Waste to Renewable Biohydrogen Volume 1

Advances in Theory and Experiments

Edited by

Quanguo Zhang Chao He Jingzheng Ren Michael Evan Goodsite This page intentionally left blank

Waste to Renewable Biohydrogen

Volume 1: Advances in Theory and Experiments

Edited by **Quanguo Zhang**

Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan Province, China

Chao He

Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan Province, China

Jingzheng Ren

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

Michael Goodsite

Institute for Mineral and Energy Resources, University of Adelaide, Adelaide, South Australia, Australia

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-821659-0

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Charlotte Cockle Acquisitions Editor: Lisa Reading Editorial Project Manager: Ruby Gammell Production Project Manager: Paul Prasad Chandramohan Cover Designer: Matthew Limbert

Typeset by TNQ Technologies

Contents

Contri	hutore
COHULI	DUIDIS

xiii

1.	Sustainable waste management: valorization of waste for biohydrogen production			1
	Sheng Yang, Kebo Ma and Zhiqiang Liu			
	1.1	Introd	luction	1
	1.2	Curre	nt status of waste	2
		1.2.1	Introduction to waste	2
		1.2.2	Harm of waste	2
	1.3	Waste	to energy technologies	4
		1.3.1	Waste burning generating electricity technology	4
		1.3.2	Marsh gas power generation	5
	1.4	Bioma	iss energy	6
		1.4.1	Introduction to biomass energy	6
		1.4.2	Application of biomass energy	7
	1.5	Techn	ologies for biohydrogen	8
		1.5.1	Hydrogen production organisms	8
		1.5.2	Process of organic anaerobic biodegradation	10
		1.5.3	Reactors of hydrogen fermentation	12
		1.5.4	Principle and classification of hydrogen fermentation	18
		1.5.5	Research status of anaerobic fermentation	
			biohydrogen	19
	1.6	Enviro	nment and economy efficiency assessment for	
		biohy	drogen	24
		1.6.1	Assessment of environmental efficiency	24
		1.6.2	Assessment of economic efficiency	25
	1.7	Concl	usion	25
		Refere	ences	26
2.	Waste to biohydrogen: potential and feasibility			
	Youzhou Jiao			
	2.1	Introd	luction	33
	2.2	Hydro	gen production potential by agricultural and	
		forest	ry waste	34

		2.2.1 Straw biomass	35
		2.2.2 Livestock and poultry dung	36
		2.2.3 Forest deciduous biomass	37
	2.3	Hydrogen production potential from industrial waste	38
		2.3.1 Industrial waste	38
		2.3.2 Paper sludge	41
	2.4	Hydrogen production potential by domestic waste	43
		2.4.1 Domestic sewage	43
		2.4.2 Municipal organic solid waste	44
	2.5	Feasibility of waste to biohydrogen	44
		2.5.1 Feasibility of technology	44
		2.5.2 Efficiency of hydrogen production	46
	2.6	Concluding remarks and prospects	48
		References	50
3.	Wa	ste to biohydrogen: progress, challenges, and	
	pro	ospects	55
	Qu	anguo Zhang	
	31	Introduction	55
	3.1	Progress of waste to biohydrogen	56
	3.2	3.2.1 Development of waste pretreatment technology	56
		3.2.1 Development of waste predediment technology 3.2.2 Progress in hydrogen production technology	57
	3.3	Challenges of waste to biohydrogen	62
	010	3.3.1 Challenges of waste pretreatment technology	62
		3.3.2 Challenges of biohydrogen production technology	63
	3.4	Prospects of waste to biohvdrogen	64
	3.5	Perspective	66
		References	66
4.	Со	mparisons of biohydrogen production	
	tec	hnologies and processes	71
	Jian	jun Hu	
	4.1	Introduction	71
	4.2	Biological hydrogen production technology and process	75
		4.2.1 Hydrogen production by photohydrolysis	75
		4.2.2 Hydrogen production by dark fermentation	79
		4.2.3 Hydrogen production by light fermentation	85
		4.2.4 Coupling hydrogen production technology of	
		fermentation bacteria by dark—light method	90
	4.3	Comparison of biological hydrogen production process	96
		4.3.1 Comparison of biological hydrogen production	
		process	96
		4.3.2 Limitations of biological hydrogen production	98
	4.4	Conclusion	99
		Keterences	100

5.	Wa pro	Waste pretreatment technologies for hydrogen production					
	Zhij	ping Zhang					
	5.1	Introduction					
	5.2	Physical pretreatment	110				
		5.2.1 Mechanical crushing	110				
		5.2.2 Radiation pretreatment	111				
		5.2.3 Superfine crushing	112				
	5.3	Chemical pretreatment	113				
		5.3.1 Dilute acid pretreatment	113				
		5.3.2 Alkali pretreatment	115				
		5.3.3 Oxidation pretreatment	116				
	5.4	Physicochemical pretreatment	116				
		5.4.1 High-temperature liquid water pretreatment	116				
		5.4.2 Steam explosion pretreatment	117				
	5.5	Biological pretreatment	118				
	5.6	Conclusions	119				
		References	119				
6.	Adv tec	vances in dark fermentation hydrogen production hologies	123				
	Dan	ping Jiang and Shengnan Zhu					
	6.1	Introduction	123				
	6.2	The principle of dark fermentation	124				
	6.3	Critical parameters for dark fermentation biohydrogen					
		production	125				
		6.3.1 Substrate	125				
		6.3.2 Inocula	127				
		6.3.3 Operation pH	128				
		6.3.4 Process temperature	129				
	6.4	Strategies to improve hydrogen yield	129				
		6.4.1 Pretreatment	130				
		6.4.2 Cotermentation	131				
	6 -	6.4.3 Additives	132				
	6.5	Use of dark fermentation tail liquid	133				
	6.6	References	134 134				
7	The	Thermochemical processes for high-drogon					
/.	pro	duction	139				
	Shu	heng Zhao					
	7.1	Introduction	139				
	7.2	Hydrogen production technology	140				

		7.2.1	Hydrogen production technology from				
			fossil energy	141			
		7.2.2	Hydrogen production technology by water				
			electrolysis	142			
		7.2.3	Solar hydrogen production technology	143			
		7.2.4	Biomass hydrogen production technology	144			
	7.3	Therm	nochemical conversion hydrogen production				
		techn	ology	145			
		7.3.1	Pyrolysis	146			
		7.3.2	Gasification	151			
		7.3.3	Supercritical water gasification	153			
	7.4	Hydro	ogen production technology by thermochemical				
		conve	rsion of waste	154			
		7.4.1	Agricultural and forestry waste	155			
		7.4.2	Municipal solid waste	160			
		7.4.3	Industrial waste	161			
		7.4.4	Hydrogen production from other types of waste				
			and multiple waste	165			
	7.5	Concl	usion	170			
		Refere	ences	171			
		Furthe	er reading	177			
8.	Pho	Photosynthetic hydrogen production bacteria					
01	bre	preeding technologies					
	Pan	pan Li	C C				
	8.1	Introc	luction	179			
		8.1.1	Hydrogen production by photolysis				
			of water	180			
		8.1.2	Hydrogen production by dark fermentation	180			
		8.1.3	Hydrogen production by photosynthetic				
		_	fermentation	180			
	8.2	Photo	synthetic hydrogen production bacteria	181			
		8.2.1	Pure cultured photosynthetic hydrogen production				
			bacteria	182			
		8.2.2	Mixed culture photosynthetic hydrogen production				
		_	bacteria	182			
	8.3	Grow	th characteristics of photosynthetic hydrogen				
		produ	iction bacteria	184			
		8.3.1	Single-factor analysis of growth				
			characteristics	184			
		8.3.2	Multifactor analysis of growth characteristics	188			
	8.4	Conti	nuous culture system and device for photosynthetic				
		hydro	gen production bacteria	190			
		8.4.1	Continuous culture device of photosynthetic	400			
			hydrogen production reactor	190			
		8.4.2	Anaerobic battled reactor-type photosynthetic	.			
			hydrogen production device	193			

	8.5	Hydrogen production of photosynthetic bacteria	194		
		8.5.1 Effect of culture conditions on hydrogen production	194		
		8.5.2 Effect of nutrients on hydrogen production	195		
	8.6	Conclusion	197		
		References	198		
9.	Photosynthetic biological hydrogen production reactors, systems, and process optimization				
	Cha	oyang Lu			
	9.1	Introduction	201		
	9.2	Reactor type	202		
		9.2.1 Baffled reactor	202		
		9.2.2 Triangle flask	202		
		9.2.3 Tubular	203		
		9.2.4 Flat-type reactor	207		
	9.3	Systems and process optimization	208		
		9.3.1 Effect of hydraulic retention time on continuous			
		hydrogen production	208		
		9.3.2 Effects of substrate concentration on continuous			
		biohydrogen production	213		
	9.4	Conclusions and perspectives	221		
		References	221		
10.	Spe bio	ctral coupling characteristics of photosynthetic ogical hydrogen production system	225		
	Yan	/an Jing			
	10.1	Introduction	225		
	10.2	Absorption spectrum of photosynthetic			
		hydrogen-producing bacteria	227		
		10.2.1 Morphological characteristics of photosynthetic			
		bacteria	227		
		10.2.2 Absorption spectrum of mixed photosynthetic			
		bacteria	228		
		10.2.3 Absorption spectrum of single strain	228		
	10.3	Spectral coupling characteristics for growth and			
		hydrogen production of photosynthetic bacteria	228		
	10.4	Comparison of hydrogen production capacity under			
		optimal spectrum	230		
	10.5	Absorbance of mixed photosynthetic hydrogen			
		production bacteria	231		
		10.5.1 Photometric effect on photosynthetic hydrogen			
		production	231		
		10.5.2 Photometric effect on optical energy			
		conversion rate	232		
	10.6	Conclusion	233		
		References	233		

11.	Photosynthetic thermal effect of biological hydrogen production system			
	Chac	Chao He		
	11.1	Introdu	iction	237
	11.2	Researc	ch on microbial thermodynamic model	238
		11.2.1	Bacterial exponential growth kinetics	238
		11.2.2	Logistic equation of bacterial growth	239
		11.2.3	Bacterial linear growth kinetics model	240
		11.2.4	Nonideal growth thermodynamic model	240
		11.2.5	Metabolite inhibition model	241
	11.3	Factors	affecting photosynthetic heat effect of biological	
		hydrog	en production system	242
		11.3.1	Initial temperature	242
		11.3.2	Light intensity	242
		11.3.3	Inoculation amount	242
		11.3.4	Carbon source	242
		11.3.5	Glucose concentration	243
		11.3.6	Glucose access time	243
		11.3.7	NH ⁺ concentration	243
	11.4	Influen	ce of thermal effect on hydrogen production	243
		11.4.1	Influence on different initial temperatures on	
			thermal effect hydrogen production	243
		1142	Effect of thermal effect on hydrogen production	215
		11.7.2	with different illuminations	246
		11/13	Thermal effect on bydrogen production with	240
		11.4.5	different ineculations	248
		11 / /	Effect of on hydrogon production with different	240
		11.4.4	Linet of on hydrogen production with different	251
		11 4 -	KINGS OF CARDON	251
		11.4.5	lifferent enection hydrogen production with	252
		11 1 6		253
		11.4.6	Inermal effect on hydrogen production with	
			glucose in reactor at different times	255
		11.4.7	Ihermal effect on hydrogen production with	
			different nitrogen concentrations	257
	11.5	Conclu	sion	259
		Referei	nces	260
12.	Scal reac	e-up ai tor fro	nd design of biohydrogen production m laboratory scale to industrial scale	261
	Gang	g Li and	Huan Zhang	
	12.1	Introdu	iction	261
	12.2	Circum	fluent cylindrical reactor for hydrogen production	
		by pho	tosynthetic bacteria	262
		12.2.1	Structure of circumfluent cylindrical reactor	262

	12.2.2	Operation characteristics of circumfluence	
		cylindrical reactor for hydrogen production	
		by photosynthetic bacteria	263
12.3	Critical	factor of photoreactor for hydrogen production	264
	12.3.1	Anaerobic condition and illumination	264
	12.3.2	Material of reactor and illumination	267
	12.3.3	Photosynthetic pigment adsorption and light	
		absorption	267
	12.3.4	Insulation and illumination	267
	12.3.5	Light source and temperature control	267
12.4	Design	of large and medium-scale photoreactor	267
	12.4.1	Interior light source	267
	12.4.2	Multipoint light source distribution model	268
	12.4.3	Enhance mixing and mass transfer by improving	
		the reactor structure	268
	12.4.4	Remove pigment from lighting surface	268
	12.4.5	Provide light by sunlight and an artificial cold	
		light source	268
12.5	Design	of photoreactor with interior light source and	
	multipo	pint light source distribution	269
	12.5.1	Operation mode of photoreactor with interior	
		light source and multipoint light source	
		distribution	269
	12.5.2	Design of sunlight collector and transmission unit	269
	12.5.3	Measurement of optical path in solution of	
		substrate for hydrogen production	270
	12.5.4	Structure type of reactor	273
12.6	Conclu	sions	275
	Refere	nces	276

Index

277

This page intentionally left blank

Contributors

- Chao He, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou, China
- Jianjun Hu, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- **Danping Jiang**, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan, China
- Youzhou Jiao, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, China; Collaborative Innovation Center of Biomass Energy, Zhengzhou, Henan Province, China
- Yanyan Jing, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan Province, China
- **Gang Li**, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- Panpan Li, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, China; Collaborative Innovation Center of Biomass Energy, Zhengzhou, Henan Province, China
- Zhiqiang Liu, School of Energy Science and Engineering, Central South University, Changsha, Hunan, China

- Chaoyang Lu, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, Henan, China; Collaborative Innovation Center of Biomass Energy, Zhengzhou, Henan, China
- Kebo Ma, School of Energy Science and Engineering, Central South University, Changsha, Hunan, China
- Sheng Yang, School of Energy Science and Engineering, Central South University, Changsha, Hunan, China
- Quanguo Zhang, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan Province, China
- **Zhiping Zhang**, Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou, China
- Huan Zhang, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, China
- Shuheng Zhao, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, China; Collaborative Innovation Center of Biomass Energy, Zhengzhou, Henan Province, China
- Shengnan Zhu, Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, Henan, China