Renewable Energy Conversion Systems

Muhammad Kamran Muhammad Rayyan Fazal

Renewable Energy Conversion Systems

This page intentionally left blank

Renewable Energy Conversion Systems

Muhammad Kamran

Department of Electrical Engineering and Technology, Riphah International University, Pakistan

Muhammad Rayyan Fazal

Department of Electrical Engineering and Technology, Riphah International University, Pakistan

An imprint of Elsevier

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-823538-6

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Joe Hayton Acquisitions Editor: Lisa Reading Editorial Project Manager: Sara Valentino Production Project Manager: Poulouse Joseph Cover Designer: Vicky Pearson

Book Aid Book Book Aid Book Ai

Typeset by MPS Limited, Chennai, India

Dedication

To my parents Muhammad Ramzan (late) and Naziran BiBi for their support and love and to my beloved wife Badar Un Nisa and my son M. Sarim Kamran for their inspiration and love. Muhammad Kamran

To my family, for their continuing unconditional love and support throughout my life. I am also thankful to my teachers who equipped with me the power of knowledge. Last but not least, I am grateful to Mr. Muhammad Kamran, who provided me with this great opportunity to work with him. Muhammad Rayyan Fazal This page intentionally left blank

Contents

1.	Fur	ndame	entals of renewable energy systems	1		
	Mu	Muhammad Kamran and Muhammad Rayyan Fazal				
	1.1	Introc	luction	1		
		1.1.1	Why renewables	1		
		1.1.2	Types of energy	4		
		1.1.3	Conventional and renewable energy	5		
			SWOT analysis of the renewable energy	5		
			Global warming and climate change	7		
			World energy transformation by 2050	10		
			Prospects of renewable energy in the world	12		
			The structure of the book	19		
	Ref	erences	i	19		
2.	Thermodynamics for renewable energy systems					
	Mu	Muhammad Kamran				
		Introc		21		
	2.2		nodynamic system	21		
			Open system	22		
			Closed system	22		
			Isolated system	23		
	2.3		capacity	23		
			Heat capacity at constant volume (C_V)	23		
			Heat capacity at constant pressure (C _P)	24		
			Mayer's equation	25		
	2.4		change and latent heat	26		
			Latent heat of fusion	26		
			Latent heat of evaporation	26		
			h law of thermodynamics	29		
	2.6		rst law of thermodynamics	30		
			Isothermal process	30		
		2.6.2	Isobaric process	32		
			Isochoric process	33		
	27		Adiabatic process	36		
	2./		e cond law of thermodynamics Kelvin–Planck statement	38		
				38 40		
		2.7.2	Clausius statement	40		

	2.8	Third	law of thermodynamics	45			
	2.9	Thern	nodynamic cycles	45			
		2.9.1	Solar thermal Brayton cycle (GAS)	45			
		2.9.2	Solar thermal organic Rankine cycle (STEAM)	46			
		2.9.3	Solar combined power cycle	48			
	Pro	blems		49			
	Refe	erences	;	50			
3.			ectronics for renewable energy systems	53			
	Muhammad Kamran						
	3.1 3.2		luction state devices	53 54			
	5.2		Silicon controlled rectifier (Thyristor)	54			
			Gate turn-off thyristor	54			
			Silicon controlled switch	57			
			DIAC	58			
			TRIAC	60			
	3.3		iers (AC–DC converters)	62			
	010		Half-wave uncontrolled rectifier with resistive load	62			
			Half-wave uncontrolled rectifier with inductive load	66			
		3.3.3					
			freewheeling diode	67			
		3.3.4	Half-wave controlled rectifier with resistive load	69			
			Half-wave controlled rectifier with an inductive load	72			
		3.3.6	Half-wave controlled rectifier with inductive				
			load and a freewheeling diode	74			
	3.4	Conve	erters (DC-DC converters)	75			
		3.4.1	Buck converters	75			
		3.4.2	Boost converters	80			
		3.4.3	Buck-Boost converters	85			
			Cuk converters	88			
	3.5		ters (DC–AC inverters)	94			
			H-Bridge inverter	94			
			Multilevel inverter	95 103			
		3.6 Cycloconverters (AC–AC converters)					
		Problems					
	Refe	erences	i	107			
4.	Sol	ar ene	ergy	109			
	Mu	Muhammad Kamran					
	4.1 Introduction			109			
	4.2		r thermal	110			
			Solar parabolic trough	110			
		4.2.2		111			
		4.2.3		112			
		4.2.4	Solar cooker	112			

	4.2.5	Solar water heater	113		
	4.2.6	Solar dryer	113		
4.3	Solar p	photovoltaic	114		
	4.3.1	Modeling of PV cell	115		
4.4	Effect	of temperature on solar cell	120		
4.5	Effect	of irradiance on solar cell	121		
4.6	Series	and parallel connection of solar cells	122		
4.7	Solar t	racker	125		
	4.7.1	Single-axis solar tracker	126		
	4.7.2	Dual-axis solar tracker	128		
4.8	Maxim	num power point tracker	128		
	4.8.1	Perturb and observe	128		
		Incremental conductance	131		
4.9	Off-gr	id PV system	133		
4.10	Grid-c	onnected PV system	135		
4.11	Hybrid PV systems				
		Series hybrid energy system	136		
	4.11.2	Parallel hybrid energy system	137		
	4.11.3	Switched hybrid energy system	137		
4.12	Distrib	outed generation	138		
4.13	Optimization of hybrid renewable energy system				
		HOMER pro	139		
		iHOGA	140		
	4.13.3	Hybrid2	141		
	4.13.4	RETScreen	141		
	4.13.5	TRNSYS	141		
4.14	Optimization of a hybrid energy system in HOMER:				
	a case	study	141		
	4.14.1	Load assessment	142		
	4.14.2	Resource assessment	142		
		Optimization results	147		
Probl			150 151		
Refer	References				

5.	Wi	nd ener	ʻgy	153
	Mu	hammad	Rayyan Fazal and Muhammad Kamran	
	5.1	Introdu	ction	153
	5.2	Wind er	nergy fundamentals	157
		5.2.1 7	Types of winds: meteorology	160
		5.2.2 (Capturing the wind: wind speed, energy, and power	161
	5.3	Potentia	al and prediction of wind energy	165
		5.3.1 \	Wind assessment	165
		5.3.2 1	Turbine power assessment	166
		5.3.3 E	Estimating wind power	168
		5.3.4 F	Predicting wind energy	168

x	Contents
~	Contents

	5.4	Wind energy conversion systems	169
		5.4.1 Basic components of wind turbine	169
		5.4.2 Wind turbine classification	171
		5.4.3 Generator types	176
		5.4.4 Electrical systems in wind turbines	180
		5.4.5 Power electronics integration	180
		5.4.6 Economics	183
	5.5		184
		Energy storage options of wind turbines	187
		Application of wind turbines	188
		blems	188
	Refe	erences	189
6.	Hvo	dro energy	193
		hammad Kamran	
	6.1	Introduction	193
	6.2	Basic components of the hydropower plant	193
		6.2.1 Dam	193
		6.2.2 Penstock	194
		6.2.3 Turbines	194
	6.3	Small/micro hydropower	198
	6.4	Designing of the small/micro hydropower system	199
		6.4.1 Flow duration curve	199
		6.4.2 Weir and open channel	201
		6.4.3 Trash rack design	204
		6.4.4 Penstock design	204
		6.4.5 Penstock losses	206
		6.4.6 Hydraulic power	207
		6.4.7 Turbine power	208
		6.4.8 Turbine speed	211
		6.4.9 Specific speed	213
		6.4.10 Turbine selection	215
	6.5		216
		6.5.1 Strengths	216
		6.5.2 Weaknesses	217
		6.5.3 Opportunities	217
		6.5.4 Threats	217
		olems erences	217 219
7.		el cell	221
	Muł	nammad Kamran	
	7.1	Introduction	221
	7.2	Working principle of a fuel cell	221
	7.3	Maximum efficiency of a fuel cell	222

		7.3.1 Enthalpy of a reaction	222
		7.3.2 The entropy of a reaction	224
		7.3.3 Gibbs free energy	225
		7.3.4 The efficiency of a fuel cell	225
	7.4	Fuel cell potential	226
		7.4.1 At anode	227
		7.4.2 At cathode	227
	7.5	Terminal voltage of the fuel cell	228
		7.5.1 Activation losses	229
		7.5.2 Concentration losses	229
		7.5.3 Ohmic losses	230
	7.6	Equivalent circuit model of the fuel cell	230
		Types of fuel cell	231
		7.7.1 Direct methanol fuel cell	231
		7.7.2 Phosphoric acid fuel cell	234
		7.7.3 Alkaline fuel cell	235
		7.7.4 Molten carbonate fuel cell	236
	Pro	blems	241
8.	Bio	energy	243
		hammad Kamran	
	8.1	Introduction	243
	8.2	Biomass	243
		8.2.1 Palletization	247
	8.3	Biogas	247
		8.3.1 Anaerobic digestion process	247
	8.4	Biodiesel	251
		8.4.1 Physical characteristics of biodiesel	251
	8.5	Hydrogen production	253
		8.5.1 Biological processes	254
		8.5.2 Thermochemical process	256
		8.5.3 Water-splitting	258
	8.6	Economic considerations	262
	8.7	Conclusion	262
	Pro	blems	262
	Refe	erences	264
9.	Ge	othermal energy	265
5.		hammad Rayyan Fazal and Muhammad Kamran	203
	9.1		265
		Geothermal resources	267
	9.3	Geothermal nergy conversion mechanism	269
	5.5	9.3.1 Dry steam power plants	209
		9.3.2 Flash steam power plants	270
		9.3.3 Binary cycle power plants	270
			212

	9.3.4	Geothermal combined cycle power plants	273
9.4		f geothermal energy	274
		Indirect uses of geothermal energy	274
	9.4.2	Direct uses of geothermal energy	274
9.5		onmental effects	276
Problems			278
References			280

Index	
-------	--

283

Chapter 1

Fundamentals of renewable energy systems

Muhammad Kamran and Muhammad Rayyan Fazal

Department of Electrical Engineering and Technology, Riphah International University, Pakistan

1.1 Introduction

1.1.1 Why renewables

Until the 19th century, the main concern of humans was to gather food for family members, and technological progress, as a result, remained limited. Energy and fuels played a vital role in the evolution of human civilization since humans learned to ignite the fire for the very first time. The primary energy source was wood until 1700 and then coal superseded it in the 1780s. A rapid transition can be seen in the past three centuries including steam engines, enhancement in oil extraction and refinement techniques, and coalbased power plants that dramatically altered this fuel usage pattern. Hence, it took just two centuries to shift towards fulfilling 80% of energy requirements through fossil fuels whereas it took thousands of years to switch from wood to coal. Until now, coal is playing a vital role in fulfilling energy demands. However, its use remained limited, i.e., electricity production, till the development of the techniques to convert it into chemicals [1]. Their practical implementations are yet to be validated for commercial use before considering it as a replacement for fossil fuels. Coal consumption is further reduced because of the recent developments in natural gas, and methane gas [2]. On the other hand, there are many types of fuels obtained through fossil fuels such as liquid gas, crude oil, gasoline, kerosene, diesel, etc. A large amount of chemicals is produced through crude oil. Furthermore, there is no additional requirement of chemical processes in using them as fuels hence byproducts are usually of a negligible amount. That's why crude oil remained the central point for technology development and policymaking in the last century.

Today, the dominating power in the world is technology. Hence, the demand to power various devices required for smooth and efficient operations

has been dramatically increased. The technology evolution and rapid population growth are pushing the countries to look for various sustainable alternative forms of energy to accommodate future needs. With industrialization and the increasing population, energy demands have been increased exponentially whereas the conventional energy sources are depleting at the same rate. As per estimations, 80% of the world's energy is taken from non-renewable resources i.e., oil, coal, and natural gas. These fossil fuels are of limited quantity and likely to get exhausted soon if this trend continues. As fossil fuels are unlikely to meet the demand of the exponentially growing population of the world. In the same way, the emissions like CO₂ are reaching dangerous thresholds due to excessive use of fossil fuels. This is now becoming a serious concern because of the increasing threat to the overall ecosystem. It is not only the greenhouse gases that are causing the problems but these fuels also left Sulphur, nitrogen, and carbon oxides that significantly degrade the environment. However, there are now rules and regulations strictly implemented by most of the countries to narrow down the potential hazards at large but yet the amount of fossil fuel usage in various applications around the globe has risen so high that it seems impossible to get complete rid of the pollutants. Another associated problem with fossil fuels is their non-uniform distribution worldwide. There exists a huge gap in the demand and supply of fossil fuels throughout the world. It makes some nations dependent upon others, and any sociopolitical conflicts or economic instabilities might result in massive energy-related problems. Therefore, there is a sheer need of getting rid of this huge dependency and look for alternative technologies superior in environmental factors as well as sustainable point of view.

This worldwide crisis can be best addressed utilizing 'renewable energy resources', referred to as systems having the ability to provide unlimited energy potential. There are plenty of these types available these days with their technologies matured and accepted worldwide. Research on reliability, efficiency, and consistency is still underway but yet these technologies are now widely implemented to produce energy. These renewable energy sources can be used to generate electricity or to meet the heating requirements with minor or low impact on the environment. Renewable energy resources like Solar (Photovoltaic Systems), Wind (Wind turbines), the heat of the earth core (Geothermal Energy), biomass (Bioenergy), and water (hydropower energy) have emerged as strong competitors of fossil fuels. Unlike fossil fuels, many renewables are unable to be used directly for energy production or producing chemical byproducts. Renewable resources such as solar, wind, and hydropower can act as sustainable sources and capable of fulfilling energy demands in different shapes. However, they cannot be used to generate any other form of fuel or chemicals. Still, they produce a sustainable form of energy as these resources are unlikely to be discontinued or politically affected. Sun will continue to shine for any reason and other resources are mainly dependent upon solar energy for their existence such as wind and water. Therefore, using these technologies for energy production will not affect any kind of resources, unlike fossil fuel reservoirs that are likely to get exhausted for our future generations. There are many advantages of using these renewable energy resources as energy-producing alternatives:

- *Air Pollution:* Due to the increasing demand for fossil fuels, their transportation, industrial usage, and power production is polluting the air to a great extent. The use of charcoal and wood is contributing to poor air conditions and also causing millions of premature deaths, according to the world health organization. Instead of polluting the environment, renewables are also saving precious resources hence better for our health.
- *Greenhouse Gas Emission:* Renewable Energy has a great advantage in achieving better climatic conditions over non-renewable energy. As the emissions from fossil fuels have a devastating effect on the environment. The combustion of these fossil fuels adds to the greenhouse gas emissions hence promoting the global warming phenomenon. Renewables on the other hand have little to no emission at all even if the full life cycle of the project is considered.
- *Economics:* Renewable energy is never subjected to get affected because of the geopolitical crisis, or discontinuity of supply, or sudden price spikes found to be common in the case of fossil fuels.
- *Community's betterment:* Generating power from renewable resources is an emerging technology. Many countries are putting huge investments in the research and development sector for their practical implementation. This renewable energy in return generates revenue and is used for further development of this sector, hence proving a better alternative for the community's betterment.
- **Resilient infrastructure:** Renewable energy facilitates the development of the energy production setup at remote locations. Hence, making urban independent from national grids. Power systems are becoming more flexible, manageable, and resilient against catastrophic events with the help of renewable energy units.
- *Easy access:* Technology evolution is leading towards cheaper power generation through renewable resources. This in return is making it possible to use renewable resources for energy production especially for the people living in remote locations.
- *Secure and stable:* Greater energy demands and modern infrastructure requires the adoption of safe, secure, and stable strategies for energy production. Renewable resources are safe and secure hence offering more stability in return.

There is a wide range of applications using renewable energy in different forms. Worldwide, 26% of the electricity generation is through renewables but yet electricity represents just 17% of the world's energy needs. A major form of energy usage is cooling and heating that comprised nearly 50% of the total world's energy demand. Whereas nearly one-third of the total energy is