

SERVICE-ORIENTED DESIGN
WITH RUBY AND RAILS

The Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Addison-Wesley
Professional Ruby Series

Obie Fernandez, Series Editor

SERVICE-ORIENTED DESIGN
WITH RUBY AND RAILS

Paul Dix

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, market-
ing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Dix, Paul, 1977-
Service-oriented design with Ruby and Rails / Paul Dix.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-65936-8 (pbk. : alk. paper) 1. Web services.

2. Service-oriented architecture (Computer science) 3. Web sites—Design.
4. Ruby on rails (Electronic resource) I. Title.

TK5105.88813.D593 2010
006.7’8—dc22

2010021623

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-65936-1
ISBN-10: 0-321-65936-8
Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.

First printing, August 2010

Associate Publisher
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Kitty Wilson

Indexer
Jack Lewis

Proofreader
Carol Lallier

Technical Reviewers
Jennifer Lindner,
Trotter Cashion

Cover Designer
Chuti Prasertsith

Compositor
LaserWords

To Pops, for encouraging my weird obsession with computers.

This page intentionally left blank

Contents

Foreword xiii

Preface xv

Acknowledgments xix

About the Author xxi

1 Implementing and Consuming Your First Service 1
What’s a Service? 1
Service Requirements 2
The Ruby Tool Set 2

Sinatra 2
ActiveRecord 3
JSON 3
Typhoeus 4
Rspec 4

The User Service Implementation 5
Using GET 6
POSTing a User 11
PUTing a User 13
Deleting a User 15
Verifying a User 16

Implementing the Client Library 18
Finding a User 18
Creating a User 21
Updating a User 22
Destroying a User 24
Verifying a User 24

Putting It All Together 26
Conclusion 26

vii

2 An Introduction to Service-Oriented Design 27
Use of Service-Oriented Design in the Wild 27
Service-Oriented Design Versus Service-Oriented Architecture Versus
RESTful-Oriented Architecture 28
Making the Case for Service-Oriented Design 29

Isolation 30
Robustness 34
Scalability 35
Agility 36
Interoperability 37
Reuse 38

Conclusion 38

3 Case Study: Social Feed Reader 41
A Typical Rails Application 41
The Rails Social Feed Reader Application 45

Features 46
Current Setup 46

Converting to Services 54
Segmenting into Services 54
Breaking Up the Application into Services 54

Conclusion 58

4 Service and API Design 59
Partitioning Functionality into Separate Services 59

Partitioning on Iteration Speed 60
Partitioning on Logical Function 61
Partitioning on Read/Write Frequencies 62
Partitioning on Join Frequency 63

Versioning Services 64
Including a Version in URIs 64
Using Accept Headers for Versioning 65

URIs and Interface Design 66
Successful Responses 68

HTTP Status Codes 68
HTTP Caching 69
Successful Response Bodies 70

viii Contents

Error Responses 72
HTTP Status Codes 72
Error Response Bodies 72

Handling Joins 73
Storing References 73
Joining at the Highest Level 74
Beware of Call Depth 75

API Complexity 75
Atomic APIs 76
Multi-Gets 76
Multiple Models 77

Conclusion 78

5 Implementing Services 79
The Vote Service 79

A Multi-Get Interface 81
The Vote Interface 82
API Design Guidelines 85

Models 86
Rails 88

Rails 2.3 Routes 88
Rails 3 Routes 89
The Rails Controller 90

Sinatra 95
Rack 100
Conclusion 106

6 Connecting to Services 107
Blocking I/O, Threading, and Parallelism 107

Asynchronous I/O 108
Multi-threading 108

Typhoeus 109
Making Single Requests 109
Making Simultaneous Requests 111

Multi-threaded Requests 113
JRuby 115
Logging for Performance 117

ixContents

Handling Error Conditions 118
Testing and Mocking Service Calls 119
Requests in Development Environments 121
Conclusion 121

7 Developing Service Client Libraries 123
Packaging 123

Jeweler 124
Building and Deploying a Library 127

Parsing Logic 127
The JSON Gem 128
YAJL Ruby 129
Wrapping Parsed Results 130

ActiveModel 132
Validations 132
Serialization 134

Connection and Request Logic 136
Data Reads 136
Data Writes 142

Mocks, Stubs, and Tests 143
Conclusion 146

8 Load Balancing and Caching 147
Latency and Throughput 147
Load Balancing 148

Load Balancing Algorithms 148
Implementing Load Balancing 152

Caching with Memcached 155
The Memcached Client and ActiveRecord 156
Time-Based Expiration 158
Manual Expiration 159
Generational Cache Keys 160

HTTP Caching 162
Expiration-Based Caching 162
Validation-Based Caching 163
Implementing HTTP Caching 165

Conclusion 166

x Contents

9 Parsing XML for Legacy Services 167
XML 167

REXML 170
Nokogiri 174

SOAP 177
Exploring Web Services with a WSDL File 177
Making Requests 180

Conclusion 184

10 Security 185
Authentication 185

HTTP Authentication 186
Signing Requests 187
SSL for Authentication 198
Authentication for Rails Applications 199

Authorization 201
Firewalls 201
An RBAC Authorization Service 203

Encryption 209
SSL for Encryption 210
Public/Private Key Pairs for Encryption 210

Conclusion 214

11 Messaging 215
What Is Messaging? 215

Synchronous Versus Asynchronous Messaging 216
Queues 217
Message Formats 217

RabbitMQ and AMQP 217
Queues in RabbitMQ 218
Exchanges and Bindings 218
Durability and Persistence 223
Client Libraries 224

Synchronous Reads, Asynchronous Writes 227
HTTP-Based Reads 227
Messaging-Based Writes 227

The CAP Theorem 230
Eventual Consistency 231
Designing Around Consistency 232

xiContents

Data Is the API 234
Operations on Fields 234
Modifications to Field Operations 235

Conclusion 236

12 Web Hooks and External Services 237
Web Hooks 238

PubSubHubbub 239
Receiving Web Hooks 240
Providing Web Hooks 242
Strategies for Dealing with Failure 244

OAuth 245
Implementing an OAuth Consumer 246
Implementing an OAuth Provider 249

Integrating with External Services 251
Consuming Data 251
Pushing Data 253
The Request Lifecycle 254
Worker Processes 254

Ensuring Performance and Reliability 258
Segregating Queues 259
Metrics 259
Throttling and Quotas 260

Conclusion 261

Appendix RESTful Primer 263
Roy Fielding’s REST 263

Constraints 264
Architectural Elements 264
Architectural Views 265

REST and Resources 265
URIs and Addressability 266
Representations 267

HTTP and the Uniform Interface 268
HTTP Methods 268
HTTP Headers 271
HTTP Status Codes 274

Conclusion 275

Index 277

xii Contents

Foreword

It’s an honor for me to present to you this timely new addition to the Professional
Ruby Series, one that fills a crucially important gap in the ongoing evolution of all
professional Rubyists and couldn’t come a moment sooner! It is authored by one of
the brightest minds of our international Ruby community, Paul Dix, described as
“genius” and “A-list” by his peers. Paul is no stranger to the Ruby world, a fixture at
our conferences and involved in some of the earliest Rails project work dating back to
2005. He’s also the author of Typhoeus, a successful high-performance HTTP library
that is an essential part of the service-oriented ecosystem in Ruby.

Why is this book so timely? Serious Ruby adoption in large companies and proj-
ect settings inevitably necessitates service-oriented approaches to system design. Prop-
erly designed large applications, partitioned into cooperating services, can be far more
agile than monolithic applications. Services make it easy to scale team size. As the code
base of an application gets larger, it gets harder to introduce new developers to the
project. When applications are split into services, developers can be assigned to a spe-
cific service or two. They only need to be familiar with their section of the application
and the working groups can remain small and nimble.

There’s also the fact that we live in the age of The Programmable Web, the boom
of web applications, APIs, and innovation over the past few years that is directly attrib-
utable to the rise of interoperable web services like those described in this book. Appli-
cations that rely on web resources present unique challenges for development teams.
Service-oriented traits impact various aspects of how applications should be designed
and the level of attention that needs to be paid to how the application performs and
behaves if those services are unavailable or otherwise limited.

My own teams at Hashrocket have run into challenges where we could have used
the knowledge in this book, both in our Twitter applications as well as our large client
projects, some of which we have been working on for years. In a couple of notable
cases, we have looked back in regret, wishing we had taken a service-oriented approach

xiii

sooner. I assure you that this book will be on the required-reading list for all Rocketeers
in the future.

Like Hashrocket, many of you buying this book already have big monolithic Rails
applications in production. Like us, you might have concerns about how to migrate
your existing work to a service-oriented architecture. Paul covers four different strate-
gies for application partitioning in depth: Iteration Speed, Logical Function, Read/
Write Frequency, and Join Frequency. Specific examples are used to explore the chal-
lenges and benefits of each strategy. The recurring case study is referred to often, to
ensure the discussion is grounded in real, not imaginary or irrelevant situations.

Paul doesn’t limit himself to theory either, which makes this a well-rounded and
practical book. He gives us important facts to consider when running in a production
environment, from load balancing and caching to authentication, authorization, and
encryption to blocking I/O to parallelism, and how to tackle these problems in Ruby
1.8, 1.9, Rubinius, and JRuby.

Overall, I’m proud to assure you that Paul has given us a very readable and useful
book. It is accurate and current, bringing in Rack, Sinatra, and key features of Rails 3,
such as its new routing and ActiveModel libraries. At the same time, the book achieves
a timeless feeling, via its concise descriptions of service-oriented techniques and
broadly applicable sample code that I’m sure will beautifully serve application archi-
tects and library authors alike for years to come.

—Obie Fernandez
Author of The Rails Way
Series Editor of the Addison-Wesley Professional Ruby Series
CEO & Founder of Hashrocket

xiv Foreword

Preface

As existing Ruby on Rails deployments grow in size and adoption expands into larger
application environments, new methods are required to interface with heterogeneous
systems and to operate at scale. While the word scalability with respect to Rails has
been a hotly debated topic both inside and outside the community, the meaning of
the word scale in this text is two fold. First, the traditional definition of “handling
large numbers of requests” is applicable and something that the service-oriented
approach is meant to tackle. Second, scale refers to managing code bases and teams
that continue to grow in size and complexity. This book presents a service-oriented
design approach that offers a solution to deal with both of these cases.

Recent developments in the Ruby community make it an ideal environment for
not only creating services but consuming them as well. This book covers technolo-
gies and best practices for creating application architectures composed of services.
These could be written in Ruby and tied together through a frontend Rails applica-
tion, or services could be written in any language, with Ruby acting as the glue to
combine them into a greater whole. This book covers how to properly design and cre-
ate services in Ruby and how to consume these and other services from within the
Rails environment.

Who This Book Is For
This book is written with web application and infrastructure developers in mind.
Specific examples cover technologies in the Ruby programming ecosystem. While the
code in this book is aimed at a Ruby audience, the design principles are applicable to
environments with multiple programming languages in use. In fact, one of the
advantages of the service-oriented approach is that it enables teams to implement
pieces of application logic in the programming language best suited for the task at
hand. Meanwhile, programmers in any other language can take advantage of these

xv

services through a common public interface. Ultimately, Ruby could serve simply at
the application level to pull together logic from many services to render web requests
through Rails or another preferred web application framework.

If you’re reading this book, you should be familiar with web development con-
cepts. Code examples mainly cover the usage of available open source Ruby libraries,
such as Ruby on Rails, ActiveRecord, Sinatra, Nokogiri, and Typhoeus. If you are new
to Ruby, you should be able to absorb the material as long as you have covered the lan-
guage basics elsewhere and are generally familiar with web development. While the
topic of service-oriented design is usually targeted at application architects, this book
aims to present the material for regular web developers to take advantage of service-
based approaches.

If you are interested in how Ruby can play a role in combining multiple pieces
within an enterprise application stack, you will find many examples in this book to
help achieve your goals. Further, if you are a Rails developer looking to expand the
possibilities of your environment beyond a single monolithic application, you will see
how this is not only possible but desirable. You can create systems where larger teams
of developers can operate together and deploy improvements without the problem of
updating the entire application at large.

The sections on API design, architecture, and data backends examine design prin-
ciples and best practices for creating services that scale and are easy to interface with
for internal and external customers. Sections on connecting to web services and pars-
ing responses provide examples for those looking to write API wrappers around exter-
nal services such as SimpleDB, CouchDB, or third-party services, in addition to
internal services designed by the developer.

What This Book Covers
This book covers Ruby libraries for building and consuming RESTful web services.
This generally refers to services that respond to HTTP requests. Further, the APIs of
these services are defined by the URIs requested and the method (GET, PUT, POST,
DELETE) used. While the focus is on a RESTful approach, some sections deviate from
a purist style. In these cases, the goal is to provide clarity for a service API or flexibil-
ity in a proposed service.

The primary topics covered in this book are as follows:

• REST, HTTP verbs, and response codes
• API design

xvi Preface

• Building services in Ruby
• Connecting to services
• Consuming JSON- and XML-based services
• Architecture design
• Messaging and AMQP
• Securing services

What This Book Doesn’t Cover
Service-oriented architectures have been around for over a decade. During this time,
many approaches have been taken. These include technologies with acronyms and buzz-
words such as SOAP, WSDL, WS-*, and XML-RPC. Generally, these require greater
overhead, more configuration, and the creation of complex schema files. Chapter 9,
“Parsing XML for Legacy Services,” provides brief coverage of consuming XML and
SOAP services. However, SOAP, XML-RPC, and related technologies are beyond the
scope of this book. The services you’ll create in this book are lightweight and flexible,
like the Ruby language itself.

This book also does not cover other methods for building complex architectures.
For example, it does not cover batch processing frameworks such as MapReduce or
communications backends such as Thrift. While these technologies can be used in con-
junction with a web services approach, they are not the focus. However, Chapter 11,
“Messaging,” briefly covers messaging systems and message queues.

Additional Resources
Code examples are used heavily throughout this book. While every effort has been
made to keep examples current, the open source world moves fast, so the examples
may contain code that is a little out-of-date. The best place to find up-to-date source
code is on GitHub, at the following address:

http://github.com/pauldix/service-oriented-design-with-ruby

In addition, you can subscribe to a mailing list to discuss the code, text, services
design, and general questions on the topic of service-oriented design. You can join here:

http://groups.google.com/group/service-oriented-design-

with-ruby

xviiPreface

This page intentionally left blank

xix

Acknowledgments

An unbelievable number of people contributed to this book through writing, editing,
conversations about the content, or just moral support, so please forgive me if I leave
anyone out. First, I need to thank Lindsey for putting up with my ridiculous sched-
ule while writing this book and working a full-time job. Thanks to Trotter Cashion
for writing Chapter 10, “Security”; to Bryan Helmkamp for writing Chapter 8, “Load
Balancing and Caching”; and to Jake Howerton for writing Chapter 12, “Web Hooks
and External Services.” Thanks to Trotter again and Jennifer Linder for providing
excellent editing work and making sure that it makes sense. Thanks to Debra, my edi-
tor at Addison-Wesley, and to Michael, my development editor at AW. Thanks to the
NYC.rb crew for being smart, fun people to hang out and discuss ideas with. Thanks
to the entire team at KnowMore for putting up with me while I wrote and helping
me refine my thinking. Finally, thanks to my business partner, Vivek, for providing
encouragement during the final editing stages.

This page intentionally left blank

About the Author

Paul Dix is co-founder and CTO at Market.io. In the past, he has worked at Google,
Microsoft, McAfee, Air Force Space Command, and multiple startups, filling posi-
tions as a programmer, software tester, and network engineer. He has been a speaker
at multiple conferences, including RubyConf, Goruco, and Web 2.0 Expo, on the
subjects of service-oriented design, event-driven architectures, machine learning, and
collaborative filtering. Paul is the author of multiple open source Ruby libraries. He
has a degree in computer science from Columbia University.

xxi

This page intentionally left blank

CHAPTER 1
Implementing
and Consuming Your
First Service

In the grand tradition of programming books beginning with a “hello, world” example,
this book starts off with a simple service. This chapter walks through the creation of a
service to store user metadata and manage authentication. This includes building the web
service to handle HTTP requests and the client library for interacting with the service.

What’s a Service?
In this book, service generally refers to a system that responds to HTTP requests. Such
HTTP requests are usually to write, retrieve, or modify data. Examples of public-facing
HTTP services include Twitter’s API (http://apiwiki.twitter.com), the Amazon S3 service
(http://aws.amazon.com/s3/), the Delicious API (http://delicious.com/help/api), the
Digg API (http://apidoc.digg.com), and the New York Times APIs (http://developer
.nytimes.com/docs). Internally, services could exist to contain pieces of data and business
logic that are used by one or more applications.

Using a broader scope of definition, service can refer to a system that provides
functionality through a standard interface. Working at this level of abstraction are
services such as relational databases (for example, MySQL), Memcached servers, mes-
sage queues (for example, RabbitMQ), and other types of data stores, such as Cassan-
dra (http://incubator.apache.org/cassandra/).

1

http://apiwiki.twitter.com
http://aws.amazon.com/s3/
http://delicious.com/help/api
http://apidoc.digg.com
http://developer.nytimes.com/docs
http://incubator.apache.org/cassandra/
http://developer.nytimes.com/docs

While this book touches on the broader definition of service in a few places, the
majority of the material focuses on HTTP-based services. More specifically, this book
focuses on services that are designed to roughly follow a RESTful paradigm, as
described in the appendix, “RESTful Primer.” Further, this book focuses on using
services within an organization and infrastructure to build out applications. These
services may or may not be public facing, like the previous examples.

The details of why, when, and how to use services are covered throughout the
course of the book. For now the goal is to implement a simple service.

Service Requirements
A simple user management system is an example of something that can be pulled out
as a service. After implementation, this service could be used across multiple applica-
tions within an organization as a single sign-on point. The goals and requirements of
the service are fairly simple:

• Store user metadata, including name, email address, password, and bio.
• Support the full range of CRUD (create, update, delete) operations for user

objects.
• Verify a user login by name and password.

In later versions of the user service, features could map which users work with
each other, which user each user reports to, and which groups a user is a member of.
For now, the basic feature set provides enough to work on.

The Ruby Tool Set
Ruby provides many tools to build both the service and client sides of services. How-
ever, this book heavily favors some specific tools due to their aesthetics or performance
characteristics. The following libraries appear often throughout this book.

Sinatra
Sinatra is a lightweight framework for creating web applications. It can be described
as a domain-specific language for web applications and web services. Built on top of
Rack, Sinatra is perfectly suited for creating small web services like the example in this
chapter. In addition to encouraging an elegant code style, Sinatra has fewer than 2,000

2 Chapter 1. Implementing and Consuming Your First Service

lines of code. With this small and readable code base, it’s easy to dig through the inter-
nals to get a more specific idea of what’s going on under the hood.

Sinatra was originally written by Blake Mizerany, and continued development is
supported by Heroku. The official web site is http://www.sinatrarb.com, and the code
repository is on GitHub, at http://github.com/sinatra/sinatra. Chapter 4, “Service and
API Design,” provides more in-depth coverage of Sinatra. For now, Sinatra can be
installed to work through the example in this chapter using the gem command on the
command line, like this:

gem install sinatra

ActiveRecord
ActiveRecord is the well-known object/relational mapper (ORM) that is an integral part
of Ruby on Rails. It provides a simple interface for mapping Ruby objects to the MySQL,
PostgreSQL, or SQLite relational databases. Since most readers are probably familiar with
ActiveRecord, the choice to use it as the data library was easy. However, the focus of this
book is on creating service interfaces, creating clients, and organizing service interactions.
Which data store or library to use is beyond the scope of this book. Readers experienced
with alternative data stores are welcome to use them in place of ActiveRecord.

ActiveRecord was originally developed by David Heinemeier Hansson as a part of
Ruby on Rails. It is an implementation of the ActiveRecord design pattern by Martin
Fowler (http://www.martinfowler.com/eaaCatalog/activeRecord.html). The documen-
tation can be found at http://ar.rubyonrails.org, and the source code is part of the Rails
repository on GitHub, at http://github.com/rails/rails/tree/master/activerecord/.
ActiveRecord can be installed using the gem command on the command line, like this:

gem install activerecord

JSON
The representation of resources from HTTP services can be in any of a number of for-
mats. HTML, XML, and JSON are the most common. JSON is quickly becoming a
favorite choice because of its speed and simplicity as well as the availability of quality
parsers in most languages. JSON includes built-in types such as strings, integers,
floats, objects (such as Ruby hashes), and arrays. Most complex data types can be rep-
resented fairly easily and succinctly by using these basic data structures.

3The Ruby Tool Set

http://www.sinatrarb.com
http://github.com/sinatra/sinatra
http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://ar.rubyonrails.org
http://github.com/rails/rails/tree/master/activerecord/

There is no shortage of available JSON parsers for Ruby. The most popular
option is the JSON Ruby implementation found at http://flori.github.com/json/.
However, Brian Marino’s Ruby bindings to YAJL (yet another JSON library) look like
a very solid option that can provide some performance increases. Marino’s code can be
found at http://github.com/brianmario/yajl-ruby, and the YAJL code can be found at
http://lloyd.github.com/yajl/. For simplicity, the service example in this chapter uses
the JSON Ruby implementation, which can be installed using the gem command on
the command line, like this:

gem install json

Typhoeus
The client libraries for services must use an HTTP library to connect to the server.
Typhoeus is an HTTP library specifically designed for high-speed parallel access to
services. Being able to run requests in parallel becomes very important when con-
necting to multiple services. Typhoeus includes classes to wrap requests and response
logic as well as a connection manager to run requests in parallel. It also includes raw
bindings to the libcurl and libcurl-multi libraries that make up its core functionality.

Typhoeus was originally written by me, and ongoing support is provided at
http://KnowMore.com. The code and documentation can be found at
http://github.com/pauldix/typhoeus/, and the support mailing list is at http://groups
.google.com/group/typhoeus. Typhoeus is covered in greater detail in Chapter 6. “Con-
necting to Services.” For now, it can be install using the gem command line, like this:

gem install typhoeus

Rspec
Testing should be an integral part of any programming effort. This book uses Rspec
as its preferred testing library. It provides a clean, readable domain-specific language
for writing tests.

Rspec is written and maintained by the core team of Dave Astels, Steven Baker,
David Chemlimsky, Aslak Hellesøy, Pat Maddox, Dan North, and Brian Takita. Cov-
erage of Rspec is beyond the scope of this book. However, detailed documentation
and examples can be found on the Rspec site, at http://rspec.info. Rspec can be
installed using the gem command on the command line, like this:

gem install rspec

4 Chapter 1. Implementing and Consuming Your First Service

http://flori.github.com/json/
http://github.com/brianmario/yajl-ruby
http://lloyd.github.com/yajl/
http://KnowMore.com
http://github.com/pauldix/typhoeus/
http://groups.google.com/group/typhoeushttp://groups.google.com/group/typhoeus
http://rspec.info
http://groups.google.com/group/typhoeus

The User Service Implementation
With the list of tools to build the service and client libraries chosen, you’re ready to
implement the service. The server side of the system is the first part to build. Remem-
ber that this is a Sinatra application. Unlike Rails, Sinatra doesn’t come with genera-
tors to start new projects, so you have to lay out the application yourself. The basic
directory structure and necessary files should look something like the following:

/user-service

/config.ru

/config

database.yml

/db

/migrate

/models

/spec

Rakefile

The user-service directory is the top level of the service. The config directory
contains database.yml, which ActiveRecord uses to make a database connection.
config.ru is a configuration file that Rack uses to start the service. The db directory
contains the migrate scripts for models. The models directory contains any ActiveRe-
cord models. Rakefile contains a few tasks for migrating the database.

The database.yml file looks like a standard Rails database configuration file:

development:

adapter: sqlite3

database: db/development.sqlite3

test:

adapter: sqlite3

database: db/test.sqlite3

Rakefile contains the task to migrate the database after you’ve created the user
migration:

require 'rubygems'

require 'active_record'

require 'yaml'

5The User Service Implementation

desc "Load the environment"

task :environment do

env = ENV["SINATRA_ENV"] || "development"

databases = YAML.load_file("config/database.yml")

ActiveRecord::Base.establish_connection(databases[env])

end

namespace :db do

desc "Migrate the database"

task(:migrate => :environment) do

ActiveRecord::Base.logger = Logger.new(STDOUT)

ActiveRecord::Migration.verbose = true

ActiveRecord::Migrator.migrate("db/migrate")

end

end

First, the dependencies are loaded. Then the :environment task is created. This
makes a connection to the database based on what environment is being requested.
Finally, the :db namespace is defined with the :migrate task. The migrate task calls the
migrate method on Migrator, pointing it to the directory the database migrations are in.

With all the basic file and directory scaffolding out of the way, you can now spec
and create the service. The specs for the service define the behavior for expected inter-
actions and a few of the possible error conditions. The specs described here are by no
means complete, but they cover the primary cases.

Using GET

The most basic use case for the server is to return the data about a single user. The fol-
lowing sections outline the behavior with specs before starting the implementation.

Spec’ing GET User

To get the specs started, you create a file in the /spec directory called
service_spec.rb. The beginning of the file and the user GET specs look like this:

require File.dirname(__FILE__) + '/../service'

require 'spec'

require 'spec/interop/test'

require 'rack/test'

6 Chapter 1. Implementing and Consuming Your First Service

set :environment, :test

Test::Unit::TestCase.send :include, Rack::Test::Methods

def app
Sinatra::Application

end

describe "service" do
before(:each) do

User.delete_all
end

describe "GET on /api/v1/users/:id" do
before(:each) do

User.create(
:name => "paul",
:email => "paul@pauldix.net",
:password => "strongpass",
:bio => "rubyist")

end

it "should return a user by name" do
get '/api/v1/users/paul'
last_response.should be_ok
attributes = JSON.parse(last_response.body)
attributes["name"].should == "paul"

end

it "should return a user with an email" do
get '/api/v1/users/paul'
last_response.should be_ok
attributes = JSON.parse(last_response.body)
attributes["email"].should == "paul@pauldix.net"

end

it "should not return a user's password" do
get '/api/v1/users/paul'
last_response.should be_ok
attributes = JSON.parse(last_response.body)
attributes.should_not have_key("password")

end

it "should return a user with a bio" do
get '/api/v1/users/paul'
last_response.should be_ok

7The User Service Implementation

attributes = JSON.parse(last_response.body)
attributes["bio"].should == "rubyist"

end

it "should return a 404 for a user that doesn't exist" do

get '/api/v1/users/foo'

last_response.status.should == 404

end

end

end

The first 11 lines of the file set up the basic framework for running specs against
a Sinatra service. The details of each are unimportant as you continue with the user
specs.

There are a few things to note about the tests in this file. First, only the public
interface of the service is being tested. Sinatra provides a convenient way to write tests
against HTTP service entry points. These are the most important tests for the service
because they represent what consumers see. Tests can be written for the models and
code behind the service, but the consumers of the service really only care about its
HTTP interface. Testing only at this level also makes the tests less brittle because they
aren’t tied to the underlying implementation.

That being said, the test still requires a user account to test against. This intro-
duces an implementation dependency in the tests. If the service were later moved from
DataMapper to some other data library, it would break the test setup. There are two
possible options for dealing with setting up the test data.

First, the service could automatically load a set of fixtures when started in a test
environment. Then when the tests are run, it would assume that the necessary fixture
data is loaded. However, this would make things a little less readable because the setup
of preconditions would be outside the test definitions.

The second option is to use the interface of the service to set up any precondi-
tions. This means that the user create functionality would have to work before any
of the other tests could be run. This option is a good choice when writing a service
where the test data can be set up completely using only the API. Indeed, later tests will
use the service interface to verify the results, but for now it’s easier to work with the
user model directly to create test data.

Each of the successful test cases expects the response to contain a JSON hash
with the attributes of the user. With the exception of the “user not found” test, the

8 Chapter 1. Implementing and Consuming Your First Service

tests verify that the individual attributes of the user are returned. Notice that each
attribute is verified in its own test. This style is common in test code despite its ver-
bosity. When a failure occurs, the test shows exactly which attribute is missing.

The spec can be run from the command line. While in the user-service direc-
tory, you run the following command:

spec spec/service_spec.rb

As expected, the spec fails to run correctly before it even gets to the specs section. To
get that far, the user model file and the basic service have to be created.

Creating a User Model

To create the user model, a migration file and a model file need to be created. You
create a file named 001_create_users.rb in the /db/migrate directory:

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.string :name

t.string :email

t.string :password

t.string :bio

t.timestamps

end

end

def self.down

drop_table :users

end

end

The file contains the ActiveRecord migration logic to set up the users table. The
fields for the name, email address, password, and bio fields are all there as string types.

When the migration is done, you can add the user model. You create a file called
user.rb in the /models directory:

class User < ActiveRecord::Base

validates_uniqueness_of :name, :email

9The User Service Implementation

def to_json

super(:except => :password)

end

end

The model contains only a few lines. There is a validation to ensure that the name and
email address of the user are unique. The to_json method, which will be used in the
implementation, has been overridden to exclude the password attribute. This user model
stores the password as a regular string to keep the example simple. Ordinarily, a better solu-
tion would be to use Ben Johnson’s Authlogic (http://github.com/binarylogic/authlogic).
The primary benefit of Authlogic in this case is its built-in ability to store a salted hash of
the user password. It is a big security risk to directly store user passwords, and using a pop-
ular tested library reduces the number of potential security holes in an application.

Implementing GET User

With the model created, the next step is to create the service and start wiring up the
public API. The interface of a service is created through its HTTP entry points. These
represent the implementation of the testable public interface.

In the main user-service directory, you create a file named service.rb that will
contain the entire service:

require 'rubygems'

require 'activerecord'

require 'sinatra'

require 'models/user'

setting up the environment

env_index = ARGV.index("-e")

env_arg = ARGV[env_index + 1] if env_index

env = env_arg || ENV["SINATRA_ENV"] || "development"

databases = YAML.load_file("config/database.yml")

ActiveRecord::Base.establish_connection(databases[env])

HTTP entry points

get a user by name

get '/api/v1/users/:name' do

user = User.find_by_name(params[:name])

if user

10 Chapter 1. Implementing and Consuming Your First Service

http://github.com/binarylogic/authlogic

