFWLRQBZLWK�RSWLRQV�

HQG

When a named parameter has its default omitted in the method definition, it is a
required named parameter:

GHI�RWKHUBPHWKRG�QDPH���DJH��
SXWV��3HUVRQ��^QDPH`�LV�DJHG��^DJH`��
��,W±V�DQ�HUURU�WR�FDOO�WKLV�PHWKRG�ZLWKRXW�VSHFLI\LQJ
��YDOXHV�IRU�QDPH�DQG�DJH�

HQG

Ruby has the capability to define methods on a per-object basis (rather than per
class). Such methods are called singletons, and they belong solely to that object and
have no effect on its class or superclasses. As an example, this might be useful in pro-

1.3 OOP in Ruby 35

gramming a GUI; you can define a button action for a widget by defining a singleton
method for the button object.

Here is an example of defining a singleton method on a string object:

VWU� ��+HOOR��ZRUOG��
VWU�� ��*RRGE\H��

GHI�VWU�VSHOO
VHOI�VSOLW������MRLQ�����

HQG

VWU�VSHOO���������+�H�O�O�R�����Z�R�U�O�G���
VWU��VSHOO�������HUURU�

Be aware that the method is defined for the object itself, and not for the variable.
It is theoretically possible to create a prototype-based object system using single-

ton methods. This is a less traditional form of OOP without classes. The basic struc-
turing mechanism is to construct a new object using an existing object as a delegate;
the new object is exactly like the old object except for things that are overridden. This
enables you to build prototype/delegation-based systems rather than inheritance
based, and, although we do not have experience in this area, we do feel that this
demonstrates the power of Ruby.

1.4 Dynamic Aspects of Ruby
Ruby is a dynamic language in the sense that objects and classes may be altered at run-
time. Ruby has the capability to construct and evaluate pieces of code in the course of
executing the existing statically coded program. It has a sophisticated reflection API
that makes it more “self-aware”; this enables the easy creation of debuggers, profilers,
and similar tools and also makes certain advanced coding techniques possible.

This is perhaps the most difficult area a programmer will encounter in learning
Ruby. In this section, we briefly examine some of the implications of Ruby’s dynamic
nature.

1.4.1 Coding at Runtime
We have already discussed ORDG and UHTXLUH, but it is important to realize that these
are not built-in statements or control structures or anything of that nature; they are
actual methods. Therefore, it is possible to call them with variables or expressions as

36 1. Ruby in Review

parameters or to call them conditionally. Contrast with this the �LQFOXGH directive in
C or C++, which is evaluated and acted on at compile time.

Code can be constructed piecemeal and evaluated. As another contrived example,
consider this FDOFXODWH method and the code calling it:

GHI�FDOFXODWH�RS���RSHUDWRU��RS��
VWULQJ� �RS��WRBV���RSHUDWRU���RS��WRBV
��RSHUDWRU�LV�DVVXPHG�WR�EH�D�VWULQJ��PDNH�RQH�ELJ
��VWULQJ�RI�LW�DQG�WKH�WZR�RSHUDQGV

HYDO�VWULQJ������(YDOXDWH�DQG�UHWXUQ�D�YDOXH
HQG

#DOSKD� ���
#EHWD� ���

SXWV�FDOFXODWH���������������������3ULQWV��
SXWV�FDOFXODWH���������#DOSKD�����3ULQWV����
SXWV�FDOFXODWH��#EHWD������������3ULQWV�����

As an even more extreme example, the following code prompts the user for
a method name and a single line of code; then it actually defines the method and
calls it:

SXWV��0HWKRG�QDPH���
PHWKBQDPH� �JHWV
SXWV��/LQH�RI�FRGH���
FRGH� �JHWV

VWULQJ� ��>GHI��^PHWKBQDPH`?Q��^FRGH`?Q�HQG@�����%XLOG�D�VWULQJ
HYDO�VWULQJ��������������������������������������'HILQH�WKH�PHWKRG
HYDO�PHWKBQDPH�����������������������������������&DOO�WKH�PHWKRG

Frequently, programmers want to code for different platforms or circumstances
and still maintain only a single code base. In such a case, a C programmer would use
�LIGHI directives, but in Ruby, definitions are executed. There is no “compile time,”
and everything is dynamic rather than static. So if we want to make some kind of deci-
sion like this, we can simply evaluate a flag at runtime:

LI�SODWIRUP� �:LQGRZV
DFWLRQ�

HOVLI�SODWIRUP� �/LQX[

1.4 Dynamic Aspects of Ruby 37

DFWLRQ�
HOVH
GHIDXOWBDFWLRQ

HQG

Of course, there is a small runtime penalty for coding in this way because the flag
may be tested many times in the course of execution. But this example does essentially
the same thing, enclosing the platform-dependent code in a method whose name is
the same across all platforms:

LI�SODWIRUP� �:LQGRZV
GHI�P\BDFWLRQ
DFWLRQ�

HQG
HOVLI�SODWIRUP� �/LQX[
GHI�P\BDFWLRQ
DFWLRQ�

HQG
HOVH
GHI�P\BDFWLRQ
GHIDXOWBDFWLRQ

HQG
HQG

In this way, the same result is achieved, but the flag is only evaluated once; when
the user’s code calls P\BDFWLRQ, it will already have been defined appropriately.

1.4.2 Reflection
Languages such as Smalltalk, LISP, and Java implement (to varying degrees) the
notion of a reflective programming language—one in which the active environment
can query the objects that define it and extend or modify them at runtime.

Ruby allows reflection quite extensively but does not go as far as Smalltalk, which
even represents control structures as objects. Ruby control structures and blocks are
not objects. (A 3URF object can be used to “objectify” a block, but control structures
are never objects.)

The keyword GHILQHG" (with the question mark) may be used to determine
whether an identifier name is in use:

LI�GHILQHG"�VRPHBYDU
SXWV��VRPHBYDU� ��^VRPHBYDU`�

38 1. Ruby in Review

HOVH
SXWV��7KH�YDULDEOH�VRPHBYDU�LV�QRW�NQRZQ��

HQG

Similarly, the method UHVSRQGBWR" determines whether an object can respond
to the specified method call (that is, whether that method is defined for that object).
The UHVSRQGBWR" method is defined in class 2EMHFW.

Ruby supports runtime-type information in a radical way. The type (or class) of
an object can be determined at runtime using the method FODVV (defined in 2EMHFW).
Similarly, LVBD" tells whether an object is of a certain class (including the super-
classes); NLQGBRI" is an alias. Here is an example:

SXWV��DEF��FODVV�����3ULQWV�6WULQJ
SXWV�����FODVV�������3ULQWV�)L[QXP
URYHU� �'RJ�QHZ

SULQW�URYHU�FODVV����3ULQWV�'RJ

LI�URYHU�LVBD"�'RJ
SXWV��2I�FRXUVH�KH�LV��

HQG

LI�URYHU�NLQGBRI"�'RJ
SXWV��<HV��VWLOO�D�GRJ��

HQG

LI�URYHU�LVBD"�$QLPDO
SXWV��<HV��KH±V�DQ�DQLPDO��WRR��

HQG

It is possible to retrieve an exhaustive list of all the methods that can be invoked
for a given object; this is done by using the PHWKRGV method, defined in 2EMHFW.
There are also variations such as LQVWDQFHBPHWKRGV, SULYDWHBLQVWDQFHBPHWK�
RGV, and so on.

Similarly, you can determine the class variables and instance variables associated
with an object. By the nature of OOP, the lists of methods and variables include the
entities defined not only in the object’s class but also in its superclasses. The 0RGXOH
class has a method called FRQVWDQWV that is used to list the constants defined within
a module.

1.4 Dynamic Aspects of Ruby 39

