

Polymer Hybrid Materials and Nanocomposites Fundamentals and Applications

Tawfik Abdo Saleh

Polymer Hybrid Materials and Nanocomposites

This page intentionally left blank

Polymer Hybrid Materials and Nanocomposites

Fundamentals and Applications

Tawfik Abdo Saleh

King Fahd University of Petroleum and Minerals, Saudi Arabia

William Andrew is an imprint of Elsevier

The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2022 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-813294-4

For information on all William Andrew publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Edward Payne Editorial Project Manager: Joshua Mearns Production Project Manager: Sojan P. Pazhayattil Cover Designer: Christian J. Bilbow

Working together to grow libraries in developing countries

Typeset by TNQ Technologies

Contents

Preface	xi
Acknowledgment	xiii

1. Introduction to materials: fundamentals and interactions

1.	Introduction	1
	1.1 Elements and compounds	1
	1.2 Mixtures	3
2.	Chemistry	6
3.	Why bonds form?	10
4.	Types of chemical bonds	10
	4.1 Ionic bonds	10
	4.2 Covalent bonds	10
	4.3 Metallic bonds	11
	4.4 Coordinate bond	13
	4.5 Hydrogen bond	14
	4.6 van der Waals forces	14
5.	Chemical reactions	15
	5.1 Synthesis reaction or direct combination	15
	5.2 Precipitation reaction	18
	5.3 Acid-base (neutralization) reactions	18
	5.4 Redox chemical reactions	18
	5.5 Decomposition chemical reactions	18
	5.6 Substitution chemical reaction (single displacement)	19
	5.7 Double displacement reaction (metathesis reaction)	19
	5.8 Combustion chemical reactions	20
	5.9 Isomerization reactions	20
	5.10 Hydrolysis chemical reactions	20
	5.11 Polymerization reactions	20
	5.12 General notes on chemical reactions	21
6.	Intramolecular bonds and intermolecular forces	21
7.	Materials science, technology, and engineering	23
	7.1 Materials science	23
	7.2 Materials engineering	23
Ret	ferences	25

3.

2. Materials: types and general classifications

1.	Introduction		
2.	Materials classification		
3.	Met	als and alloys	28
	3.1	Common mechanical properties of metallic materials	33
	3.2	Chemical properties	33
4.	Poly	mers	34
	4.1	General mechanical properties	34
	4.2	Plastics	34
	4.3	Elastomers	37
	4.4	Sponges	37
		Foam	39
5.	Cer	amics	39
	5.1	Traditional ceramics	39
	5.2	Mechanical properties of ceramics	42
	5.3	Advanced ceramics	43
	5.4	Advantages of ceramics	44
	5.5	Disadvantages of ceramics	45
6.	Con	nposites	45
	6.1	Advantages of composites	45
		Disadvantages of composites	48
	6.3	Fiberglass	49
7.	Adv	anced materials	49
	7.1	Nanoengineered	49
		Semiconductors	52
	7.3	What are hybrid bonding and direct bonding?	52
	7.4	Biomaterials	53
	7.5	Intelligent (smart) materials	53
	7.6	Types of smart materials	54
8.		elopment of a product	54
9.	Mat	erial selection	55
Re	feren	ces	57
		er science and polymerization methods I hybrid materials	
1.	Poly	/mer science	59
2.		nomers, oligomers, and polymers	59
	2.1	Similarities and differences between oligomers and	55
		polymers	63

Classification of polymers Classification of polymers based on their source of origin

3.1 Classification of polymers based on their source of origin
3.2 Classification of polymers based on their shape
3.3 Classification of polymers based on chemical structure
72

65

- 3.3 Classification of polymers based on chemical structure 72 3.4 Classification of polymers based on molecular structure 77
- Classification of polymers based on the arrangement of monomers
 77

	3.6	Classification of polymers based on tacticity	80
	3.7	Classification of polymers based on molecular forces	84
	3.8	Classification of polymers based on thermal behavior	86
	3.9	Classification of polymers based on the arrangement of	
		chains (crystallinity)	88
	3.10	Classification of polymers based on the type of backbone	88
	3.11	Classification of polymers based on the synthesis methods	89
	3.12	Other classifications	91
4.	Orga	nic and inorganic polymers	97
5.	Polyn	ners and macromolecules	99
6.	Chara	acteristics of polymers	99
	6.1	Advantages of polymers	100
	6.2	Disadvantages of polymers	100
7.	Hybr	id polymers with nanoparticles	100
Ref	erenc	es	101

4. Nanostructures: categories, formation procedures, and synthesis

1.	Over	rview of nanochemistry	105
2.	Why	nanomaterials are better than bulk materials	105
3.	Class	sification of nanomaterials	107
	3.1	Dimensionality	107
	3.2	Classification based on morphological nature	112
	3.3	Classification based on state	113
	3.4	Classification based on the chemical composition	114
4.	Nano	omaterial synthesis	123
	4.1	Synthesis of nanoparticles	123
	4.2	Wet methods for nanomaterial synthesis	124
	4.3	Chemical vapor procedure	126
	4.4	Solution-evaporation method	126
	4.5		127
	4.6	Sol-gel method	127
	4.7	Example: preparation of metal nanoparticles	127
	4.8		131
	4.9	1 /	131
	4.10	Preparation of graphene nanosheets	132
5.	Phys	ical and mechanical methods of synthesis	133
6.	Prep	aration of nanostructured carbons	133
	6.1	Arc discharge technique	133
	6.2	Laser ablation technique	135
	6.3	Chemical vapor deposition	135
		Examples of carbon nanostructure-based hybrid materials	136
7.	Gree	en synthesis of nanomaterials	137
	7.1	Factors affecting green synthesis	137
	7.2	Biological components for the synthesis of nanoparticles	138
	7.3	Example: synthesis of nanoscale zero-valent iron using plant	
		extract	140
Ref	ferenc	es	141

5. Hybrid materials: fundamentals and classifications

1.	Intro	oduction	147
2.	Hyb	rid materials and compounds	148
3.	Defi	nitions of hybrid materials	149
4.	Hyb	rid materials and composites	151
	4.1	Some advantages of hybrid materials over composites	153
5.	Hyb	rids and inorganic-organic nanocomposites	153
6.	Hyb	rids and nanohybrids	153
	6.1	Hybrids, nanohybrids, composites, and nanocomposites	155
7.	Basi	c classification of hybrid materials	155
	7.1	Intercalation	155
8.	Diff	erent classifications of hybrid materials	157
	8.1	Source of origin	159
	8.2	Homogeneous and heterogeneous	160
	8.3	Classification based on composition	160
	8.4	Nature of interface	161
	8.5	Structural properties	166
	8.6	Functionality	170
	8.7	Routes of combination	171
	8.8	Based on applications	171
9.		rid composite materials	172
10.	Adv	antages of hybrids	172
11.	Bior	nolecular hybrids	173
12.	Con	clusion	174
Refe	erence	25	174

6. Synthesis of hybrid materials: methods and classification

1.	Introduction		
2.	Synthesis methods		
	2.1	Blending methods	178
	2.2	Building block methods	183
	2.3	Formation of the organic part in the presence of	
		preformed inorganic components	185
	2.4	In situ formation of both components	187
	2.5	In situ formation of inorganic materials	187
	2.6	Emulsion polymerization	195
	2.7	Photopolymerization	196
	2.8	Surface grafting methods	196
	2.9	Self-assembly	197
	2.10	Metallosupramolecular and coordination methods	197
	2.11	Microwave irradiation	198
	2.12	Electrochemical synthesis	198
3.	Com	bination of in situ methods with others	198
4.	Com	mon types of hybrid materials	200
	4.1	Polymer—inorganic hybrid materials	200

	12	Hybrid mesoporous materials	200
			200
	4.3	Crystalline hybrid materials	201
	4.4	Organically modified ceramics	201
5.	Synt	hesis strategies of hierarchical hybrid materials	204
6.	Synt	hesis and materials processing difference	206
7.	Cone	clusions	207
Ref	erenc	es	207

7. Structural characterization of hybrid materials

1.	Introduction	213
2.	Characterization	214
3.	Classification of characterization techniques	216
4.	Structural vibrational spectroscopy	218
	4.1 Fourier transform infrared spectroscopy	219
	4.2 Raman spectroscopy	222
	4.3 Surface-enhanced Raman scattering	224
5.	Nuclear magnetic resonance	227
	5.1 Example: characterization of polymer grafted activated	
	carbon	228
6.	X-ray fluorescence	230
	6.1 Advantages of X-ray fluorescence	230
7.	X-ray photoelectron spectroscopy	230
	7.1 How X-ray photoelectron spectroscopy works	231
8.	X-ray diffraction	232
	8.1 How X-ray diffraction works	233
	8.2 Used of X-ray diffraction	234
	8.3 Example: X-ray diffraction of graphene oxide-bismuth	
	oxyhalide composites	235
9.	Small-angle X-ray scattering	237
10.	Conclusion	237
Refe	erences	238

8. Surface and morphological characterization of hybrid materials

1.	Introduction		241
2.	Mor	244	
	2.1	Electron microscopy	245
	2.2	Scanning electron microscopy	245
	2.3	Transmission electron microscopy	253
	2.4	Scanning tunneling microscopy	261
	2.5	Atomic force microscopy	262
3.	Che	mical composition	266
	3.1	Energy-dispersive X-ray spectroscopy	266
	3.2	Electron energy loss spectroscopy	267
	3.3	X-ray diffraction	267
	3.4	Small-angle X-ray scattering	268

x Contents

4.	Thermogravimetric analysis	271	
5.	5. Surface area analyzer		
	5.1 Adsorption isotherm	274	
	5.2 Types of Brunauer–Emmett–Teller isotherms	274	
	5.3 Chemisorption	277	
6.	Other characterization methods	278	
7.	Conclusion	281	
Re	ferences	281	

9. Hybrid materials and their impact on industrial and environmental applications

1.	Introduction	285
2.	Processing methods and properties	286
3.	Composites to enhance metal properties	287
4.	Applications of hybrid materials in water treatment	288
5.	Hybrid materials for effective mitigation of emulsions	291
6.	Hybrid materials as photocatalysts	292
7.	Applications of hybrid materials in buildings and structures	294
	7.1 Use of hybrid materials in buildings and infrastructures	294
	7.2 New material requirements	296
8.	Applications of hybrid materials in corrosion	297
9.	Applications of hybrid materials in fuels and batteries	299
10.	Hybrid materials as membranes in ion-selective electrodes	300
11.	Various other applications	300
12.	Conclusion	305
Refe	erences	305

10. Hybrid materials: opportunities, challenges, and future directions

1.	Overview	311
2.	Why study materials?	312
3.	Design	313
4.	Processing and materials selection	314
5.	Opportunities	314
6.	Challenges	316
7.	Future prospects	317
8.	Toxicity and environmental concerns	323
References		324

Preface

The expansion of chemical structures is the focal point of research and technology that is mostly related to chemistry, physics, applied sciences, petroleum, and engineering. Research on nanotechnology and hybrid materials has mainly focused on the aspects of synthesis of novel materials that have unique chemical, thermal, and mechanical properties applicable to a wide range of applications. A variety of properties and phenomena have been investigated, and many of the studies have been directed toward understanding the properties and applications of nanomaterials. This becomes more interesting when nanomaterials are combined with polymers.

Owing to their enhanced chemical and mechanical properties, the hybrid materials play promising roles in several applications. Nanomaterials have properties that are useful for enhancing surface-to-volume ratio, reactivity, strength, and durability. In pursuit of the same goal, this book offers detailed, up-to-date chapters on the synthesis, properties, and technological developments of polymer hybrid materials and nanocomposites, as well as their applications in several fields including water and energy.

The book has been developed as a consequence of significant advances in the materials science community. In the excitement surrounding these materials and technologies, however, their potential has been, frequently overhyped. The book explores these kinds of materials and their forward-looking potential applications. The book is organized in a good way and makes extensive use of illustrations.

In this book, we have tried to cover many aspects of hybrid materials and nanocomposites, which is of current interest. This book is written for a large readership, including university students and researchers from diverse backgrounds such as chemistry, petroleum, materials science, physics, and engineering. It can be used not only as a textbook for both undergraduate and graduate students but also as a review and reference book for researchers in these fields. We hope that the chapters of this book will provide the readers with valuable insight into the state-of-the-art advanced and functional hybrid nanomaterials and technologies.

However, it is possible that some topics have been left out owing to constraints on the size of the book and possible errors in judgment. We trust that the preface will be useful to students, teachers, and researchers. xii Preface

I welcome suggestions from readers toward improvements that can be incorporated in future editions of this book.

I hope that you enjoy the book!

Tawfik A. Saleh

Department of Chemistry, King Fahd University of Petroleum & Minerals, Saudi Arabia

Acknowledgment

I would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals. I would like to express my gratitude to the many people who saw me through this book and to all those who provided support, read, wrote, offered comments, allowed me to quote their remarks, and assisted in the editing, proofreading, and design. Above all, I want to thank my parents, relatives, wife, children, and the rest of my family, who supported and encouraged me in spite of all the time it took me away from them. Last but not least, I beg forgiveness of all those who have been with me over the course of the months and whose names I have failed to mention.

> Many thanks. **Tawfik Abdo Saleh** Department of Chemistry, and Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Saudi Arabia

This page intentionally left blank

Chapter 1

Introduction to materials: fundamentals and interactions

1. Introduction

Materials are the matters that objects are made from. In other words, a material is a matter; it is a substance or a mixture of substances that constitute an object. The general classification of matter can be presented as in Fig. 1.1. Matter can be classified depending on the characteristics of the substance. Broadly speaking, it can be classified as chemical and pure substances. A chemical substance is a form of matter that has a constant chemical composition and characteristic properties. Matter can be defined as anything that has mass and occupies space. Mass is a measure of the quantity of matter in a sample of any material. Pure substances can be elements of the periodic table or molecules such as ethanol, water, and benzene. The most common classifications of materials will be discussed in the following sections.

1.1 Elements and compounds

An element is a material that is the same throughout, such as gold or silver. Elements can be classified into metals, nonmetals (most are gases at room temperature), and metalloids (elements that are in between metals and nonmetals or elements that exhibit properties of both metals and nonmetals) based on the following:

- ➤ physical properties, such as color, texture, melting and boiling points, density, and hardness;
- chemical properties, such as flammability and reactivity to other reagents including oxygen and acids.

Metals are solids except for liquid mercury. They are good conductors of heat and electricity. Metalloids, on the other hand, are solids that can conduct electricity but are poor conductors of heat. Nonmetals, however, are poor conductors of both heat and electricity (Pletsch et al., 2015).

A compound is a substance made of molecules, each of which is made up of two or more different atoms. A compound contains two or more elements 2 Polymer Hybrid Materials and Nanocomposites

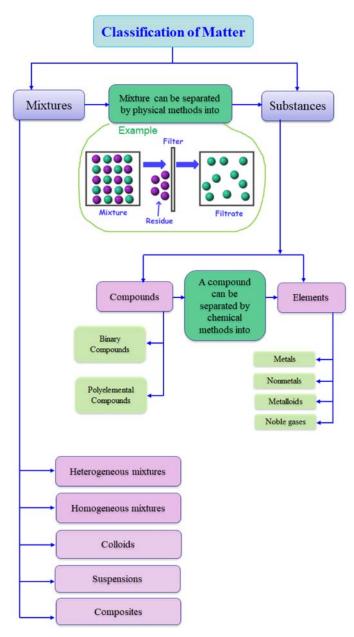


FIGURE 1.1 The general classification of matter.

combined in definite proportions. For example, sodium chloride salt is a compound, while sodium is an element. Chemical compounds can be categorized based on their chemical reactions, the types of bonds, and the types of elements present. Chemical compounds include oxide compounds containing oxygen atoms, hydrides containing hydrogen atoms, and halides containing halogen atoms (F, Cl, Br, I). Compounds are mostly classified as inorganic. However, those with a backbone of carbon atoms are classified as organic compounds. Organometallic compounds are organic compounds that are bonded to metal atoms. As per the types of bonds, compounds can be ionic, formed by attractive forces among oppositely charged ions (ionic bonding; e.g., NaCl). Molecular compounds, on the other hand, are formed by covalent bonding, holding different atoms such as methane, hydrogen fluoride, and water.

1.2 Mixtures

A combination of two or more pure substances, such as NaCl and water, is called a mixture. Mixtures can be categorized as in Fig. 1.1. They can be separated into pure substances. The composition may remain constant while changing phases from solid to liquid to gas. A heterogeneous mixture is a mixture with a nonuniform composition, and its components can be distinguished and separated by physical methods such as heating. The composition of a heterogeneous mixture differs from one area to another, with at least two phases remaining separate from each other and with identifiable properties.

A homogeneous substance is a matter that contains one type of compound or one element, or a mixture with uniform composition. Examples of a homogeneous substance include metals containing only one type of atoms such as Ni, Al, Fe, Si; compounds such as solid salts; and liquid solutions such as ethanol and methanol. A homogeneous mixture can also be a combination of two or more pure substances, where the substances present no change in properties. The components of homogeneous mixtures are indistinguishable; however, their composition can vary.

To go deep into the atomic level, anything that has mass and occupies space is a matter that mainly consists of particles. The particles can be molecules, atoms, or subatomic bits, such as protons, electrons, and leptons. To understand matter, the atomic level should be understood. Fig. 1.2 depicts the formation of atoms, elements, and compounds. Atoms are mainly made up of protons, neutrons, and electrons. Atoms are the basic units of matter, defining the structure of elements. They are also the building blocks of all materials, simple and complicated. Compounds are made up of a combination of different types of element atoms. An element is made up of only one type of atom. The atomic number is the number of protons in the atom nucleus. The number of protons defines the identity of an element (i.e., an element with six protons is a carbon atom, irrespective of the number of neutrons present).