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PREFACE

Since its inception in the 1960s, Geographic Information System (GIS) has been undergoing tremendous
development, rendering it a technology widely used for geospatial data management and analysis. The past
several decades have also witnessed increasing applications of GIS in a plethora of areas, including environ-
ment, energy, resources, economics, planning, transportation, logistics, business, and humanity. The rapid
development of GIS is partly due to the advances in computational technologies and the increasing availability
of various geospatial data such as satellite imagery and GPS traces.

Along with the technological development of GIS, its underlying theory has significantly progressed, espe-
cially on data representation, data analysis, uncertainty, and so on. As a result, the theory, technology, and
application of GIS have made great strides, leading to a right time to summarize comprehensively such
developments. Comprehensive Geographical Information System (CGIS) thus comes.

CGIS provides an in-depth, state-of-the-art review of GIS with an emphasis on basic theories, systematic
methods, state-of-the-art technologies, and its applications in many different areas, not only physical envi-
ronment but also socioeconomics. Organized into three volumes, GIS theories and techniques, GIS applications
for environment and resources, and GIS applications for socioeconomics and humanity, the book comprises 79
chapters, providing a comprehensive coverage of various aspects of GIS. In particular, a rich set of applications
in socioeconomics and humanity are presented in the book. Authored and peer-reviewed by recognized scholars
in the area of GIS, each chapter provides an overview of the topic, methods used, and case studies.

The first volume of the book covers a wide spectrum of topics related to GIS methods and techniques, ranging
from data management and analysis to various new types of GIS, e.g., virtual GIS and mobile GIS. While the
fundamental topics in GIS such as data management, data analysis, and data quality are included, the latest
developments in spaceetime GIS, cyber GIS, virtual GIS, mobile GIS, and public GIS are also covered.
Remarkably, new perspectives on GIS and geocomputation are also provided. The further development of GIS is
driven by the demand on applications, and various new data may be required. Big data has emerged to provide
an opportunity to fuel the GIS development. Mike Goodchild provides an overview of such data, which is
followed by voluntary geographic information, an important part of big geodata. Closely related to big data,
open data is, however, accessible public data; they are not the same. Spatial analysis is indispensable for a GIS.
After an overview of spatial analysis methods, big data analytics, spatial metrics, spatial optimization, and other
relevant topics are included. Space and time are interrelated information, and their integration has long been an
active research area in GIS. This section covers spaceetime data mining, spaceetime GIS, and time geography.
Drawing on the developments in computer science and engineering, GIS has evolved to become more powerful
through the integration with virtual reality and wireless technologies. Clearly, this volume provides new insights
into different designs of GIS catering to the widespread needs of applications. This volume of the book will be of
great interest not just to GIS researchers, but also to computer scientists and engineers.

Environment and resources are fundamental to human society. The second volume of the book focuses on
GIS applications in these areas. GIS has been widely used in the areas related to natural environments; hence
various such applications using GIS, such as vegetation, soil, hydrology, geomorphology, wetland, glaciers and
glacial landforms, and paleolimnology, are covered. Resources and energy are closely related to the environ-
ment and so applications in these aspects are also covered. Climate change represents a challenge to human
sustainable development. One reason for this is that climate change is increasing the odds of more extreme
weather events taking place. It is apparent that GIS has been capitalized on to address the related issues, starting
from climatology and meteorology to disaster management and vulnerability analysis. Parallel to applications
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for natural environment, resources, energy, and climate, GIS has also applied to human production activities,
such as agriculture and aquaculture, which has also been covered in this volume. In addition to natural envi-
ronment, built environment and its associated topics such as place-making, public transit, and land use
modeling and planning are also included.

Parallel to the second volume, the third volume of the book covers the applications of GIS in socioeconomics
and humanities. Comparatively such applications are not as many as those in environment and resources.
However, due to the increasing availability of data that can capture human activities, more applications have
emerged in the areas, including economics, business management, history, linguistics, politics, law, human
behavior, and policy making. Starting from Dan Griffith’s overview of GIS and spatial statistics/econometrics,
GIS applications in real estate, local economic development, and carbon mitigation are then covered. Inno-
vation drives economic growth in today’s knowledge-based economy; their relationship is covered in both the
economics section and business management section. In addition to economics, GIS has also been widely
applied to humanities. Such GIS applications as in history, linguistics, politics, and law are included. Human
behavior has been given renewed emphasis due to the advent of social media and other types of big data. The
first chapter in this section provides an overview of urban dynamics and geographic information science; several
chapters are devoted to this topic. Finding evidence to support socioeconomic policy making is a highly
important contribution that GIS can make. This volume also covers several chapters to find evidences for policy
making.

This book could have not been completed without the help and advice of many people. In this regard we
would like to thank a number of people who were instrumental in bringing this project to fruition. First, I would
like to acknowledge the enthusiastic support of an outstanding editorial team including Thomas Cova and
Ming-Hsiang Tsou (Volume 1), Yan Song, Georg Bareth and Chunqiao Song (Volume 2), and Kai Cao and
Elisabete Silva (Volume 3). From the initial discussions of the structure of the book, the selection of authors for
chapters in different volumes, to the encouragement of authors and review of chapters, they have made
significant contributions at each stage of the book. I am very grateful for their invaluable input and hardwork.

I would also like to express my sincere gratitude to the production team at Elsevier, Priscilla, Paula, Katie, and
in particular Laura, for their many efforts, perseverance, and skillful management of every aspect of this project.
Last and certainly not least, I am hugely indebted to all of our authors. We have been extraordinarily fortunate in
attracting individuals from all over the world to take time from their busy schedules to prepare this set of
contributions.

Finally, my special thanks go to my wife Rongrong and our daughter Kate for their love, help, and under-
standing. Without their endless support, this book would have never come to the end.

Bo Huang, Editor in Chief
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1.01.1 Introduction

In the last decade, innovative computing technologies and new software applications have transformed GIS from a centralized,
function-oriented Geographic Information Systems (GISystems) into distributed, user-centered Geospatial Information Services
(GIServices). Many new web services, open data, big data, geospatial cyberinfrastructure, mobile apps, and web map application
programming interfaces (APIs) have become essential components within the GIS ecosystem. The fundamental knowledge of
Geographic Information Science (GIScience) is also changing dramatically. GIS databases have shifted from relational databases
to NoSQL databases. Data collection methods have been changed from paper-based digitization procedures to GPS tracking, to
volunteered geographic information (VGI) and crowdsourcing. GIS software is transforming from desktop standalone
programs to mobile app design, to Cloud-based web services. This article introduces some prominent future development
directions from three aspects of GIS: GISystems, GIServices, and GIScience. Before we can describe these future technological
advances of GIS in detail, it is important to provide a clear definition of the three aspects of GIS and their associated contents as
follows:

l GIS is the abbreviation for geographic information systems or geospatial information services or geographic information science.
It is a multifaceted research and technology domain and a generalized concept for describing geospatial technologies,
applications, and knowledge.

l Geographic Information Systems (GISystems) focus on the development of computing software/hardware for conducting mapping
and spatial analysis functions. Run-time performance, system architecture, information process flow, geocoding, user interface
design, and database management are several key issues for the development of GISystems.

l Geospatial Information Services (GIServices) represent the service perspective of GIS, that is, delivering geospatial information,
mapping services, and spatial analysis tools to end users over the Internet or mobile devices. Usability and User Experience (UX)
are essential components for evaluating the effectiveness of GIServices.

l Geographic Information Science (GIScience) is “the development and use of theories, methods, technology, and data for understanding
geographic processes, relationships, and patterns” (Mark, 2003; UCGIS, 2016 [2002], p. 1). GIScience is question-driven and follows
scientific methods (questions, hypothesis, testing, analysis, and falsification).

l Geospatial cyberinfrastructure is the combination of distributed high-performance geospatial computing resources, comprehensive
geospatial data coverages, wireless mobile networks, real-time geotagged information, geoprocessing web services, and
geographic knowledge. The goal of geospatial cyberinfrastructure is to facilitate the advancement of GIScience research,
geospatial information services, and GIS applications (modified from Zhang and Tsou, 2009).

The main driven force of future GIS development will be the advancement of geospatial cyberinfrastructure, which can enable fast
and robust GISystems, provide smart and intelligent GIServices, and transform GIScience from a specialized scientific discipline into
an important research domain bridging data science, computer science, and geography together. The following section provides
some prominent predictions about the future development of GISystems, GIServices, and GIScience.

1.01.2 The Future Development of GISystems

There are four unstoppable trends in the future development of GISystems: (1) Web-based and Cloud-based GIS; (2) personalized
data collection methods via mobile apps, drones, digital cameras, and portable LIDAR devices; (3) high-performance computing
(HPC) and dynamic data storage services; and (4) lightweight and responsive mapping APIs with lightweight geodata exchange
formats.

In the future, traditional desktop GIS software (such as ArcGIS, ArcGIS Pro, QGIS, gvSIG, uDIG, and MapInfo) probably will be
used only by a small group of GIS professionals (20%) who need to handle sensitive or protected geospatial data within local and
secured workstations. Most GIS users (80%) will utilize Web GIS and Cloud computing frameworks, such as ArcGIS online, Google
Maps, Google Earth, MapBox, and CartoDB toolboxes, to conduct GIS tasks and spatial analysis functions.

1



Mobile GIS apps will be the main personalized data collection tool for future GIS applications. Several popular tools, such as
ESRI Survey 123, ESRI Collector, and GIS Cloud, can enable GIS data collection via mobile phones and combine photos, videos,
surveys, and GPS coordinates into online databases directly. Collected GIS data via mobile devices will be uploaded or synced via
wireless communication to Cloud-based databases or storage services. Other personalized geospatial data collection devices, such as
Unmanned Aircraft Systems (UAS) or Drones, digital cameras, portable 3D LIDAR scanning systems, and mapping vehicles (such as
Google Street View Cars), will be integrated into Web GIS or Cloud GIS platforms seamlessly to provide high-resolution aerial
photos, street views, or digital elevation models for various GIS applications.

Many GIS operations are computational intensive and require huge sizes of memories or data storage spaces. The recent
development of big data and HPC framework, such as Hadoop, Apache Spark, and MapReduce, can be applied in future GIS
data models and databases. These big data computing framework will enhance the performance of GIS operations significantly.
However, the main challenge will be how to convert GIS data and spatial analysis operations suitable for parallel operations
and how to set up the cluster-computing frameworks for various GIS applications. Another promising direction is to utilize graphics
processing units (GPU) for the intensive 3D or animation display of GIS applications.

The future development of GIS software programs will also become more light-weighted and customizable for different
applications. Some new web mapping service APIs and libraries, such as Leaflet, MapBox, CartoDB, and ArcGIS online, can provide
dynamic mapping or spatial query functions for lightweight web apps or mobile apps (Tsou et al., 2015). GIS is no longer a large
standalone system equipped with hundreds of functions inside a box but rather a customizable service framework, which can
provide fast and simple GIS functions and services to end users (Tsou, 2011). Along with the development of lightweight mapping
functions (such as Leaflet), lightweight data exchange formats (such as GeoJSON) will become very popular in Web GIS
applications. GeoJSON is a JSON (JavaScript Object Notation)-based geospatial data-interchange format for web apps or mobile
apps. It is a text-based data format utilizing JSON, decimal coordinate systems, and a predefined projection framework. Software
developers can easily develop dynamic and responsive Web GIS by using lightweight mapping APIs and GeoJSON.

In summary, GISystems have evolved from the mainframe computers (in 1970s and 1980s) to desktop GIS (in 1990s), to Web
GIS (in 2000s), and to mobile apps (in 2010s). The performance and functionality of GISystems have been improved significantly
to meet the needs from various GIS users and applications. In the near future, every single GISystem can be linked and integrated
together into a global geospatial cyberinfrastructure (with hundreds of thousands of GIS nodes across the whole world) (Tsou and
Buttenfield, 2002). These dynamic GIS nodes can provide personalized and customizable GIServices for various users. The next
section provides some good examples of future GIServices.

1.01.3 The Future Development of GIServices

GIServices are essential in our daily life. This section focuses on four types of important GIServices and discusses their future
development: navigation services, web mapping services, spatial query and analysis services, and location-based services (LBS).

Navigation services are probably the most popular and heavily used GIServices in both mobile apps and web apps today.
Popular navigation service platforms include Google Maps, Apple maps, HERE, Navigator for ArcGIS, MapQuest, and Bing
maps. Uber app is another good example of navigation services for both drivers and passengers. Navigation services required
comprehensive base road maps with detailed points of interests (POIs), real-time road condition, and traffic updates. One major
application of navigation services in the future will be the development of self-driving cars (autonomous car). Self-driving cars will
require a seamless integration between the navigation services and the sensor data (cameras, LIDAR, etc.) collected in real time on
each vehicle. The future development of navigation services will need to integrate with all traffic cameras, weather stations, and the
sensors collected from nearby vehicles. Hundreds of nearby autonomous cars will create a “mesh network” dynamically, and each
nearby self-driving car can provide and relay traffic data via wireless communication to each other. The mesh network can provide
real-time traffic and road condition updates automatically. All nearby autonomous cars can cooperate in the distribution of traffic
data and navigation services together.

Recently, web mapping services have been applied in various mobile apps and GIS applications. For example, Pokémon GO
utilized popular Google Mapping services to create a virtual world for users to catch monsters, eggs, and treasures. Zilliow and
Foursquare used Google Mapping services to provide locational information and maps for their customers. Several prominent
web mapping service developers, such as MapBox and CartoDB, have developed interactive, responsive, and fast mapping services
to different GIS applications. One challenge of web mapping services is to provide effective map display on multiple devices using
the same map contents. For example, users will need to display a campus map on his/her smart watches (320�320), mobile
phones (750�1334), high-resolution computer screen (3840�1600), and smart 8K UHD TV (7680�4320) simultaneously.
Advanced map generalization and intelligent cartographic mapping principles will be developed to transform web maps into
responsive display for fitting different devices and screen resolutions. Web mapping services will provide both 2D and 3D display
functions for next generation of web map applications for virtual reality (VR) and augmented reality (AR) applications.

In terms of spatial query and analysis services, one future application for utilizing these services will be the development of Smart
Cities and Smart Transportation Systems (Smart Traffic Controls). For example, a visitor will be able to use his/her smart phone to
query the best walking/running route nearby the hotel and to avoid unsafe areas and heavy traffic zones in real time. Car drivers will
get advice and warning about possible traffic jams nearby and provide alternative routing options (which is already available in
Google Maps now). One major future application of spatial analysis services could come from a virtual personal assistant in
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a mobile phone, who can provide recommended shopping, eating, driving and parking, movie watching, dating, and exercising
choices nearby the locations of users. Some advanced spatial analysis functions, such as clustered dots and hot spot analysis,
can be applied to the crowd management for music concerts, conference meetings, and popular events.

LBS focus on the collection of consumer information based on the location of users and the nearby environment. LBS can
include or combine with navigation services, web mapping services, and spatial analysis services. However, LBS will only focus
on the nearby information or POI, rather than providing information far away from the users. Currently, the outdoor locations
of users can be defined by GPS signals, Wi-Fi signatures, and cellular tower signal triangulation. One current technological challenge
of LBS is how to provide a better and accurate indoor positioning system (IPS). Several possible technological frameworks of IPS
include Wi-Fi access point signal triangulation, magnetic positioning, iBeacon, RFID tags, etc. However, most of IPSs require the
setup of indoor environment labels in advance or the 3D scanning of each room before the positioning process. Some potential
LBS applications for IPS are hospital patient room arrangement, conference exhibit halls, and popular event promotions.

1.01.4 The Future Development of GIScience

The knowledge domain of GIScience will change dramatically in the next decade driven by new types of GIServices and new design
of GISystems. Four research topics in GIScience are highlighted in this section as representative trends: machine learning methods,
crowdsourcing data, new data models for big data, and human dynamics.

Machine learning methods are derived from the development of artificial intelligence (AI) and statistic models. The GIScience
community has developed a few applications utilizing AI and expert systems before (Openshaw and Openshaw, 1997). However,
due to the lack of programming skills and suitable HPC frameworks, very few GIS researchers have developed fully functional AI or
expert systems for GIS applications. Some cartographers have developed very limited expert systems for providing intelligent
mapping, text labeling, and symbolization functions before. The recent development of geospatial cyberinfrastructure and
easy-to-learn programming languages, such as Python and R, has enabled GIScientists to utilize powerful machine learning methods
to develop intelligent web mapping and spatial analysis functions. Several machine learning methods (such as K-means, logistic
regression, decision tree, deep learning, principal component analysis (PCA), support vector machine (SVM), and Naïve Bayes)
can be applied in GIS data classification, map symbolization, spatial analysis, spatial pattern detection, and geovisualization.
For example, dasymetric mapping methods can be improved by using SVM or Naïve Bayes to estimate the population density based
on different types of land use and land cover. Geographic weighted regression (GWR) models can adopt PCA to provide a better
explanation of multi-variables’ contribution to the targeted data layer.

Crowdsourcing and citizen science have become major data input methods in GIScience. VGI is one popular type of
crowdsourced data. Some VGI applications include OpenStreetMap, Waze, and iNaturalist. Other crowdsourced data input
methods include geotagged social media data, wearable sensor data for mHealth, or GPS tracking data from bikes or taxi, which
are not VGI. One major challenge of crowdsourced data is how to assess the credibility and accuracy of collected data. Since there
are many errors in crowdsourced data, it is extremely important to develop effective data filtering, data cleaning, and data validation
procedures for crowdsourced data. Sampling problems and user biases are other major concerns in crowdsourced data. For example,
social media users (such as Twitter and Instagram) are mostly under age 35 and live in urban areas. Most volunteers working in
OpenStreetMap are white male persons with full-time jobs.

Traditional GIS data models include vector-based object data model and raster-based field data model. However, very few
geodatabases can provide effective space–time relationship for advanced spatiotemporal geography analysis. Along with new types
of big data collections (such as social media and crowdsourced data), many traditional GIS models are no longer suitable for big
geodata. NoSQL databases (as MongoDB) and new space-time data models will becomemore popular in the future, and researchers
can utilize new data models to build more effective and customizable geospatial data analytics.

Another emerging research topic in GIScience is human dynamics, which can be defined as a transdisciplinary research field
focusing on the understanding of dynamic patterns, relationships, narratives, changes, and transitions of human activities,
behaviors, and communications. Many scientific research projects (in the fields of public health, GIScience, civil engineering,
and computer science) are trying to study human dynamics and human behaviors. One main goal of these projects is to develop
effective intervention methods to modify or change human behaviors and to resolve public health problems (such as obesity,
disease outbreaks, and smoking behaviors) or transportation problem (traffic jams and vehicle incidents). Several innovative
data collection methods can be applied to study human dynamics. For example, researchers can use computer vision algorithms
to analyze Google Street Views and to estimate the built environment index and neighborhood social status. Combined CCTVs
in urban areas and street traffic cameras can be used to analyze the usage of bike lanes and biking behaviors in different commu-
nities/neighborhoods. The frequency of geotagged social media check-ins can be used to estimate dynamic changes of population
density for supporting disaster evacuation decision support systems.

1.01.5 The Future Societal Impacts of GIS Development

This article highlighted several prominent applications and topics in the future development of GISystems, GIServices, and
GIScience. Many GIS researchers may think that the advancement of future GIS applications can provide better information services
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for the general public and improve quality of life for everyone. However, the spatial disparity of geospatial technology and the
potential digital discrimination between rural and urban areas could trigger serious social problems and social unrest in the future.
Since the development of geospatial cyberinfrastructure is expensive and unequal, there are huge gaps of cyberinfrastructure
between rural and urban areas, between developed and developing countries, and between the rich and the poor. For example,
major cities in the United States have the most updated high-resolution aerial photos compared to some African regions, which
only have low-resolution satellite images 10 years ago. Google Street Views are updated frequently in New York and San Francisco,
but many small US cities have no Google Street Views at all. The spatial disparity of geospatial infrastructure can trigger “digital
discrimination” to the people who live in low-income and rural areas. Along with the development of future GIServices, such as
self-driving cars and smart transportation systems, people who live in rural and low-income areas will not be able to access these
advanced GIServices. The advancement of geospatial technology will exaggerate the digital discrimination and the digital divide
between urban and rural areas. The rich get richer and the poor get poorer.

To solve these potential social unrest and social problems, local and federal governments need to make significant investment of
geospatial cyberinfrastructure in rural and low-income areas to reduce the disparities of GIServices across different regions.
Hopefully, everyone can enjoy the progress of GISystems and GIServices without worrying potential social unrest in the future.
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1.02.1 Introduction

Geographers embraced computing technology in their research and applications in the very early years of computers (Chrisman,
2006). Thoughts of using computational methods to solve geographic problems started to emerge in the 1960s (Chorley and Hag-
gett, 1967). Such a trend gave rise to geographic information systems (GIS), which quickly became the dominating terminology in
almost every field that involves spatial data. However, many quantitative geographers appeared to refuse to equate GIS with the
computational needs and applications in geography. As a consequence, 1996 saw the first GeoComputation conference held by
the Department of Geography at the University of Leeds. The organizers of this conference described geocomputation as a new para-
digm and declared the “dawning of a new era of geocomputation” (Openshaw and Abrahart, 1996). Themes of the first GeoCom-
putation conference include high-performance computing, artificial intelligence, and GIS. But the extent and scope of the conference
sequence, along with the research field, have quickly changed to embrace broader technological advances and application domains
(Gahegan, 1999).

Recent years saw a clear trend in computing technology that has started to shape the field of geocomputation. Many of the tradi-
tional geocomputational tasks such as mapping and spatial analysis have moved off the desktop and onto Web-based GIS plat-
forms. Entire computational workflows, such as data collection, analysis, and mapping, can be done on hardware agnostic
webpages. In addition to these new geocomputational capabilities, data-driven geography (Miller and Goodchild, 2015) has
replaced the data paucity of early geocomputation and GIS. To be sure, traditional desktop platforms will still have their place,
but for those with limited resources and technical skills, the Web offers a powerful geocomputational platform at costs significantly
less than in the past.

In this new era of Web GIS, location-aware mobile devices, inexpensive cloud computing, and widespread broadband connec-
tivity tend to dominate the conversation. However, in the background, the Web connects all of these technologies together. Without
the Web, many of these technologies would be stranded on islands of spatial data computing as they were in the previous era;
unable to communicate because of incompatible programs and protocols. The modern Web has connected the many islands of
computing together and become the home of much of the data and processing power.

This article will discuss significant steps in the progress of computing technology and then present a case study that embodies
many of the modern aspects of geocomputation. In the next section, we discuss computation in GIS by providing a narrative of data
gathering and management techniques. In section “Computing on the World Wide Web”, cloud infrastructure will be explained.
We reinforce the idea that the cloud is what makes many of the new computing capabilities possible as it provides the facilities to
build and host the Web. Cloud infrastructure has removed much of the friction from the process of deploying GIS applications. It
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has lessened the barriers of entry to the Web and allowed individuals and small companies access to what was once prohibitively
expensive technology. In section “The Move to the Cloud”, we continue the discussion of cloud computing with a focus placed on
the enabling techniques. In section “Computational Methods”, we overview some of the computational methods that can be used
to provide behind-the-scene analysis of spatial data. In the final part of this article we will present a case study that employs many of
the themes described above. The case study application lives in the cloud where it actively collects data for updated analysis and
visualization in the cloud.

It must be pointed out that in this article we often use the terms geocomputation and GIS in an almost interchangeable fashion
when discussing computational issues in handling spatial data. We recognize that GIS is a much broader term that involves issues
beyond computation. But we also recognize that it is difficult to clearly delineate the strictly computational aspects from what we
would normally call GIS, even though the term geocomputation did not become part of the literature until the late 1990s. In the text
that follows, when the term GIS is used, we intend to focus on the computation aspect of GIS.

1.02.2 Early Stage of Geocomputation and GIS

For those new to geocomputation and GIS, it is easy to think that the current environment, where computing resources and spatial
data are abundant, has always been the norm. This is not so. The explosion of available data and geocomputation resources is
a phenomenon as recent as the last decade. There were two previous eras of geocomputation and GIS that were much different.
It is important to have some historical perspective to give context to the current environment. As this collection has an interdisci-
plinary scope, a review of the geocomputation landscape will be useful to the reader coming to this work from other disciplines.

We roughly identify three eras of developments in geocomputation and GIS. In the first era, computing resources and spatial data
were scarce. In the very beginning of the discipline, computation on spatial data was done on large and highly expensive mainframe
computers. It was mostly governments and universities who could afford these mainframe computers and so they were some of the
few who could produce and analyze digital spatial data. Indeed, the term GIS was coined in the 1960s by Roger Tomlinson’s group
who were working on the Canada Geographic Information System (Tomlinson, 1998). The Canada GIS was a large government
program that used expensive computer equipment to solve a spatial problem that could not be feasibly completed with manual
analysis by humans using paper maps. It was only at that scale that computing on spatial data made economic sense. In this early
era, computers were as large as whole rooms. Programs and data were stored and entered into a computer through punch cards and
magnetic tape. Most output was to a printer, not to a screen, which was an expensive and optional add-on. The fundamental ideas of
geocomputation also saw their roots in this early era but resources were so scarce that little progress could be made.

Much of the early data were digitized from existing paper maps. These maps could be stitched together to form larger data sets.
Areal imagery taken with film cameras was also a source of spatial data (Campbell and Wynne, 2011). Photos could be digitized
into files for analysis using scanning equipment to create digital copies (Faust, 1998). Areal imagery produced from photographs
changed to remote sensing when electronic sensors began to take images without film and outside the range of the visible spectrum.
Just like spatial data analysis, data collection required expensive equipment and labor. Availability of spatial data and computing
resources was very limited for most researchers in this first era.

In the second era of geocomputation and GIS, Moore’s Law (Moore, 1965) eventually made computing cheap enough to enable
GIS on desktop computers. New commercial as well as free software became available to do mapping and analysis (Hart and Dol-
bear, 2013; Goran, 1998). This move from the mainframe to the desktop was a significant shift in GIS. The drop in price was signif-
icant enough that both public and private sectors started building capacities to collect and process geographic data sets. However,
during this second period, many of these computers were still islands of computing. If they were attached to networks, those
networks often used LAN (local area network) protocols like IPX/SPX to share resources like file servers and printers on small iso-
lated networks. These protocols could not communicate with the larger Internet. If data were to be shared, they often had to be put
on physical media and transferred.

The data island effect could (and still does) happen for reasons other than technical. GIS interoperability can also be restricted
for of a number of institutional reasons. For instance, in the United States there has been little coordination or standardization
among mapping agencies. Maps created at the county level often do not align their data or share standards with adjacent counties.
This happens again at the state level. Even if the same software and file formats are used, researchers trying to create regional maps
have been faced with collecting data from multiple entities. Despite powerful computers and fast networks, computing spatial data
can still be impeded by institutional barriers.

GPS (global positioning system) started to be used in this second period of geocomputation and GIS development. GPS has
become an important tool as it makes spatial data easier and cheaper to collect. GPS accelerated the collection of spatial data
but was limited in use in early applications. GPS was originally restricted to use by the military. When GPS was made available
to the public the signal was intentionally degraded to decrease accuracy to 50 m. It wasn’t until the year 2000 that the signal degra-
dation was turned off and GPS receivers could get good accuracy without assistance from ground stations. GPS greatly increased the
speed of accurate data collection. However, in the early period of GPS use, it could still be an expensive, technical task to take a unit
into the field, collect data, and upload those data to specialized and often expensive mapping software in order to do analysis and
mapping. It wasn’t until later when GPS points could be automatically uploaded and mapped through Web connectivity that GPS
truly exploded as a collection device.
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The Internet slowly started to extend into the islands of computing, first by phone lines and later using broadband. The Internet’s
communication protocol, TCP/IP, weeded out competing standards and eventually most computers were connected the Internet. At
this point though, data were still mostly static files transferred through traditional Internet protocols like file transfer protocol (FTP)
for larger files and email for smaller files. More complex data containers like spatial databases existed but were often secured behind
firewalls, thus limiting their usefulness.

During these early periods, computation of spatial data was conducted using a variety of static data files. Some of the most
common early versions of static data, such as ASCII text files, would be recognized today. These were efficient means of sharing
tabular data that associated attributes with geographic entities. They also worked well for describing where points were located.
However, as more complex features and geographies emerged with better collection methods, ASCII files started to show their limi-
tations. For discrete vector data, combining binary and text formats was a more efficient way of storing data. Formats like the shape-
file (ESRI, 1998) were able to store complex geometries and attributes in compressed binary formats while still linking to text data
for attribute data.

Static data files have served the purpose of spatial data computation well but they have many limitations. These limitations have
become more obvious as networks have tied together millions of computers. One of the problems with static files is that the entire
file has to be downloaded and parsed even if just one row of information is needed. Static files may be very large. Some data from
the US Census are multiple gigabytes in size. Getting these files may not be a problem on a fast network with a powerful computer.
However, on a mobile network or with a resource-limited device, it may take a long time to download and parse the data.

The growing size of static files poses problems for many commercial off-the-shelf programs. Most productivity applications like
Microsoft Excel are not designed for large data sets. They have built-in limits to the amount of data they can handle. These limita-
tions are traded for performance and simplicity. Large static files may require special programs or programming scripts for compu-
tation or for extracting more manageable data sets that can be manipulated with productivity software.

Another limitation of static files is that they have problems holding multiple types of data efficiently. They are usually set up with
a particular type of data intended for them. Researchers can now collect much more data from a diverse landscape of sources. One of
the increasingly important trends is to gather data from individual silos and combine them for new analysis. Static files are poorly
suited to complex queries across multiple tables of data. These types of research are better suited to databases with the ability to
index data in multiple dimensions.

Static files still have a place for publishing many data types and they will still be around for a long time, but they are increasingly
sidelined by databases and Web services. Particularly in Web mapping applications, sending all possible data to a client and having
the client computer sift through them is a problematic model on bandwidth-limited mobile devices. Spatial databases are becoming
more popular because they now have the utility and security of Web technologies which we will discuss below.

1.02.3 Computing on the World Wide Web

The Web has been one of the greatest influences on geocomputation and GIS, and its effects can be observed in multiple ways. To
begin with, it has become a platform for collecting, analyzing, and visualizing GIS data. Online mapping platforms from Carto,
Mapbox, Tableau, and Esri allow users to present spatial data on platform agnostic Web interfaces from any computer while the
computational tasks are performed on the server side, behind the scene. In addition, the Web has standardized communication
protocols and formats so that data can flow easily between systems. This important bridging function will be explained in greater
detail below.

It is important to make the distinction between the Web and the Internet as to most people the Web and the Internet are the
same. Speaking simplistically, the Web is an application that runs through the communication pipe provided by the Internet. It
may be a surprise to some but the first four nodes of the ARPANET, the precursor to the Internet, were connected in the summer
of 1969 (Lukasik, 2011; Fidler and Currie, 2015). The Web was not developed by Tim Berners-Lee until the early 1990s. By this time
email, file transfer, newsgroups, and other networked programs were well established on the Internet. At that time too, there were
other competing systems for sharing documents like Gopher and wide area information server (WAIS). Berners-Lee credits the flex-
ibility, open standards, and decentralized nature of the Web for making it the eventual winner for document sharing (Berners-Lee
et al., 2000). These attributes also made it well suited for spatial data.

Tim Berners-Lee’s description of one of the first real successful uses of the Web is a great example of the transition in data access
created by theWeb. This transition is echoed with data in the GIS world. At CERN, there was frequent staff turnover because research
projects were often temporary. Printed phone books could not keep up with the constant change and were inevitably inaccurate. An
electronic up-to-date version of the phone book could be accessed through the mainframe computer. However, accessing the main-
frame required credentials. Even when logged in, sessions would time out to free up the limited number of licenses. Researchers had
to log in every time they wanted to check a phone number. A webpage that accessed the phone number database was created that
would allow read-only access to the mainframe from any computer on the network running the Web software (Berners-Lee et al.,
2000). Requests were instantaneous and stateless so they didn’t tie up connections. They also didn’t require authentication as the
phone book was public data. Many more hosts could be served with the same resources. This was a great example of the Web
providing access to public information that was limited through authentication and commercial licensing.

The three most crucial components that make the Web work are a set of communication protocols and file standards (Fu and
Sun, 2010) that govern how data are transmitted. The first component is the hypertext transfer protocol (HTTP). HTTP transfers data
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between client and server using an IP address and a port at that address. Ports differentiate applications on the same host. If a server
is thought of as a warehouse, the IP address is the street address and the port is the dock door. Applications have officially designated
ports maintained by the Internet Assigned Numbers Authority so that applications know the default port to communicate on. For
instance, email servers use port 25 to sendmail, and PostgreSQL servers use port 5432. The game DOOM is assigned port 666. These
ports are open on local networks where access to a network can be physically controlled but it is unwise to open many application
ports to the wider Internet for security reasons. These ports that serve out data are blocked by firewalls where the local network inter-
faces with the Internet. This is where the Web serves a valuable function.

One of the important capabilities of HTTP is the bridging function it performs for many applications. Web servers run on port 80
for HTTP and 443 for encrypted traffic on HTTPS. Since this port is already open for webpages, Web servers can act as proxies for
resources secured behind a firewall. This is commonly the case for GIS servers. They take requests on port 80, contact a database such
as a PostgreSQL server on port 5432 to request data, and return the results on port 80 to the client. Web servers allow protected
resources on a network to be more securely shared with the Internet. This is one of the most important functions they serve.

The second component of the Web, hypertext markup language (HTML), is the base file format for sending webpages. HTML
contains content such as the stock quotes and recipe ingredients that are on a webpage. The presentation of the content can be
enhanced with cascading style sheets (CSS), Javascript, and other browser extensions like Flash or Silverlight, but the base container
is HTML. HTML is an evolving standard. It is expanding to embrace capabilities that were once provided by add-ons like Flash or
Silverlight. As HTML evolves, it continues to bring more sophisticated capabilities to the platform agnostic Web.

The final important part of the Web is the address system that allows resources to be accessed on the Web. Uniform resource
locators (URLs) are the Web addresses that describe where a resource is located. The first part of a URL is the hostname of the
computer that has the desired data. This hostname part of the URL builds upon the already established domain name system
that allows Internet-connected computers find each other. The second part of the URL describes the resource requested from the
server. This part can be a file name, a search query, or data being returned to the server. This last part of the URL is one of the things
that makes the Web so powerful. As long as the server getting the request knows how to parse the URL, it can contain a wide array of
text. This gives developers great latitude when programming applications for Web servers.

TheWeb has come a long way since its inception. Beautiful and well-designed webpages have replaced earlier, much cruder ones.
But the facade of sophisticated webpages hides the even more important changes to the way webpages communicate data. Modern
webpages rely on data being passed between client and server silently in the background. This communication often happens auto-
matically without any interaction from the user. Predictive typing that guesses what a user is searching for on Google and prepo-
pulates the search box is an example of data communication that is transparent to the webpage user. In the case of maps, the page
needs data to update the map when a user interacts with it by panning, zooming, or switching layers on and off. The collection of
protocols and technologies that communicate in the background to update themap seamlessly are part of what is known asWeb 2.0
Goodchild (2007). Web 2.0 includes many themes of two-way communication between actors instead of one way consumption
from few servers to many consumers (O’reilly, 2007), but this work will limit itself to a handful of protocols that make Web 2.0
work for Web GIS.

These “Slippy” maps are a great example of Web 2.0 in the realm of geocomputation and GIS. Maps on the Web existed before
Web 2.0 but they were much more difficult to use. Panning or zooming required reloading the entire webpage with the new map
extent and zoom, and of course new ads. Web 2.0 makes maps much more usable than early versions. Web 2.0 transmits data in the
background and only updates the region of the webpage that has the map on it. This function is provided mostly through protocols
like asynchronous Javascript and XML (AJAX). These behind-the-scenes protocols have made data communication agnostic to the
various operating systems, databases, and applications that share data all over the world. This standardization is helping provide
access to many more data sets that were previously only available through tedious manual collection methods. It is one of the
primary reasons that the problem of Big Data (Miller and Goodchild, 2015) exists. The variety and volume of data that can now
be collected are exceeding our ability to process and store them.

All of these available data have pushed researchers to use more sophisticated storage methods than traditional static files. Just as
computer hardware has decreased in price, software, much of it through open-source development, has also become cheaper while
at the same time becoming more sophisticated. In geocomputation and GIS, this has been the case with spatial databases. Spatial
databases are the best method to maximize the research potential of the growing tide of collected data. Spatial databases will be
discussed in the next section.

1.02.3.1 Spatial Databases

Spatial databases address many of the limitations of static data files. Spatial databases can contain large amounts of data in multiple
tables with linking mechanisms that maintain data integrity. They can enforce restrictions on data entry to limit collection of incon-
sistent data. As they grow, they can span multiple physical machines as well as maintain copies of themselves for redundancy.
Spatial databases can also maintain changes to a set of spatial data and track which users are making edits for approval and auditing.

It is important to make the distinction between typical databases and spatial databases. Spatial databases are standard databases
that have been extended to accept spatial data types and queries. Spatial data types store feature geometry that describes shape and
location. The geometry of spatial features is compressed and stored in a binary field along with the attribute data that describe the
feature. In addition, the database application code is extended so that typical queries using alphanumeric characters and logical
operators are extended to take advantage of location, proximity, and topology. For instance, in a typical customer database

8 Geocomputation: Data, Methods, and Applications in a New Era



a company might query for all customers whose last name begins with a certain letter. In a spatial database, they can query for all
customers within proximity of a particular store or find clusters of customers. These types of spatial transactions are not available in
typical databases.

Spatial databases existed long before the Web but they were often hidden behind firewalls or authentication and were unavail-
able to most users. Because spatial databases are usually hosted on powerful servers and are always connected to the Internet, they
may become targets for hackers. Even with user authentication and read-only access, malicious users may attempt to gain unautho-
rized access to the database using bugs in the database or operating system programming code. That was the case when SQL
Slammer used a buffer overrun exploitation to take control of over 75,000 SQL servers and brought the Internet to a crawl (Micro-
soft, 2003).

Traditional software vendors like Microsoft, Oracle, and IBM all have database offerings that can be used for geocomputation
and GIS applications. Database software is often very expensive to implement in terms of both the cost of the software and the labor
to implement them. GIS software has benefited greatly from open-source software, and spatial databases are no exception. For
researchers prototyping applications on little or no budget, open-source software offers several free and robust spatial database alter-
natives. The most popular open-sourced spatial database is PostgreSQL, extended with PostGIS.

An emerging trend in databases is a more flexible “noSQL” database. Also called “document databases,” these databases store
data in a format much like a JSON file. These databases don’t have the schemas that enforce data integrity in typical databases. Sche-
maless databases are not as structurally stringent and have flexibility with the data they can hold. This flexibility allows the storage of
dissimilar data but requires that queries be designed to deal with dissimilar data. The most popular schemaless open-source spatial
database software is called MongoDB and has a growing set of spatial capabilities.

Spatial databases have many advantages over static files but they too come with disadvantages. Database servers require signif-
icant hardware resources to host large data sets. The servers have to fit into existing networks with security policies and firewalls. In
most cases, users have to be authenticated which requires maintaining user accounts and permissions.

1.02.3.2 Spatial Data as Web Services

The place where the Web and GIS really connected is the joining of spatial data and Web services. This function is provided by GIS
servers that take spatial data from static files, file geodatabases, and enterprise databases and serve them out using HTTP. These
endpoints are called Web services. These services can serve geographic data as text that describes features, as rendered map tiles,
or as raster coverages. In addition to read-only publishing, Web services can also allow editing of data fromWeb-connected devices.

These Web services have greatly expanded the amount of data available for geocomputation. In addition to providing data for
maps, they also allow users to access data programmatically through code. Software like Python or R can pull data from any Web
service and perform analysis on them. The Web has essentially connected the entire Internet to the command line.

Data transmitted by Web services may take several forms as spatial data can represent the same set of features in multiple ways.
For instance, a feature representing air quality can be represented by geoJSON text with latitude and longitude values, or a set of jpg
images stitched together to make a map. A browser can consume the spatial data in any of these formats and make a map that looks
the same. The method of transfer is transparent to the user.

An example that demonstrates the various ways that data may be served for maps can be seen in a simple map of a city’s side-
walks. Individual sections of sidewalks may exist in a spatial database and have attributes associated with them. These details can
track a section’s condition, ADA compliance, or inspection date. In a large city, there will be hundreds of thousands of these
segments. When exposing this data through a Web service, the segments can be transmitted as text describing the hundreds of thou-
sands of sidewalk segments, or they can be transmitted as images rendered from spatial data in the database and broken into map
tiles showing the thousands of sidewalk segments as images. From a performance perspective, it is much quicker to send the tiles.
However, you may lose the ability to get feature attributes. If the segments are sent by text, care must be taken to filter the number of
features transmitted, or themap will become useless as it hangs trying to download toomany records. There are multiple factors that
must be considered to determine how spatial data are transmitted. A GIS must balance detail, function, and performance. Toomuch
data and a GIS will be too slow to be usable. Too little data and a map is incomplete or has no context.

The format of spatial data provided by a service depends on the type of Web service it is. Three common Web services are Web
mapping services (WMS), Web feature services (WFS), and Web coverage services (WCS). Most people are familiar with WMS. WMS
transmit tiles rendered from spatial data to a client. If these tiles are prerendered, they can be cached on the server to cut down the
time needed to render the images. It may take significant resources to render and store a cached tile service but there is a significant
performance increase in services with many features. Google Maps and Open Street map are examples of a WMS. The slippy map
that looks like a solid canvas is actually many tiles that are stitched together. Web feature services (WFS) return text data that describe
features. Geometry and attributes are transmitted in GML, JSON, or other format. The browser renders the text data into features and
draws a map. The attribute data is often used to symbolize each feature or create hover effects Fig. 1.

Web services do not have to implement a full GIS server to serve geographic data. Web services can serve spatial data in text form
that have simple geographic information encoded like latitude and longitude. For instance, Web services are often used as a front
end for scientific instruments such as air quality meters or weather stations. These instruments provide real-time spatial data
through a Web service. Many manufactures of equipment have switched from proprietary software and interfaces to standards-
based interfaces using Web services and formats like XML and JSON. These interfaces can then be accessed from any computer con-
nected to the Internet using a browser or programmatically through languages like Python or R.
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In addition to simply serving data, some Web services can perform geoprocessing tasks (OGC, 2016). A geoprocessing Web
service can take input from a webpage form or URL request, calculate results using spatial data, and return data to be visualized
on a map. For instance, entering a value in a form or clicking on a map will calculate a drive time radius around a selected point.
These geoprocessing tasks were once only available through desktop software. They can now be done over the Web in a browser.

Even if a website does not have a formal Web service, researchers can still collect data from regular webpages using a technique
called scraping. Scraping uses software to go to a website and parse through the HTML code that makes that page look for particular
data. For instance, data on gas prices can be scraped from crowd-sourced gas price sites like gasbuddy.com. These scraped data can
be stored in a database for further analysis.

Data accessed through any of these sources may be immediately plotted on a map for display or captured and saved. Saved data
can be analyzed for temporal patterns that may not be immediately apparent seen through simple display. It can also be correlated
with other collected data. For example, air quality may be correlated with traffic data, precipitation, or electricity use by factories.
Each of these data sources is published by different entities but combining them may reveal new patterns.

1.02.3.3 New Data Formats

The advances in data sharing made on the Web have led to new file formats for transferring data. Unlike many file types of the past,
these formats are generally based on open standards. For instance, geography markup language (GML) is used to transfer data from
Open Geospatial Consortium (OGC) Web feature services.

Another new file format is Keyhole Markup Language (KML). KML files are a form of extensible markup language (XML). KML
can store spatial data as well as information used for visualization. KML files can store the location and orientation of a viewer of the
spatial data. This viewer position is used in mapping software to define how the viewer sees the data. KML is often associated with
Google as they bought the company that created the standard. KML is used in several Google products including their mapping API
and Google Earth. However, KML has become an open standard and was accepted by the OGC for official standardization in 2008.
(OGC, 2008)

XML-based files are useful for small collections of features. They can be opened and read with any text editor and file contents can
be easily comprehended. A drawback of KML files is that they often have a significant amount of redundant data. In XML files, data
are arranged in hierarchical trees that help describe the data. This is not a problem if the data set is small. However, if thousands of
features are in a KML file, there is a large amount of redundant data that has to be transmitted and parsed. XML files are being used
less frequently as other formats have become more popular.

The inefficiencies of XML led to a search for more efficient transfer formats. One format that became popular was Javascript
object notation (JSON). The JSON format is more efficient to transfer than KML. It stores data as sets of key value pairs. One of
the early sites to implement JSON and popularize its use was Twitter. The large number of sites integrating Twitter data exposed
many programmers to JSON and spread its use.

Multiple spatial data
formats

PostgreSQL
server

geoJSON
GIS server

Ports 80/443

Shapefile

{"executionTime":"2017-01-18 06:19:03 
AM","stationBeanList":[{"id":1,"stationNa
me":"Bicentennial Park", 
"availableDocks":9,"totalDocks":19, 
"latitude":39.955864, "longitude":-
83.003106, "statusValue":"In Service", 
"availableBikes":10, 
"lastCommunicationTime":"2017-01-18 
06:17:58","is_renting":true}]}

Web map service

Web feature
service

Fig. 1 Spatial data translated by a server into tiles and JSON.
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JSON is useful for transmitting tweets and sports scores but it originally did not have a formal format for spatial data. In order to
address the issues of spatial data, an extension of JSON called GeoJSON was created (Butler et al., 2016). GeoJSON was explicitly
created for spatial data and has become one of the most popular formats for transmitting feature data. One limitation of geoJSON is
that it does not store topology. To address this issue and add a more compact format, TOPOJSON was created. TOPOJSON is an
extension of GeoJSON (Bostock and Metcalf, 2016).

1.02.3.4 New Challenges of the Web

The standardization of data transfer that the Web enabled made much more data available to researchers. In addition to traditional
providers of geographic data, many instruments and devices are also sharing data. This is not a new problem to GIS, or going farther
back, to general cartography. Arthur Robinson wrote about cartography in 1952 at the very beginning of digital computers, “The ability
to gather and reproduce data has far outstripped our ability to present it” (Robinson, 1952). That was before GPS was available on
billions of smart devices. The explosion of data is not a new problem but it is getting closer to the end user who in the past was not
involved in the data process. It used to be that the cartographer filtered and generalized data to create a paper map. When desktop
GIS came along, the cartographic process of filtering and generalization of data became a dynamic process for the GIS operator. In order
for a GIS to be usable, data are often filtered and symbolized at different scales but this process was still hidden from the end user. The
varying symbologies thatmakeGIS analysisworkwellon thedesktopareoften invisible in themaps that are theoutputof aGIS.With the
Web platform, the end user is ever closer to the data, switching layers and basemaps, searching, filtering, and performing analysis.

Free data published on the Web is a boon for researchers, but it also comes with risks. There is no guarantee that the data will be
available online at all the times. Sites may go down for maintenance or upgrades. Site upgrades may change Web service URL syntax
or paths to data. These changes may break a data collection process or a map based on published data. Researchers must think about
the long-term goals of their data collection and research. If they feel the data sources may not be stable, it may be necessary to extract
and self host the data.

With all the available data just a few lines of code away, there is a temptation for the Web GIS builder to want to put all the
available data into a GIS application and let the user find what they want. This type of application has come to be known as “kitchen
sink” GIS. These applications are often confusing and laden with domain-specific terms and acronyms. Strategies are emerging to
produce more curated GIS applications.

As described above, data may be published in multiple formats. In some cases the researcher can collect whichever format is
desired. In many cases though, data are published in a format that is inconvenient or unusable to the researcher. In these cases,
data must be downloaded and transformed to a format usable by the researcher. This can take significant technical skills.

1.02.4 The Move to the Cloud

Research usingWeb services described above has been aided by themove of computing infrastructure into the cloud. The term cloud
infrastructure has become a buzzword as of late. In general it means purchasing computing resources as services instead of physical
entities from centralized providers connected to the Internet. These services may be hosted by an off-premise commercial provider,
or they can be localized data centers within a large organization. They can even be a combination of the two with some data and
services on premises and older data in “cold storage” offsite. With cloud infrastructure, customers do not have to consider any of the
complex details of building advanced networks. They just rent capacity.

Amazon was the first major provider of cloud infrastructure. Amazon began providing cloud services in earnest when they started
renting out excess capacity they had installed for their online store (Wingfield, 2016). Other large providers soon followed and
cloud infrastructure is now available from many providers including Microsoft, Google, Digital Ocean, and Rackspace. Infrastruc-
ture has now been commoditized to such a degree that entire clusters of servers can be purchased and deployed in hours with
nothing more needed than a credit card. As Moore’s Law and competition take hold of the market, infrastructure services are getting
even cheaper. These new resources available outside the restrictions and limitation of institutional network policies offer many
opportunities for researchers to experiment, make small prototypes to demonstrate feasibility, and to conduct resource-intensive
research on temporary basis without having to buy permanent hardware that will soon be obsolete.

Infrastructure services exist at different levels. Perhaps the most common example is putting files into Dropbox, Google Drive, or
Microsoft Onedrive, and having them available through a browser on any computer or mobile device. In the past, it was common
for these files to be stored on a file server on a school or work network and not be available off the network. This is another example
of an old technology being made more useful and flexible through Web services. File storage is just a small part of the stack of avail-
able services. At the base of the stack is “bare metal” hosting where hardware or virtual hardware is provided for a customer. Moving
up the stack, applications like databases andWeb servers can be rented that share space on common hosts. At the top are services like
computation and file storage. We will discuss some of these in more depth.

1.02.4.1 Host Virtualization

Host virtualization refers to running operating systems on a virtual set of hardware instead of physical hardware (Fig. 2). Each
virtual machine (VM) thinks that it is running on physical hardware. Multiple VMs, each with their own configuration,
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applications, and security, can share a single set of hardware. Each VM has a complete installation of files just like a physical
machine and can be addressed from the network as an individual server. However, these VMs all share the same physical host
machine.

1.02.4.1.1 Why virtualization
In the past, it was often the case that data centers were full of servers that only ran a single application that had to have its own
hardware because it conflicted with other software. These servers used very little of a computer’s resources most of the day when
they were being used and idled the rest of the day. The hardware for these servers was expensive and when many of them were
put in one room, they took a large amount of energy to run and cool. Today, data centers full of physical hardware are being
condensed onto powerful VM host servers that can contain hundreds of separate VMs. Increasing capacity provided throughMoore’s
Law has meant that hardware has vastly outpaced the needs of most users and applications. Server hardware is now powerful
enough to host multiple operating systems without performance degradation.

There are many advantages of host virtualization. A VM exists as one large file. All of its operating system files, applications, and
data are contained in that one file. Because they are one file, they can be backed up or transitioned to different hardware. In addition,
a differencing file can be used to snapshot the state of a VM before any significant change like software installation or configuration
modification is made to the VM. If the change encounters problems, it is easy to roll back the system state by simply deleting the
checkpoint snapshot.

Another advantage to using virtualization is the ability to create VMs from images that already have particular configurations of
software installed. Base VM configurations can be stored in libraries so that new machines can be provisioned by simply copying
a VM image from a library and configuring it. The time and expertise needed to complete a fresh install of all of the software are
avoided. These libraries can be hosted or public. Both Amazon and Microsoft keep libraries of VM images.

VMs have virtual hardware that can be adjusted, prioritized, and shared. Small test VM servers can share limited resources while
important production VMs can be provisioned more processors and memory. Provisioning may be done on a temporary basis. If
a research project is going to be doing resource-intensive activities, it can be scheduled for off-peak hours when the other VMs on
a physical host will have little activity. In the commercial world, seasonal companies like tax preparers or holiday merchants may
pay for more virtual capacity during their peak season and throttle back during the off season.

Prototyping is another useful application of virtualization. VMs can be prototyped on a client and then moved to a server envi-
ronment with more resources when the VM is ready. This allows flexibility of configuration and testing while not on a production
network.

VMs may be used on fast networks disconnected from the Internet or low bandwidth connections and then migrated to high-
speed networks. For instance, one workflow might have a researcher build a virtual machine while disconnected from the Internet
on a long airplane flight. After arrival on a remote disconnected site, the researcher may use local wireless to share and collect data
with other researchers. During remote data collection, the VM can be temporarily moved to a high-speed internet connection to sync
data with a home institution’s computers. When the researcher returns to their institution, they may choose to migrate the VM to
robust hardware to conduct resource-intensive data processing. The entire VM and all of its data and configuration can be moved to
a server infrastructure by moving one file.

Virtualization has environmental advantages as well. Since network connectivity is the only requirement for management, data
centers full of VM hosts can be located with their environmental footprint in mind. Locating where renewable energy is abundant
decreases a data center’s carbon footprint. A huge part of a data center’s energy consumption is often in cooling the many servers it
contains. If a data center can be located in cool climates or where ample chill water is available, the footprint can be further reduced.
Repurposing power-intensive industrial sites located next to hydro power like aluminum smelting plants is an ideal case (Wilhem,
2015).

Virtualization

Rack mounted
physical hardware

Multiple virtual machines sharing one
physical host

Fig. 2 Several virtual machines on a physical host.
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For those with a historical perspective of computer operating systems, the interoperability ofOSswith virtualizationmay raise some
eyebrows. There has been a long-standing animosity between vendors of computer operating systems, particularly between Microsoft
and the open-source community. This has recently changed as Microsoft has joined the Linux Foundation (Bright, 2016), supports
open-sourceoperating systemson their cloudplatformAzure, andhas recently releasedaversionofMicrosoft SQLserver for Linux.While
Linux has yet to take over the desktopmarket, its server versions are increasingly popular as free, stable, and high-performing operating
systems.One furthernote about operating systems andvirtualization.While otherOSs canbevirtualizedonApple hardware, it is a viola-
tion of the license agreement to virtualize Apple operating systems on non-Apple hardware, so it is not discussed below.

1.02.4.1.2 Implementing host virtualization
For the researcher who wants to use virtualization for their research, the three most common choices are Microsoft Hyper-V,
VMware, and Oracle VirtualBox. Microsoft Hyper-V is built into most modern versions of Windows Server and has recently been
added to the Windows 10 desktop operating system making it ideal for prototyping VMs on clients and migrating to servers.
Hyper-V supports virtualization of both Linux and Windows operating systems. The host software only runs on Microsoft Windows
computers, so while VMs can be moved and shared among Windows hosts they cannot be moved to other operating systems.
Hyper-V is often used because it is the default onWindows and is a key technology that is strongly supported and actively developed
by Microsoft.

VMWare is the most featured virtualization software and the most expensive. It is targeted toward large enterprise installations.
VMware does have a limited version that can be used for free. Large institutions that host many servers or have their own on prem-
ises cloud often use VMWare to manage their virtualization infrastructure. VMware can host VMs on Windows, Linux, and Apple
operating systems. Because VMware is a licensed product, one drawback of VMware is that it may restrict the sharing of VMs between
researchers at different institutions.

VirtualBox is a very popular choice because it is free and it supports guests onWindows, Linux, and Apple operating systems. This
gives it the greatest flexibility for sharing VMs between researchers. VirtualBox can host Windows and Linux operating systems. It is
the base of the Docker containerization technology that will be discussed below.

1.02.4.2 Containerization

Containerization is a form of virtualization that is becoming increasingly popular. Containerization is an even denser version of
virtualization. As described above, virtualization takes an entire operating system and condenses it down to one file. With full vir-
tualization, all the files for the entire operating system exist within each VM. If a host server has 10 VMs, it has 11 copies (including
its own) of all of the operating system files. A container is a VM that exists as a separate OS from the host OS but it only has the files
that are unique to it. Containerization removes the redundant files and only maintains configuration files necessary to maintain the
system state. This sharing of base files means that the VMs take even fewer resources to host. Also, library images of containers with
stock configurations are much smaller and can be shared more efficiently. Containerization allows researchers to spin up many VMs
to keep applications logically separate while not having to worry about idling hardware.

1.02.4.3 Application Hosting

Cloud infrastructure can be moved further up the stack from whole machines to applications and services. For instance, database
servers require a significant amount of technical expertise to install and maintain. While researchers may know how to program-
matically interact with a database server, installation and configuration is often a difficult task. Databases on large networks
have to conform to institutional policies. They have to sit behind institutional firewalls. This is not the case with cloud services.
Researchers can provision a database server with a credit card. The database server is built and maintained by a cloud host. Commu-
nications with the database can be encrypted through use of a virtual private network to maintain security during transmission of
data.

1.02.4.4 Cloud Computation

Cloud computing is another example of services in the cloud. Significant but temporary computation services can be rented to
process large data sets. Like the database example above, the infrastructure is hidden and the researchers use only what is needed.
Prices may vary based on the time of day so further savings are possible with the correct timing.

It is important to note that most of these services have free tiers. For researchers this is important as it can allow them to complete
a limited proof of concept in order to apply for funding to build a full-scale application. If successful, an application or project can
be scaled up when funding is available. This fast prototyping in the cloud allows researchers to iterate through multiple configu-
rations that may be slowed by institutional friction on a home network.

1.02.4.5 Software as a Service

Software as a service (SaaS) is another category of cloud infrastructure. One of the software as a service categories that has signif-
icantly advanced geocomputation is software version control. Software version control allows multiple programmers to work on
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the same software by managing the changes that are made in the programming code. Multiple programmers can collaborate on the
same software without conflicting. Version control may also implement project management tasks like task lists, documentation,
and time lines. Many version control systems allow developers to share their software with the rest of the world. Collaborative
version control has greatly advanced the progress of research by allowing researchers to build on each other’s work.

The most popular software version control website is Github. Github is a software version control website that allows users to
publish unlimited projects if they are open to the public. Private repositories are also available for a fee. From a GIS perspective,
cloud-based version control plays an important role in developing new capabilities. Many of the libraries used for Web GIS are
open sourced and are hosted on Github. Leaflet.js, one of the most popular open-source mapping software on the Web, is hosted
on Github as is Esri Leaflet, the library that allows Leaflet maps to talk to the most used proprietary servers from Esri.

One final example of SaaS that is particularly useful in a geocomputation and GIS context is Python Anywhere (Anywhere,
2016). Python is an open-source programming language that is particularly popular with spatial research. Python can be used to
collect data automatically on a set schedule from Web services and deposit them in a database. Data collection using Python
requires few resources but must be done from a stable, always online host. That is where Python Anywhere can be useful to
researchers. Python Anywhere offers a programming and application hosting environment in the cloud. It can be reached from
any Web browser on any platform. The service has a free tier and very inexpensive paid tier plans. Python Anywhere can be
used to build simple GIS data collection applications or to prototype applications to use as a proof of concept. In a classroom
context, instructors can get students programming on the Web without setting up complicated infrastructure onsite. Students
can retain their work after classes end or use them across multiple classes.

1.02.5 Computational Methods

The previous sections described the evolution of computation and its move onto the Web. These resources have been linked up with
a tremendous amount of data. New questions are emerging as researchers take advantage and cope with these new opportunities.

With the advances in spatial–temporal data and computing technology, an important direction of handling such data is to
discover useful and nontrivial patterns from the data using various computational methods. This is a vast area that encompasses
a diverse set of methodological spectrum, and it is a daunting task to even try to categorize the methods. Here, we summarize these
computational methods into roughly four groups: visualization, machine learning, spatial optimization, and simulation. We note
that such a categorization is far from being ideal. However, this allows us to effectively identify salient tasks in geocomputation that
have emerged in recent years.

1.02.5.1 Visualization

An important task in geocomputation, or any area that involves the use of data, is to know your data. Such a need has led to the
emergence of the research field of exploratory data analysis, or EDA, in statistics. EDA stresses the importance of seeing the data in
order to understand and detect patterns in the data, instead of just analyzing the data (Tukey, 1977). Shneiderman (1996) summa-
rized a three-step approach to EDA: “Overview first, zoom and filter, and then details-on-demand.” EDA not only requires compu-
tational and visualization tools (as in software packages) to process the data, but also relies on principles and methods that guide
the development of those tools. The extension of EDA that deals with spatial and temporal data has a root in cartography and has
fully fledged into an interdisciplinary field (Andrienko and Andrienko, 2006).

In any spatial data set, we call the indications of space and time the references and the measures at these references a set of char-
acteristics. The goal of spatial and temporal exploratory data analysis is to use graphics to address various tasks (Bertin, 1967). These
tasks ask questions that can be as simple as “what is the air quality of Columbus, Ohio today?” or as complicated as “which areas in
Columbus, Ohio have the worst air quality and also have the highest density of minority ethnicity groups?”While answering these
questions requires intimate knowledge about the data, it is also important to develop tools that provide interactivity for users to
explore the data by means that can be as simple as looking up and comparing the data values of different references, or as complex
as finding patterns and associations between data values and their referenced spatial and/or temporal entities. Much of this can only
be achieved in an interactive environment where the user can choose the scope and extent of the data to be displayed and further
examined.

While tremendous progress has been made in spatial exploratory data analysis in the last two decades (Andrienko and
Andrienko, 1999), recent years have seen a rapid change in the computational community where data can be closely bound
with graphic elements on a visualization, especially for data visualization on a Web-based platform. Techniques enabling such
a trend include D3 (Bostock, 2016) and LeafLet (Agafonkin, 2016), both JavaScript libraries. D3 utilizes the vector-based image
data format called scalable vector graphics (SVG) that supports detailed description of graphic elements (such as shapes, text, color,
and other graphic effects) for different visualizations. A key feature in D3 is to bind the data into various graphic elements. For
example, we can bind a one-dimensional array with circle elements so that the size of the array determines the number of circles,
and the value of an array element determines the size of its corresponding circle. In addition to binding the data array with circles,
D3 can also bind the range of the data in the array with the Y-axis and the number of elements in the array with the Y-axis, which will
effectively construct a bar chart. This kind of data binding can be used between multidimensional data and other graphic elements.
Beyond data binding, D3 can also be used for subsetting (filtering) data that allows the user to change the focus of data exploration.
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Maps can be made in various ways today. Packages such as D3 can support mapping as a general graphic representation method.
However, here we specifically note that LeafLet provides a wide range of tools for mapping data from different formats and can be
used to integrate a custom map with data from many sources. LeafLet enables basic interactive functions such as zooming and
panning. It can also allow the user to filter, query, and highlight features on the map. More importantly, these interactive functions
can be linked to D3 visualizations by establishing the match of the unique identifications of the features on the map and the data
items bound with D3 graphic elements.

1.02.5.2 Machine Learning

The root of machine learning dates back to as early as the 1950s when Alan Turing asked the fundamental question of “can
machines think?” Turing (1950) stipulated a computer program that simulates a child who learns while developing the brain.
The start of machine learning follows the footsteps of artificial intelligence in logical inference. In recent years, however, machine
learning has shifted more toward the computational aspect of artificial intelligence, inspired by advances of algorithms and software
in statistics, ecology, and other disciplines (Mitchell, 1997). The essential task of machine learning is the ability to classify input data
into categories that can be learned from.

In general, there are two main camps of machine learning: supervised and unsupervised. In supervised learning, the user must
prepare a data set that includes the desired output to train the algorithm. For example, to develop a supervised machine learning
algorithm to assign remote sensing image pixels into different land use types, the training data must include the land use types of
each pixel, which will allow the algorithm to learn about the rules that can be used to classify new pixels. Supervised machine
learning methods include various parametric and nonparametric statistical models, many neural networks, decision trees, and
support vector machines. Unsupervised learningmethods do not rely on the use of training data sets. Instead, the learning algorithm
is designed to reveal the hidden structure in the data. Some neural networks and most of the clustering methods belong to this
category.

A widely used machine learning method in spatial data is the k-means clustering method (Lloyd, 1982). This method can be
used to search for the cluster of points in an area. This is an iterative method that starts from a random set of k locations and
each of these locations is used to serve as the center of a cluster. Points are assigned to their closest center to form the k clusters.
In the next step, the points assigned to each cluster are used to compute a new center. If the new centers are significantly different
from the previous k centers, the new centers will be used and we repeat the process until no significant changes can be made. At the
end, the method will yield a partition of the points into k clusters. While there are obvious applications of the k-means method in
two-dimensional data, a k-means method applied on a one-dimensional data is similar to the very widely used Jenks classification
method in choropleth mapping.

A supervised machine learning works in a different way. A neural network, for example, utilizes a series of weights that convert
a set of inputs to outputs. By comparing with the known result, an algorithm is used to adjust the weights in order to minimize the
error between the model output and known output. A support vector machine, on the other hand, utilizes an optimization method
to try to determine if a line (or a hyperplane for multidimensional data) can be considered to be best separating input data into two
classes. Some of these machine learning methods have been used to process data from nontraditional sources. For example, support
vector machines were used to geocode tweets by identifying location expression in the text by finding the best match between loca-
tions retrieved from the text and place names in a gazetteer (Zhang and Gelernter, 2014).

1.02.5.3 Spatial Optimization

Spatial optimization refers to the need of finding an optimal set of spatial configurations such that a goal or objective can be reached
while some constraints are satisfied. There are various applications of spatial optimization. For example, one may wish to find
a subset of land parcels in an area under a budget constraint such that the total benefit of the selected land parcels is maximized.
In general, spatial optimization problems can be categorized into two major groups (Xiao, 2008). A selection problem aims to find
a subset of spatial units. We may impose spatial constraints on these selected spatial units. For example, some problems may only
consider contiguous spatial units to be selected. A second type of spatial optimization problem is partitioning problems. These
problems aim to separate the spatial units into a set of regions. For example, the political redistricting problems require an area
to be partitioned into a number of contiguous districts.

Solving spatial optimization problems generally requires tremendous amount of computing resources as many of these prob-
lems are NP-hard, meaning there may not exist a solution method that can be used to find the optimization solution in a reasonable
amount of time. For this reason, researchers have developed a special type of solution approach called heuristics; methods that can
be used to find quickly good, but not necessarily optimal, solutions to the problem. The computational efficiency of heuristic
methods is the key (Xiao, 2016).

Traditional heuristic methods are typically designed to solve one type of optimization problem. For example, the p-median
problem is a representative optimization problem in location-allocation analysis, where the goal is to locate facilities or services
on p nodes on a network so that the distance from each node to its nearest facility or service node is minimized (Hakimi,
1964). A commonly used heuristic method to solve the p-median problem is the vertex exchange algorithm (Teitz and Bart,
1968). This algorithm starts with randomly selected p nodes from the network and keeps switching these nodes with unselected
ones until such exchange can no longer improve the solution.
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In contrast to traditional methods, metaheuristic methods aim to provide a solution framework for a wide range of problems.
The increasing list of metaheuristic methods includes genetic algorithms (Holland, 1975), tabu search (Glover et al., 1997), and
simulated annealing (Kirkpatrick et al., 1983). It is noticeable that these methods are often inspired by some natural processes
and they can be used to solve different kinds of problems. To use a genetic algorithm (GA) to solve the p-median problem, for
example, one could use an array of integers to represent the indices of the nodes selected for locating the facilities. The GA will start
with a set of arrays, each containing randomly selected indices. This is called the population of solutions. The GA will evaluate each
individual in the population by assigning it a fitness value. A high fitness valuemeans a good solution in the population with a small
total distance. Individuals with high fitness values have a high chance to be selected by the GA to participate in an operation called
crossover, where the two individuals selected mix their contents to create two new individuals. New individuals with fitness values
better than the current individuals will be inserted into the population. A mutation operation may also be used to randomly change
the content of an individual. By continuously doing these selection, crossover, and mutation operations, the population will evolve
toward a new state where individuals with better fitness values (thus better solutions) will be obtained.

1.02.5.4 Spatial Simulation

Models used to solve optimization problems are often called normative models because they prescribe what should be done. But
results coming from such models may not work as prescribed because situations in the real world may not necessarily match exactly
as formulated in the models (Hopkins et al., 1981). To have a better understanding of the behavior of the system, it is therefore
necessary to identify the processes or mechanisms in the system, which may require various types of simulation models.

Two types of simulation approach have been widely adopted in geocomputation research. The first approach is derived from
John Conway’s Game of Life (Gardner, 1970), where a set of simple transition rules govern the change of state for each location
(a cell) based on the states of the neighbors of that location. This type of simulation model is called cellular automata where
each cell will automatically change its state if the transition rules are met. Researchers extended such model to simulate the
dynamics of spatial systems such as urban sprawl, and land use and land cover change (Clarke and Gaydos, 1998).

A second type of spatial simulation approach explores a more explicit representation of the processes linked to spatial systems,
where the important players in the systemmust be identified and, more importantly, the interactions between these players must be
understood and simulated. These are called agent-based models (Epstein and Axtell, 1996), where each agent is a player in the
system and agents proactively seek to maximize their own benefits. A particular application of the agent-based modeling approach
is found in the land use and land cover change literature (Parker et al. 2003) where different players such as land owners and other
stakeholders can be identified to act through interactions such as land use planning, land market, and development.

The relatively straightforward modeling concept has made agent-based modeling highly popular across a wide range of disci-
plinary boundaries. More importantly, implementing such a model has become increasingly intuitive. Programming platforms
such as NetLogo (Wilensky, 1999) and MASON (Luke et al., 2005) not only support the necessary coding environment but also
a comprehensive visualization tool to help present the simulation results. These tools have played an important role in making
agent-based modeling accessible to researchers and professionals without much training in programming.

1.02.6 Visualizing Twitter Data

Twitter data represents a significant challenge to geocomputation. By sending a message of less than 140 characters, millions of
Twitter users around the world are constantly connected with each other by sending new tweets or retweeting tweets from other
users. The volume of Twitter data is growing rapidly. Among all the tweets, a subset of them also contains locational information
that can be used to help identify where they were sent from. Though these geocoded tweets only account for a small portion of all
the tweets, they can be used to help understand the dynamics of a region or the world. Many researchers have also started to analyze
tweets in order to categorize these tweets in terms of the emotion of the sender and the kinds of topics conveyed in the tweets
(Mitchell et al., 2013; Steiger et al., 2015). This is a bona fide big spatial temporal data set.

Here we concentrate on the tweets around the Central Ohio area where the city of Columbus is located. Geocoded tweets from
this region were collected for the time period of May to July 2015 using the public Twitter API, which provided a small sample of
about 1% of the tweets. In this period of time, more than 200,000 tweets are collected and stored in a PostgreSQL database. A spatial
temporal index is developed for efficient data retrieval from the database. Each tweet stored in the database is assigned a set of tags,
indicating the theme of the tweet. Seven themes are identified for this region: food, business, move (mobility), sports/fitness,
current events, LGBT, and local interests. A set of keywords is used to identify a theme. For example, a tweet is tagged as “Food”
if it contains words such as pizza, barbecue, and brewing. A tweet is also tagged as happy, unhappy, or neutral by calculating
the average happiness index of the words in the tweet (Dodds and Danforth, 2009).

Fig. 3 is a Web-based graphical user interface of a prototype geocomputational approach to visualizing the tweets collected for
the central Ohio region. The left side of the screen visualizes the temporal aspects of the tweets. A user can define a slice of time for
visualization using the sliding bar underneath the plot. Each curve in the plot shows the number of tweets of each category. Each of
the curves can be turned on and off. On the very right side of the screen is a small window that can be used to show random indi-
vidual tweets in the selected category within the timeframe defined in the left window. These are renderings of the Twitter data that
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are retrieved from the database through an AJAX framework. The request made in the Web browser is routed through a Web server
that is connected to the database.

When the user clicks on the Map button in the left window, the Web browser gathers the information from the screen, including
the start and end time period specified by the user. A request is then sent to the server which will fire up server side programs to (1)
compute the heat map of all the tweets in the region in the specified timeframe and (2) calculate a spatial clustering method called
kernel density estimation (Wand and Jones, 1995; Winter and Yin, 2010) for each of the tweet categories. The results of these
computational tasks are then sent back to the browser as JSON data that are subsequently used to create Leaflet layers for the
heat map and the kernel curves. The computation of the kernel density estimation is a nontrivial task because a total of 10 kernels
must be calculated for each request. To make the interface effective, only the 50% kernel is shown for each category, meaning that
50% of the tweets in each category were sent within the enclosed curves on the map. The user can create up to 20 sets of these heat
maps and kernels; the forward and backward buttons allow the user to loop through these sets.

1.02.7 Conclusion

For much of the history of geocomputation and GIS, we witnessed incremental improvements in geoprocessing capacity. The same
workflows maintained as geographic data were created and analyzed in isolated computing units and GIS software installations.
Data were only shared through extracts and static data files. Recently, though, the modern Web has standardized data transfer
between hosts and facilitated much easier data sharing. This ability to share data came along just as GPS, broadband, and wireless
have connected many islands of computing and mobile devices. The physical implementation of the Web has been hastened by
cloud infrastructure. The cloud has decreased the costs to develop and host applications on the Web. It has granted resource-
constrained parties access to powerful Web geocomputation tools. These new data and capabilities offer researchers many new
opportunities for investigation but come with challenges all their own.
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1.03.1 Definitions

1.03.1.1 Geodata

Geodata are normally defined as data about the surface and near-surface of the Earth. More precisely, geodata are observations
about what is present at some location. Since the number of possible locations is infinite, geodata are often observed or captured
in the form of aggregated or summary observations about areas (e.g., states, forest stands), lines (e.g., rivers, highways), or volumes
(e.g., oil reservoirs, buildings); or geodata may be sampled at selected locations. A host of types of geodata exist, ranging from data
about such physical variables as ground elevation or surface temperature, to data about the numbers of inhabitants in an area, or
their average income. Geodata may be structured in a range of common formats, and are conveniently handled in readily available
software. Synonyms for geodata include geospatial data, geospatial information, and geographic information. Spatial data is
normally assumed to be a superset that includes data about phenomena embedded in other spaces besides geographic space.

1.03.1.2 Big Data

Big Data is a term of comparatively recent coinage, and has been the focus of a remarkable outpouring of energy and innovation in
the past decade. The most obvious meaning of the term relates to data volume, and to the very rapid expansion of data storage and
processing capacity in recent years. Whereas a gigabyte (roughly 109 bytes or 8�109bits) might well have stretched the capacity of
most computers in the 1970s, today the average laptop has approaching a gigabyte of random-access memory and a terabyte
(roughly 1012 bytes) of hard-drive storage. It has always been possible to imagine a quantity of data larger than a given device
can handle, and thus one convenient definition of Big Data is a volume of data larger than can readily be handled by a specified
device or class of devices. For example, the volume of geodata collected by the Landsat series of satellites at their inception in
the early 1970s was well beyond the processing capacity of the computers at the time. Already there are research projects that
must deal with petabytes (roughly 1015 bytes) of data; we are living, we are told, in the midst of an “exaflood” of data (one exabyte
is roughly 10 to the power 18 bytes); and 1024 has already been given an internationally agreed prefix (“yotta”).

But although it is important, volume is not the only distinguishing characteristic of Big Data, which is why the term is capitalized
here, to distinguish it from run-of-the-mill voluminous data. Networks of sensors, the Internet of Things, and increasingly sophis-
ticated data collection, transmission, and aggregation systems have created a new and abundant supply of dynamic data in close-to-
real time. The average citizen now expects near-instantaneous delivery of information on such topics as traffic congestion,
international news, and sports results. Thus “velocity” is often cited as a second defining characteristic of Big Data.

Finally the last three decades have seen a steady transformation from a world dominated by single, authoritative sources of infor-
mation to a proliferation of multiple and often contentious or conflicting sources. To cite a typical geodata example, a search for
information about the elevation of a given point used to produce a single result, with the authority behind it of a national mapping
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agency. Now, however, multiple technologies for measuring elevation that include surveys using GPS (the Global Positioning
System), measurements by hikers, traditional maps, LiDAR (Light Distancing and Ranging), and SRTM (the Shuttle Radar Topog-
raphy Mission) create a plethora (a “variety”) of answers with a range of values. How to choose among them, and whether an
improved estimate can be obtained by combining them, for example, by averaging, is one of the new concerns raised by the advent
of Big Data. Thus Big Data is often defined by the “Three Vs”: volume, velocity, and variety.

A fourth “V” is often suggested, to capture the various forms of uncertainty associated with Big Data, especially Big Data that
come from nonauthoritative sources that have not been subjected to quality control. This fourth V might stand for validity or
veracity, but unfortunately validity or veracity is what Big Data often lack, rather than a distinguishing property. Uncertainty is
an especially important issue for geodata, and the subject of a large and growing literature (e.g., Zhang and Goodchild, 2002). Posi-
tion is an essential element of geodata, and is measured using one of a range of techniques, each of which introduces its own level of
uncertainty. For example, the GPS receiver in an average smart phone produces latitude and longitude with an error that is
commonly in the 10 m range, but may be as high as 100 m if measurement is impacted by tall buildings, tree canopies, and
many other factors. The local properties recorded in geodata (commonly termed the attributes) are also often subject to errors of
numerous kinds, and when what is recorded is a class (of vegetation cover, e.g., or land use) the definition of the class will include
uncertainty, such that two observers cannot be guaranteed to record the same class at a given point. In summary, geodata can never
be perfect, never the truth.

1.03.1.3 Big Geodata

The concept of Big Geodata is comparatively recent, and deals with the well-defined and important subset of Big Data that are
geodata. As the Landsat example cited above illustrates, volume is no stranger to geodata, and today our ability to collect and
acquire geodata vastly exceeds our ability to store or process them. But the traditional process of acquiring geodata, through
surveying, photogrammetry, or satellite-based remote sensing, has been slow and painstaking. Thus velocity in acquisition is
a much more recent concern, with impacts that are disruptive. Similarly variety is novel, given the past reliance on single, author-
itative sources, and thus also disruptive. The nature of these disruptive impacts is discussed at length later.

If volume is no stranger to geodata, how have the problems of excessive volume been addressed in the past? Several long-
accepted techniques have been used, allowing researchers and others to deal with what would otherwise have been impossible
volumes of data. Geographers have long practiced the use of regions, by dividing the world into a number of areas that can reason-
ably be assumed to be uniform with respect to one or more properties. For example, the Midwest is part of the central United States,
with large areas devoted to raising corn and soybeans. Of course it is not uniform, and significant variation exists within it, but it is
nevertheless useful as a way of simplifying what otherwise might be overwhelming detail. Similarly geographic data is often
abstracted or generalized, omitting detail in the interests of reducing volume, such as detail below a specified spatial resolution.
Geographic data may also be sampled, on the principle that the phenomena in the gaps between the samples are likely to be similar
to those at the sampled points. Spatial interpolationmakes use of a range of techniques to estimate values of properties such as eleva-
tion or atmospheric temperature between sampled points.

In addition, researchers and others have frequently addressed the volume problem using techniques that are generally termed
divide-and-conquer. Landsat data, for example, is acquired and stored as a series of approximately 50,000 scenes, each covering an area
of about 100 km by 100 km, and when combined providing complete coverage of the Earth’s 500,000,000 km2. For the Thematic
Mapper sensor each scene contains about 3000 by 3000 cells, each roughly 30 m by 30 m. In order not to overload storage capacity,
much research using Landsat proceeds one scene at a time. The weakness of this approach stems from the inability to identify and
examine patterns that extend from one scene to its neighborsdbut the benefit lies in the ability to process Landsat with modest
computing facilities. In summary, standard techniques widely practiced across the sciences have long made it possible to process
Big Geodata using conventional means. It follows that the kinds of novel, unconventional computing described later open
numerous opportunities for new discoveries.

This entry is organized as follows. The next section discusses concepts that are related to Big Geodata, and broader but related
trends that are impacting science and society. This is followed by a section on the disruptive impacts of Big Geodata, and by another
on the technical advances associated with Big Geodata. The final section addresses the research issues that Big Geodata raise, and the
prospects for their resolution in the near future.

1.03.2 Related Concepts

Big Geodata, with their characteristics of volume, velocity, and variety, have appeared at a time of major disruption in both science
and society. Some of the more important and relevant of these are discussed in the following subsections.

1.03.2.1 Data-Driven Science

The volumes of data now being captured in digital form from sensors, satellites, social media, and many other sources have led to
the suggestion that we are on the verge of a new era of data-driven science. Instead of the often ponderous process of theory-building
and theory-testing, we should rely on analytic tools to discover patterns and correlations, and thus to make discoveries. This concept
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has often been termed the Fourth Paradigm (Hey et al., 2009), emphasizing a progression in the history of science from empirical
observation to theory to simulation, and now elevating data to the primary role. In the world of data-driven science there would be
no need for theory, as methods of machine learning and artificial intelligence would be sufficient to search for and discover all
important patterns. Miller and Goodchild (2014) discuss the prospects for a data-driven geography based on geodata.

The notion of automated pattern detection predates Big Data by several decades. Dobson (1983) was arguing for an automated
geography in the 1980s, and techniques from artificial intelligence such as artificial neural nets (e.g., Schalkoff, 1997) and self-
organizing maps (Agarwal and Skupin, 2008) are widely used. But while such techniques are elegant ways of finding patterns,
in the absence of theory they provide no basis on which to interpret those patterns, and no basis for assuming that the patterns
discovered from one sample of data or one geographic area can be generalized to other samples or areas. Similarly they may be
successful at predicting certain events, but they provide no reason to expect that they will always be equally successful.

Moreover, the underlying mantra of data-driven science, that we should “let the data speak for themselves,” assumes that the
data are perfectly representative of reality, and thus that what is discovered about the data is also being discovered about reality.
But measurements are always subject to measurement error. The positions that are an essential element of geodata are measure-
ments, and moreover geodata are universally subject to uncertainties of many additional kinds, as noted earlier. Thus if we “let
the geodata speak for themselves” we are never at the same time letting geography speak for itself. The patterns and correlations
discovered in this way may be true of the real world, but they may also be spurious and uninteresting artifacts of the data. Moreover
the data may miss aspects of the real world that are essential to understanding. For example, if the data were acquired by satellite
imaging with a spatial resolution of 100 m, any important features or patterns with spatial resolution much finer than 100 mwill be
effectively invisible, and undiscoverable from the data.

1.03.2.2 Real-Time Analytics

With increasing volumes of data available in near-real time, Big Geodata appear to offer the possibility of a new kind of activity that
is very different from the somewhat protracted and even leisurely traditions of geodata analysis. Rather than spend as much as 2
years gathering data, conducting analyses, writing and finally publishing the results, it is now possible to imagine geodata being
continuously monitored, providing early warning of such events as disease outbreaks or earthquakes, and making discoveries in
minutes that might previously have taken months. Moreover the Internet provides the means for almost instant dissemination
of results.

Yet while early warning can clearly be extremely valuable, the broader implications of velocity for science are more challenging.
Science has always given highest value to knowledge that is true everywhere and all times (nomothetic science). Thus there would be
little value given to the discovery of some principle that was true only at certain times, in certain places (idiographic science). Such
discoveries might be described by many scientists using such pejorative terms as “journalism” or “mere description.” But while this
attitude might be prevalent in the physical sciences and perhaps even in the environmental sciences, the situation in the social
sciences is more nuanced. In recent decades the concept of “place-based analysis” has received significant attention, in the form
of techniques such as local indicators of spatial association (LISA; Anselin, 1995) and geographically weighted regression (GWR;
Fotheringham et al., 2002). Such techniques are driven by the notion that while a single mathematical principle may be (more
or less) true everywhere, the parameters of the principle (e.g., the constants in a linear regression) may vary from place to place.

1.03.2.3 The Changing Nature of Science

Early science was dominated by the lone investigator, the researcher who “stood on the shoulders of giants” in the words of Isaac
Newton, to create new knowledge through empirical investigation or theoretical reasoning. Science was organized into disciplines,
with the underlying assumption that the giants in any area were members of a researcher’s own discipline, or one closely related
to it.

That model worked well for the likes of Newton, Darwin, or Einstein, as long as there were major advances to be made by solving
comparatively simple problems. Today, however, there is a growing sense that the simple problems have been solved, and that
future progress in science must involve researchers from many disciplines, working in teams, and untangling the many aspects
of complex systems. Science is becoming multidisciplinary, with teams that integrate the contributions of many individual inves-
tigators. One consequence of this emerging pattern of science is that no one individual member of a team is able to know and under-
stand all aspects of the study. Yet scientific methodology, which emerged in the days of Newton, Darwin, and Einstein, made every
investigator responsible for all aspect of his or her work.

For Darwin, for example, it was essential that virtually all of the observations that led him to develop the theory of natural selec-
tion were made personally by him. To be sure the prior work of others, including von Humboldt andWallace, was influential, but in
no sense did Darwin have to put his trust in data collected by others. This new world of collaborative research and the sharing of
data is challenging, and threatens to disrupt the very foundations of the scientific method. Metadata, and documentation generally,
may be held up to be the answer, but however complete they may be, metadata are never a perfect substitute for personal engage-
ment in data acquisition.

Science is also becoming more computational, and the computer has become an indispensable part of every project. Much of the
software used in a project was likely written by someone who was not one of the team of investigators, and the data may have been
acquired from a source outside the team, without complete documentation of the data’s provenance. The effect is that science
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conducted in this environment of multiple investigators, acquired data, and acquired software may not be fully replicable. Thus the
changing nature of science, and especially science based on Big Geodata, may no longer be adhering to the long-established
principles of the scientific method.

1.03.2.4 Open Data and Open Software

In a small group, collaborating scientists will be able to build a level of trust in each other’s work and expertise. Ideally each member
of the group should be able to question openly the work of the others, so that in effect the principle of individual responsibility for
science is transferred into a principle of group responsibility. But open sharing of data and software, often between individuals who
will never come into direct or even electronic contact, makes this principle much less tenable. The open-data movement, which
advocates publication and widespread dissemination of data, cannot possibly establish the same level of trust that is achievable
in a small group of colocated collaborators. In principle, open data should be accompanied by complete documentation of prov-
enance and quality, but this is rarely the case. Moreover the level of detail required for adequate documentation of provenance
expands along with the bounds of dissemination: for example, the data-collection practices of one discipline may need much
more detailed explanation if the data are to be shared with members of another discipline. If an information community is defined
as a community that shares terminology and practices, then sharing of data and software across information communities clearly
requires greater documentation and care than sharing within an information community. Especially problematic is the case where
data or software originates in the commercial sector, which may well be concerned about its proprietary interests and less willing to
share details of the data’s provenance or the software’s detailed algorithms.

1.03.3 Disruptions

It is clear from the discussion thus far that Big Geodata is capable of being disruptive or transformative, that is, of changing tradi-
tional practices. This section examines some of those disruptions in greater detail.

1.03.3.1 Publication

In the traditions of science, the results of a study are distilled into one or more papers or books, which are then reviewed by peers,
edited, published, distributed, and made available in libraries. There has always been pressure to speed the process, but because so
many stages involve humans it has been difficult to reduce the time of publication to much less than a year. Yet the “velocity” aspect
of Big Geodata and the near-instantaneous communication offered by the Internet are having disruptive effects on the publication
process. Moreover the “volume” aspect is removing many of the constraints on the amount of information that can be published.

Once papers, books, maps, and atlases had been published and printed, their contents necessarily remained constant (though
they might be subjected to later publications of errata, and a single copy might be modified by personal annotation). In this sense
there was a clear end to a specific process of scientific investigation or data compilation. On the Internet, however, velocity has come
to mean the demise of that clear end, as results can often be disseminated in draft form prior to full review, and modified later to
reflect improvements in the author’s thinking or new results. Online maps can be modified instantaneously as new geodata become
available. Today we are surprised when a restaurant found using an online service turns out to have been closed, whereas a gener-
ation ago few maps bothered to show information that was likely subject to change.

Variety is also having a disruptive impact on publication. The processes of editing and peer review were largely successful at
ensuring that published information was correct. Today, however, there are few if any checks on the validity of information that
is published through social networks, blogs, Wikis, and other Internet-era media.

Finally the advent of Big Data implies the removal of effective constraints on the volume of information that can be published.
Traditional publication involved an intensive process of distilling, given the cost of the process and the limited capacity of books
and papers. Books were effectively limited to a few hundred pages, and papers to a few thousand words, making it inconvenient to
publish extensive raw data, complex software, or the detailed results of analysis. Today investigators are expected to make their data
and software available through the Internet, so that replication or re-analysis by others becomes much more feasible, subject of
course to issues of confidentiality and intellectual property. In short, the arrival of Big Data has dramatically disrupted the publi-
cation process.

1.03.3.2 Production of Geodata

The traditional processes of acquiring, compiling, publishing, and disseminating geodata were expensive, slow, and often manual.
There was a high fixed cost of entry into the production process, with the result that only well-financed government agencies and
large corporations could be producers. Maps and other products were designed to serve as many purposes as possible, for as long as
possible, in order to offset the high costs. Thus the phenomena that were captured in geodata tended to be those that were compar-
atively static, and broadly useful.

Beginning in the early 1990s, with the advent of mapping tools on personal computers, the costs of entry into the process of
geodata production began to fall, eventually to close to zero. Economies of scale were no longer as important, and it became
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possible to make maps of almost anything, for purposes that were often very specific. Maps could be centered on the individual,
rather than on an abstract system of tiles. Maps could be oriented to show the view from close to the ground, rather than from verti-
cally above. Maps could be used to represent data that were valid only at the time of collection, rather than valid for an extended
period into the future. Moreover maps could be made by anyone equipped with a personal computer, some software, and data
gathered personally through the use of GPS and a variety of techniques typified by the camera flown on a personal drone, or down-
loaded from numerous Web portals. Turner (2006) has termed this neogeography, a new and disruptive world in which the indi-
vidual citizen is empowered both to collect and to use geodata, and in which the old distinctions between the expert
professional and the amateur are no longer as significant.

Neogeography is a highly disruptive impact of the advent of Big Geodata, with its volume, velocity, and variety. It calls into ques-
tion the value of long-established practices in the production of geodata, and the authority of mapping agencies and corporations
that has for generations been the source of trust in published data. Geodata can now be crowdsourced (Sui et al., 2012), providing
a very competitive product that benefits from the efforts of individual citizens rather than those of a small number of professional
experts.

1.03.3.3 New Questions

Big Geodata differs from its precursors in many significant ways. First, it offers the possibility of finer spatial resolution. Widely
available GPS tools can determine location to 10 m with the simplest and cheapest devices, and to decimeters with more advanced
versions. Satellite imagery now offers spatial resolutions of well under 1 m, giving far more detail than the comparatively coarse
resolutions of the past. When rules protecting confidentiality allow, cities can be studied and simulated at the level of the individual
rather than in the aggregate, and new questions can be asked about human movement patterns and interactions. For example, the
tracking of taxis and cell phones is being used to reach new understandings of the social structure of cities, and to build new models
of the transmission of disease or the problems of evacuation during disasters. Fine-resolution imagery can be used to monitor crops
around the world, and to observe the destructive impacts of earthquakes and hurricanes.

Similar disruptions to past practice can be attributed to improved resolution in time, and to the benefits of near-real-time data.
The average citizen now has access to current traffic congestion, and to tools that allow routes around congestion to be found.
Weather maps of near-real-time data allow us to watch the development of storms and monitor the distribution of rainfall. All
of these examples illustrate how improving temporal resolution is changing the way we do things, and vastly improving the infor-
mation to which we have access.

In some instances improved spatial and temporal resolution allows us to make better decisions and to correct the mistakes of the
past that may be attributable to the coarse nature of the data then available. But the truly interesting impacts are on the new ques-
tions that improved data, and the technology of Big Data, allow us to ask and investigate. Here, however, it is necessary to confront
the essential conservatism of science, or what Kuhn (1970) has called “normal science.” In Kuhn’s analysis, science continues along
a largely predictable path until it is transformed in some way. Such transformations may be triggered by new data, new tools, new
theories, or new concepts. Often such new ideas come from outside a given discipline, and must therefore fight an uphill battle
against the established norms of the discipline.

1.03.3.4 Consumerization

As noted earlier, a central tenet of neogeography is that the relationship between amateur and professional expert is becoming
blurred. The average citizen is now empowered both to consume and to produce geodata. Yet the tools and technology of geodata
are not designed for this emerging world. Locations are defined using coordinate systems, such as latitude and longitude, that are
not part of the everyday life of the citizen. Instead, people tend to learn about and describe the geographic world in terms of named
places, which may range from entire continents (“Asia”) to rooms in one’s home (“the kitchen”). Places lack the precise boundaries
of officially recognized places, such as cities or counties, and are often culturally, linguistically, or context-specific. Thus “Los
Angeles” has different meaning to an Angeleno, a New Yorker, or a resident of China; and “The English Channel” and “La Manche”
are used to refer to the same feature by the British and the French respectively.

Traditionally it was necessary to limit and standardize the names of places, through the work of national toponymic committees.
In the world of Big Geodata, however, there is ample potential to capture and represent the vernacular names of places, and their
associations, and to provide interfaces to geotechnology that accommodate the ways people work with geography. Thus the inter-
face to Google Maps, for example, includes a wide range of names that lack official recognition and would not have appeared on
traditional maps. Researchers have developed techniques for identifying references to places in text, and for linking such references
to maps (see, e.g., Li et al., 2013; Jones et al., 2008).

1.03.3.5 Spatial Prediction

Much of the enthusiasm for Big Data emerged in the world of commerce, where vast new sources of data began to provide a basis for
useful prediction. For example, in a celebrated paper O’Leary was able to predict the winner of the Eurovision Song Contest from Big
Data. Other work has been more skeptical, especially about the generalizability of such predictions, and about the general lack of
attention to uncertainty, but the potential benefits of such predictions in the commercial world are undoubtedly huge.
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As noted earlier, prediction is not generally a highly valued activity in science. Moreover the very basis of the term “prediction”
implies a concern with time, not space. Thus the advent of Big Data has the potential to change the balance between discovery and
prediction in science, raising the latter from a somewhat peripheral to a central role.

Traditionally prediction has meant estimation of what will occur when. Spatial prediction might similarly be defined as estima-
tion of what will occur where, and perhaps also when. In line with scientific norms, however, both forms of prediction have been
given little attention. Some exceptions can be found in the literature of geographic information systems (GIS). For example, the
geologist Bonham-Carter was concerned with prediction of where gold deposits were likely to be found in Canada (Bonham-
Carter, 1991) based on layers of geologic data. Lloyd and Greatbatch (2009) were able to unravel the clues spread throughout
the novels of P.G. Wodehouse to predict the geographic location of the imaginary Blandings Castle. Common practical applications
of spatial prediction include estimates of real-estate value based on the characteristics of the house and its neighborhood.

The second V, velocity, is likely to make spatial prediction much more valuable by opening the possibility of early warning in
near-real time. That, together with the volume of data now available and the variety of its sources, suggests that it would be worth
developing more extensive and sophisticated tools for spatial prediction in this era of Big Geodata.

1.03.4 The Technology of Big Geodata

As noted earlier, part of the drive toward Big Data is technological. Big volume requires high performance, and the use of the world’s
most powerful computers. But velocity and variety also create technological challenges, as discussed later.

1.03.4.1 High-Performance Computing

We now have the ability to collect, process, store, and disseminate unprecedented quantities of data. We now have storage for peta-
bytes and access to supercomputers that operate at petaflop rates (1 petaflop is roughly 1015 floating-point operations per second).
Even the cheapest personal computers now employ multiple processors, while the number of CPUs (central processing units) and
GPUs (graphics processing units) in the largest supercomputers is increasingly in the thousands or even millions.

Several papers have discussed thepotential of suchmassive computation for the geographical sciences.Operations thatwere impos-
sible orwould have taken prohibitively long on earlier devices are nowwithin the capabilities of today’s supercomputers. These tend to
be problems at fine spatial resolution and covering large areas, with algorithms that are not readily amenable to divide-and-conquer.

For example, the US Geological Survey faced a significant computational problem in its National Map project when dealing with
the rasterized versions of its 1:24,000-scale topographic maps. These maps use a projection with several distinct zones, such that
pairs of maps that cover adjacent areas that lie in different zones will not fit cleanly along their common border. The problem
does not arise in the case of vector data, so vector features such as roads and coastlines continue as expected across zone boundar-
iesdbut for raster data, early versions of the National Map showed unacceptable “rips” in the raster data. Reprojection of the raster
data on the fly was computationally intensive, but a solution was found (“pcRasterBlaster”; Finn et al., 2012) in high-performance
computing through parallelization of the reprojection algorithm.

TheCyberGIS project headed by theUniversity of Illinois at Urbana-Champaign, now in its fifth and final year of funding from the
National Science Foundation, has systematically explored the applicationof high-performance computing and research collaboration
for problems in the geographical sciences. As such, it represents a major investment in the technology that is making it possible to
handle Big Geodata, and to explore the new questions that Big Geodata allows researchers to investigate. The possibilities of applying
high-performance computing to geospatial problems have long intrigued researchers (Healey, 1998), but have remained tantalizingly
out of reach for a variety of reasons. Today, however, it seems that the age of high-performance GIS has finally arrived.

1.03.4.2 Synthesis

The transition from a world of single, authoritative sources to multiple sources of often unknown provenance has drawn attention
to the general lack of tools for the synthesis of Big Geodata. In the past, the multiple sources of data that might contribute to
a geographic fact, such as the elevation of Mount Everest, have been largely compiled and synthesized by experts. Thus the estimate
of 8848 m is the result of a long series of measurements of increasing accuracy, extending over more than a century, from early trian-
gulation from the plains of India to the latest techniques of photogrammetry, radar interferometry, and satellite-based positioning.
The trust we place in that estimate derives from the authority of the experts and their mapping agencies.

Things could not be more different in the current neogeographic world. A search of the Web would produce perhaps thousands
of pieces of information that might bear on a given fact; and the highly paid experts that in the past would have synthesized those
pieces no longer exist in sufficient numbers to conduct the painstaking synthesis of every needed fact. Instead we are forced to rely
on automation, in the form of techniques of fusion that create estimates from raw inputs. Although numerous techniques have been
described, they are not yet at the level of availability to rival our techniques of analysis. In short, the geospatial world remains locked
in a paradigm of analysis of single authoritative sources, rather than one of the synthesis of an abundance of sources of highly
variable quality. To cite one very simple example, everyone knows how to compute a mean and many could estimate the uncer-
tainty of the mean under common assumptions, but far fewer are trained in how to produce an optimum estimate from a number
of sources of varying reliability, or how to estimate the uncertainty in the result.
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1.03.5 Conclusion

In recent years Big Data has captured the imagination of many researchers, and there has been very rapid growth in the demand for
data scientists. Big Geodata is a well-defined subset of Big Data, sharing many of its concerns and priorities. It is also extreme in
some respects: in the importance of uncertainty and the impossibility that any geodata can represent the truth; and in the efforts
that have been expended in the geospatial community over the past quarter century on topics such as metadata, provenance,
data sharing, interoperability, archiving, and other concerns of data science.

There can be no doubt that Big Geodata will continue to grow in significance. Volume, velocity, and variety will continue to
increase, taking advantage of broader developments in information technology and in the fundamental technologies of geodata.
Spatial prediction offers some very significant practical applications. Progress will continue to be made in data integration and
synthesis. Some of those problems will be solved. On the other hand if one defines Big Geodata as having volume, velocity, or
variety that is beyond our current ability to handle, then Big Geodata will continue to remain just beyond our reach, and a major
invitation to cutting-edge research.
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1.04.1 Introduction

Data collection can be expensive, and sometimes practical constraints limit the ability to map in detail or keepmaps up to date. Take
the example of collecting data about species distributions of birds. Traditional surveys can provide detailed data on bird locations,
but given the limited number of trained people on research teams, the large number of species, and the wide migratory distribu-
tions, it is impossible to get a detailed and comprehensive record of bird locations over a large area and a long period of time using
standard approaches. Roads are another great example of phenomena that are difficult to map because they are always changing.
Imagine trying to keep road maps up to date in a city that is developing quickly. Maintaining road datasets requires constant updat-
ing by city technical staff. By the time the map is completed it is out of date. Furthermore, the data may not be available for the
public to access, use in the way it wants, or make edits and additions based on first-hand knowledge. With the growing popularity
of mobile devices equipped with location sensors, there has been increasing demand for geographic data in applications and the
possibility for individuals to use these tools to gather data. Issues of data timeliness, limitations in spatial and temporal resolutions,
restrictions on use of official data, and difficulty capturing large spatial extents have led to growing interest in having individuals be
part of networks for collecting data. When linked to a map, citizen science or crowdsourced data is called volunteered geographic
information (VGI). VGI can be defined as individuals using the Web to create, assemble, and disseminate geographic information
(Goodchild, 2007).

VGI’s popularity is also supported by new feasibility for map data collection made possible by major advances in the way people
create, view, and use maps. Improvements in mobile computing, in particular, personal communication devices (e.g., smartphones)
have made digital maps accessible to an unprecedented number of people. Smartphones are increasingly common, and many are
equipped with global positioning systems (GPS) to measure location, in addition to tools for capturing images (camera), recording
text, sound, and other input (touch screen and microphone), and sharing over networks (data connectivity). Social networks are
also important in that they connect many people to facilitate information sharing. It is now common to have measurements of
location attached to messages and images shared over social networks (e.g., geotagged Tweets or images on Flickr) (Robertson
and Feick, 2015) or for scientists to engage untrained volunteers in collecting and analyzing data (citizen science) (Haklay,
2013). Many aspects of scientific inquiry are geographic in nature, and therefore relate to VGI. Never before have as many advanced
mapping tools been available to so many people, even while often this mapping task is hidden, creating a growing cadre of
“accidental geographers” (Unwin, 2005).

Geospatial tools have embedded geography into people’s lives. While generating geographic information may be a passive
activity (e.g., a city routing app. tracks your progress while you drive through traffic to calculate the fastest route), there are also
intentional efforts to collect data (Harvey, 2013). Scientists increasingly turn to citizen engagement to enhance data collection
and outreach efforts in their communities (Dickinson and Crain, 2014). Also, the collection of technologies and methods known
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as the “geoweb” create opportunities for people to rapidly collaborate on geographic issues of interest. Because tools are available to
so many people, there are opportunities for many people to contribute, and VGI has several possible advantages. First, because there
are opportunities for so many people to contribute, data collection can be more spatially and temporally extensive than traditional
approaches coordinated through a central organization (Sui et al., 2013). Social media tools can engage an audience who is inter-
ested, experienced, skilled, and invested in a topic to contribute observations, interpret results, and share findings (Cooper and
Lewenstein, 2016). Therefore, VGI can represent unique perspectives, experiences, and knowledge. Funding limitations for tradi-
tional government mapping initiatives may lead organizations to look outward for help keeping data up to date or motivate people
to collect their own data to meet a need. VGI may cover topics that are difficult, or impossible, to address using traditional
approaches (Nelson et al., 2015). VGI can be more rapidly responsive and adaptive to local needs than centralized efforts (Good-
child and Glennon, 2010).

Despite the strengths of VGI, research has focused on data collection at the expense of information use and decision making, and
many concerns remain in these areas. An obvious first concern is related to the quality of data contributed by volunteers, as often no
credentials or training are required to participate in a project (Burgess et al., 2016). Another concern is that VGI may represent an
incomplete segment of society (Romanillos et al., 2015). Barriers may be in place to having everyone represented; for example,
many people do not have access to smartphones, computers, and networks due to available infrastructure and personal cost, the
ability to effectively use the tools, free time to participate, and motivation to take part (Sanchez and Brenman, 2013). Addressing
these concerns will increase the ability to use VGI to inform science andmanagement, lead to new discoveries, and represent a wider
range of experiences than traditional approaches.

The purpose of this article is to introduce and discuss major themes in VGI, present three recent case studies where geographers
used the Internet and smartphone tools to engage wide audiences using VGI. Our discussion of the themes of VGI is divided into
two sections: the process of generating VGI and the resultant data products. Related to the process of generating VGI, first we discuss
definitions, history, types, motivations of both participants and project organizers, and potential barriers to participating in VGI
projects. Related to VGI products, we discuss data quality, data ownership, and the use in governance, in particular for cities. In
the next section, we present three recent VGI case studies that demonstrate considerations for applying theory to real-life VGI
projects. In the final section, we relate the projects back to the themes discussed in the article and summarize the main points.

1.04.2 Themes

1.04.2.1 Process of Generating VGI

1.04.2.1.1 History
It has long been a goal of some geographers to include a wide variety of people and interests in maps (Miller, 2006). Local people
have local knowledge, are geographically close to a phenomenon, and may dedicate effort to topics and outcomes they are directly
invested in, perspectives that may be missed by more centralized approaches (Feick and Roche, 2013). Devices like smartphones
and personal computers are equipped with input tools for text, sound, images, location, and movement. Networks seamlessly
connect individual devices, online tools, and extensive “cloud-based” storage. In the process of using these tools, masses of data
are generated, much of which is geographic (Sui et al., 2013). These tools have presented new opportunities for collecting and
sharing geographic information.

Our understanding of the term VGI has evolved to embrace both a spectrum of types of geographic data that citizens create and
share, as well as a growing range of technologies and social practices that enable these data and information resources to be created
(Elwood et al., 2012). When viewed as geographic data, VGI can be seen to include both citizens’ objective recording of their envi-
ronments (e.g., local stream temperature readings, counts of amphibians) and more subjective information that relates to their
perceptions of opinions of places and features (e.g., georeferenced narratives). VGI can reference locations in either an explicit
(e.g., geographic coordinates) or an implicit (e.g., vernacular regions such as “downtown”) manner. The data that individuals collect
can vary substantially in format and include data that correspond with traditional GIS data, such as points, lines, and polygon
features in OpenStreetMap that are characterized with descriptive text tags (Haklay, 2010). Other types of VGI, such as geotagged
photographs (e.g., Flickr), text messages (e.g., Twitter), and videos (e.g., YouTube) are products of communication and present new
opportunities to document and analyze human and natural phenomena (Shelton et al., 2015; Quesnot and Roche, 2014).

1.04.2.1.2 Types of VGI
Diversity can also be seen in the processes that underlie how VGI is created and used. Stefanidis et al. (2013), for example, make
a useful distinction between VGI that individuals create deliberately and data that are generated passively as a byproduct of other
activities. Active VGI is characteristic of citizen science activities as well as more routine municipal issue reporting (e.g., graffiti,
potholes) where citizens are engaged in deliberately collecting information for a set problem or interest (e.g., bird sightings) and
usually across a predefined set of variables (e.g., species, sex, time observed). In this way, active VGI projects seek to enlist citizens in
helping experts to collect, curate, and share information that can be used to monitor environmental conditions and/or address
applied research questions. In contrast, ambient and passively generated VGI are typically created without user intervention as
an outcome of another process or activity. Considerable attention has been directed at examining how communication data,
such as Twitter, microblog texts, and geotagged photographs, and videos, can be used to infer new insights about human behavior,
movement, and perceptions (Li and Goodchild 2014; Shelton et al., 2015; Robertson and Feick, 2015).
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Even within these bounds, the diversity of VGI data and authoring processes introduces interesting challenges and opportunities
to further research. In terms of challenges, VGI producers often have different reasons for creating data and engaging in a VGI
project. Some individuals, for example, may be interested in enhancing their personal reputation and status within a community,
while others may have more altruistic motivations (Coleman et al., 2009). Since individuals’ motivations and expertise differ, the
quality of data contributions can vary substantially from person to person (Foody et al., 2013; Li and Goodchild 2014; Devillers
et al., 2010). Data coverage can be uneven as more people are willing to collect data about features and places that are popular
and accessible than their counterparts that are seen to be less interesting or more difficult to capture. Notwithstanding challenges
of this nature, the use of VGI offers several key advantages for advancing citizen science. The three VGI examples in section
“Examples” illustrate several of these challenges and opportunities in more detail.

1.04.2.1.3 Motivation
VGI created through an active and purposeful engagement is dependent on the participatory process. Through the evolutions of
public participation geographic information systems (PPGIS) and VGI with roots in participatory planning, much has been learned
about processes of participation. Arnstein’s (1969) ladder of participation has been used to link degrees of participation of citizens
to issues of power and control. While PPGIS projects were firmly rooted in urban and regional planning, VGI has a wider scope in
terms of the types of projects and forms of participation enabled by more recent advances in geotechnologies (Goodchild, 2007).

The reasons why people participate in VGI projects are intimately tied to the project’s objectives, and often many motivations
exist for participants within single projects and even within single individuals (Coleman, 2009). Understanding participant moti-
vations is a critical need for project designers that want to foster and build tools that cater to specific participant motivations. Cole-
man (2009) characterized user motivations in VGI, drawing from experiences in the open source software community, listing
categories of motivations including altruism, professional/personal interest, intellectual stimulation, personal investment, social
reward, enhancing personal reputation, an outlet for creativity and self-expression, and pride of place, as well as negative motiva-
tions of mischief, having a hidden agenda, or even criminal intent. These user motivations are tied to the nature of the information
contributed, and may be a predictor of data quality. Note also that motivations are not static and can and will change throughout
the life of a project (Rotman et al., 2012). For example, eBird, a popular citizen science project in ornithology, changed slogans from
“Birding for a Cause,” which aimed to engage the altruistic motivations of volunteers, to “Birding in the 21st Century” with a focus
on providing digital tools for birders to become better at their hobby. This change was associated with large increases in the number
of contributions and improvements in the quality of contributed data (Cooper and Lewenstein, 2016). In projects that solicit citizen
reporting of plants and animals, many people may be motivated to contribute data simply because they understand how better data
may lead toward improved research, decisionmaking, and/or conservation efforts. Researchers can therefore encourage submissions
by using the data for research, publishing papers, presenting at scientific conferences and developing knowledge mobilization
activities that translate the findings back to the participant community. User motivations also relate to mechanisms that can be built
into a VGI project, such as data standards and sampling designs (Goodchild, 2009).

A second and much less theorized aspect of VGI relates to the motivations of project designers or researchers. For citizen science,
the most widely expressed motivation is expanding sampling effort through the use of citizen data collectors (Dickinson et al.,
2010). However, research objectives may extend beyond data collection, for example, testing web-based participation tools
(Nuojua, 2010) or evaluating spatial cognition tasks, in which case researcher and participant motivations may not align explicitly,
and strategies such as gamificationmight be employed to target a general class of participants. Deeper participation in citizen science
takes an approach “higher in the participatory ladder,” whereby participants are engaged in defining project objectives and how and
what data gets collected (Haklay, 2013). Participatory action research may have much to inform citizen science and VGI more
broadly in this regard, which has a long history of linking researcher and “practitioner” interests in research projects (Argyris
et al., 2002). While participatory action research is rooted in social research, citizen science and VGI encompass both social and
natural science research questions, often at scales not possible within the participatory action research model (Cooper et al.,
2007). The continuum of control for VGI defines power structures that influence how actors in the project relate to each other.

The interlinkages between user motivations, researcher and/or designer objectives, data quality characteristics, and project design
choices can ultimately determine the characteristics of a VGI project and the information it produces. In the case studies investigated
here, we see several motivations at play for participants. In the case of RinkWatch (see section “RinkWatch”), research objectives
were both educational/outreach in nature (linking climate change to meaningful cultural ecosystem services) and to provide
data for research relating temperature variability to outdoor skating. Through qualitative interviews of participants from RinkWatch,
many participants revealed their motivation was driven by interest in outdoor skating. Outdoor skating, and in particular rink-
making, is an activity individuals engaged in individually and RinkWatch served as an online community. In response to this
realization, researchers implemented several bulletin boards to cater to these users, giving them a forum to exchange ideas and
tips related to rink-making and stories about outdoor skating.

1.04.2.1.4 Equity in VGI
We have addressed the benefits of VGI as a novel data source that can satisfy unmet social or scientific needs and also as a vehicle
for citizens to create and share information that is interesting or important to them. However, these benefits (and any costs) are
not distributed equally. Individuals, social groups, and geographic areas differ in terms of access to technical resources that enable
VGI production and use (e.g., Internet connectivity, open spatial data), as well as social, economic, and societal factors (e.g., financial
resources, digital literacy, sociopolitical environments, legal structures) that condition how and whether digital data and tools are used
(Sui et al., 2013). These inequities in access to digital tools and the ability to use them effectively have been described as a digital divide.
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Access to the Internet is an easily understood prerequisite for generating VGI. A large proportion of the world’s population have
limited or no Internet access due to a lack of infrastructure and the costs exceeding the income of many people (International
Telecommunications Union (ITU), 2016). In North America, computer and smartphone ownership have increased dramatically,
even for many in lower-income groups (Sanchez and Brenman, 2013). However, there are other nontechnical factors that impact
how and if individuals can engage in VGI and citizen science projects. For example, many people do not have the free time needed to
create VGI, particularly if they need to work long hours at multiple jobs or care for young or elderly family members (Wiggins,
2013). Similarly, disadvantaged groups may encounter social and educational barriers that limit their capacity to organize data
collection projects and how effectively they can interact with governments through online tools (Sanchez and Brenman, 2013).
While participation in VGI projects may not be possible for everyone, there is some hope that the outcomes (e.g., better data for
planning) may benefit broader groups of people beyond those who directly participated.

It is important to note that even within advantaged groups in society that have capacity to contribute to crowdsourcing and VGI
projects, rates of participation differ leading to participation inequality. For example, in Wikipedia, a small subset of participants is
responsible for generating the vast majority of the content, while many people make few contributions or only consume content
(Bruns et al., 2013; Quattrone et al., 2015). The most active contributors for OpenStreetMap have been predominantly young, male,
educated, and focused their efforts to mapping urban centers (Stephens, 2013; Quattrone et al., 2015). Different types of projects
can attract contributions by different groups; for example, females made most of the contributions to the citizen science project
EyeWire, a puzzle-like game to map neurons (Kim et al., 2014). Questions have arisen about the consequences of groups with
similar demographic profiles, and likely common experiences and world views, generating crowdsourced products that are increas-
ingly ubiquitous in use (Lam et al., 2011). Haklay (2016) emphasized that “[w]hen using and analysing crowdsourced information,
consider the implications of participation inequality on the data and take them into account in the analysis.”

1.04.2.2 Products

1.04.2.2.1 Data quality
Generally, definitions of data quality relate to fitness of the data for a given use (Chrisman, 1984), and VGI have opened discussion
about more complex dimensions of data quality. The standards developed through the International Standards Organization (ISO)
and specifically Technical Committee 211 provide a good starting point for examining spatial data quality (ISO, 19157, 2013).
These cooperatively developed standards cover data quality elements such as lineage (history of the data generation and process-
ing), positional accuracy, attribute accuracy, temporal consistency, and completeness, among others.

Applying spatial data quality standards to VGI can be challenging. Unlike spatial data that are created by experts in government,
private, or nongovernment organizations, VGI are often authored by many dispersed contributors who differ in expertise, interests,
and methods for creating and documenting data (Poore and Wolf, 2013). As a result, data quality can vary from contributor to
contributor within a single data set. Critiques of volunteered data quality have focused on concerns over spatial and attribute accu-
racy. In particular, inexperience in scientific protocols, the use of low-cost consumer devices (e.g., smartphone GPS sensors) rather
than dedicated instruments, and differing motivations of volunteers as a source of bias in volunteered science (Show, 2015). These
views are challenged on the basis that professional scientists also demonstrate nonobjectivity in research design and implementa-
tion, narrow views of data quality (as simple adherence to scientific protocols) are limiting, and differing approaches are enriching
for the greater goal of discovery (Newman et al., 2015). Certainly, demonstrating adherence to measurement protocols can add
authority to arguments backed by volunteered data (Ottinger, 2009). Technology can also be used to support curation of data
to ensure unusual measurements are flagged for review and areas needing more detailed observations identified (Ferster and Coops,
2014). Similar to the measures of lineage, the dispersed contributors of VGI require strategies such as training for new participants
and filtering and reviewing unusual values to ensure logical consistency of submitted data (Sullivan et al., 2014).

Another challenge for VGI is data completeness. VGI is heterogeneous by nature and the density of data contributions varies by
where volunteers choose to concentrate their efforts. However, VGI also presents opportunities to collect data that are spatially and
temporally extensive. In some cases, having more data that are extensive and uncertain may be more valuable than having few very
accurate data, or possibly no data at all, from official sources (Hochachka et al., 2012; Goodchild and Glennon, 2010). In general,
VGI projects and citizen science initiatives will likely continue to operate with fewer protocols to control data quality than
traditional scientific measures. However, the volume of data opens up potential and future research should consider how to imple-
ment confirmatory approaches to allow consistent data to be highlighted when repeated reports indicated similar patterns.

Emergent considerations for dimensions of data quality are related to the extent and opportunity for contributions by a diversity
of people, as the value of data can be enriched if a diversity of people have a chance to make unique contributions, chance discov-
eries, and opportunities to follow up on insights and chance discoveries (Lukyanenko et al., 2016). The key example in citizen
science highlighted by Lukyanenko et al. (2016) was the discovery of a rare type of astronomical object by a school teacher in
Holland, Hanney Van Arkel, in the Galaxy Zoo project (“Hanney’s Voorwerp”) (Raddick et al., 2010). The task being performed
was a rather mechanical manual classification of shape within telescope images. Opportunities were provided to ask follow-up
questions in an Internet forum attended to by experts, leading to a major outcome for science and the individual involved.

The connection between participating citizens and the representativeness of data is a growing area of interest for VGI. For
example, in cycling research there is a concern about how technology-based VGI may exclude participants and generate biased
data (Romanillos et al., 2015). Equity has been discussed in terms of access to forms of active transportation and associated health
benefits for different social groups (Lee et al., 2016). There is a strong appetite for cycling route data for city planners, and novel and
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crowdsourced origins are being considered. For example, Strava is a cycling smartphone game where participants can track,
compare, and compete their rides (Strava, 2017). The data on Strava represent actual cycle trips, but there may be a bias toward
different types of routes compared to recreational or utility cyclists (e.g., competitive riders may seek out hilly routes in rural areas
for training) (Griffin and Jiao, 2015). In other areas, such as urban centers, there may be less difference between Strava users and
other types of cyclists (Jestico et al., 2016). Given appropriate modeling constraints, these novel data sources can be complementary
to traditional data sources by offering covariates to make estimates over larger areas (Jestico et al., 2016). Interpretation within
context is important to ensure the equitable allocation of public resources for developing active transportation facilities (Le Dantec
et al., 2015).

1.04.2.2.2 Data ownership and open data
Data and algorithms are increasingly important in society and the two are intimately linked; the performance of algorithms is often
tied to the size and quality of the training data used to develop them. The dominant mode of big data ownership has normalized the
practice of individuals trading personal information services for access and ownership to personal data. In social media, for
example, each exchange implies a trade in service (e.g., posting a message to friends) for a piece of data (e.g., access and ownership
of the digital representation of that message). This trade positions corporations in opposition to individual users, in what many
consider to be an imbalanced relationship (Smith et al., 2012; Kitchin, 2014). In citizen science, data ownership can take a variety
of forms. One model is the previous model, where participants have no or little ownership or control over the data they create.
Often, in academic projects, this model is not tenable because research ethics boards require participants to be able to withdraw
from projects and have their data removed from the larger database. In some cases, full data access is granted on an individual
and aggregate basis.

For many users, access to raw data is less relevant than access to information products that relate to participant interests and
motivations. In the case of citizen science with higher levels of citizen participation, participants can have direct roles in the manage-
ment and access of data. Only in this case, where researchers and participants comanage data access policies, can the project be
considered an open source citizen science project. Yet there are several important barriers to “opening” citizen science data. Firstly,
many projects are designed to target a specific research or societal issue, and public access could have negative consequences. For
example, reporting observations of an endangered species could incite others to seek it out, causing damage to habitat and possibly
conflicting with conservation aims of the wider project. Similarly, health-related projects are particularly susceptible to ethical issues
associated with open data (Goranson et al., 2013). Privacy concerns are also an issue, whereby home-based observations and
usernames can be linked to other information (e.g., social media profiles) and risk harm to participants. Participation in deter-
mining data access policies is one way around this, where potential risks are discussed early and on an ongoing basis among
researchers and participants (Haklay, 2013). A joint researcher–participant oversight committee is one tool projects can use to
realize this level of participatory design in citizen science.

1.04.2.2.3 VGI in cities and governance
OpenStreetMap (OSM) is perhaps the most established VGI project and the focus on roads results in a strong emphasis in cities
(Haklay and Weber, 2008). OSM is a community of people that map and update worldwide data on roads, which are notoriously
difficult to keep current through traditional mapping workflows. Through time, OSM has grown to include other infrastructure and
services. The strength of OSM is the huge number of contributors. Neis et al. (2011) estimated that in 2011 there were over 0.5
million contributors and that the number of contributors grew by 150 people each day. There is huge power in collectively harness-
ing local knowledge, especially involving something as dynamic as roads. OSM is a great example of a key strength of VGI: by
compiling bits of data from a massive number of individuals, a new type of information is generated.

As is typical of VGI projects, a key discussion of OSM has been around the quality of data (Ward et al., 2005; Jackson et al., 2013).
The quality of road data is difficult to assess given lack of data to “truth” maps. Comparing OSM data to official data is helpful for
assessing congruence and variability but it is not possible to know which is right. Additional quality discussions have emphasized
assessment of the amount of OSM data, which varies spatially and is influenced by access to technology and skills of the population
(Neis et al., 2011). The longevity and number of applications that use OSM is an indication that even with concerns about quality,
VGI datasets can be the best available and are growing from fringe data into mainstream sources.

The ubiquity of smartphones has created new opportunities for urban and city embedded VGI projects. Mobility and transpor-
tation focused VGI initiatives are becoming particularly prevalent, as personal GPS devices track where people move with unprec-
edented resolution (Misra et al., 2014; Griffin and Jiao, 2015). Cycling research is at the forefront of discussions about the validity of
VGI as a source of data, given the plethora of fitness apps for tracking where people ride (Krykewycz et al., 2011). Personal fitness
apps (e.g., Strava) are used by cyclists to track where they ride, cycling distance, and speed. With a gaming element, Strava encour-
ages use by allowing people to compete with themselves and friends on distance and speed or undertake challenges, such as riding
the elevation gain of Everest in a given time period. Perhaps unintentionally, Strava users are contributing to a massive global data-
set on where people ride (Fig. 1). Strava Metro is now pursuing a new business model where they curate and sell the data to cities
and researchers interested in ridership data. Derivative products that map ridership and visualize cyclist flow through a city are now
possible. The primary criticism of using Strava is that data are primarily collected by recreational bike riders and biased toward
young men (Jestico et al., 2016). However, recent research also indicates that in midsized North American cities the ridership
patterns of Strava riders are similar to overall ridership patterns (Jestico et al., 2016). While there is much to be done to understand
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the appropriate use of fitness app data as a source of VGI for urban planning and population health research, interest in data will
continue given the proliferation of personal apps that leverage GPS capabilities of phones (Romanillos et al., 2016).

Emergency response and disaster management have been another focus of VGI research. There are very compelling examples of
the benefit of using VGI when responding to floods (Bruns et al., 2011) and wildfires (Goodchild and Glennon, 2010). Particu-
larly, in developing countries where authoritative data may be limited or void, such as the 2010 Haiti earthquake, volunteer data
can be the only available source of information for evacuation, rescue, and recover (Meier, 2012). Beyond overcoming a paucity of
data, VGI can have the advantage of real-time updating. Due to the potential for a large number of data contributors, as well as the
lack of requirement to verify data before publishing, VGI can be updated much more quickly than official sources. During
a disaster, this leads to both benefits and challenges (Roche et al., 2013). The positive benefit of knowing quickly what is
happening and how change is occurring can be diminished if rumors or false data are provided. Ultimately, unverified data
will have inaccuracies. To optimize utility of VGI, data need to be compiled and accessible, which does happen when a skilled
developer of VGI quickly sets up a website to respond to an issue. One of the main strengths of VGI, the responsiveness and
flexibility to provide information at the times and places where it is needed most, makes it a key tool for disaster response and
management (Meier, 2012, Zook et al., 2010).

Another aspect of emergency response where VGI is having an impact is preparedness. As an example, the BikeMaps.org (see
section “BikeMaps.org”) initially launched in a city prone to earthquakes. A group of emergency responders quickly reached out
to see if the technology could be broadened to support bike-based evacuation during an earthquake. Though an interesting appli-
cation of VGI, cell phone service could not be guaranteed during an earthquake, making it a poor choice for this particular appli-
cation. One challenge that may be met by VGI in the future is motivating community action for disaster mitigation and
preparedness. Among volunteers in the ForestFuelsApp (see section “The ForestFuelsApp”), there were very low levels of knowledge
and action for the existing wildfire mitigation programs (non-VGI), even among the highly engaged and knowledgeable audience.
Salience and motivation for tasks related to wildfire preparedness are often highest immediately following a large fire event, while
engaging communities at other times can be challenging (Monroe et al., 2006). Many recent wildfire apps are designed to dissem-
inate information about active wildfires, while only a few provide information about mitigation or preparedness (Kulemeka, 2015).
More broadly, there is a gap between the many natural disaster-related VGI efforts that are directed at response and the few that are
directed at mitigation or preparedness (Horita et al., 2013; Klonner et al., 2016). Among traditional public outreach efforts for wild-
fire mitigation, interactive and participatory approaches have been the most effective, but have limited audiences (Toman, 2006). If
VGI can be used to reach larger audiences, there is potential to use it as a tool to increase disaster mitigation and preparedness.

1.04.3 Examples

1.04.3.1 RinkWatch

RinkWatch is a citizen science project that engages citizens in climate change research through the reporting of ice skating conditions
on outdoor community and backyard rinks. The website RinkWatch.org launched in 2012 with a simple webmap interface and user

Fig. 1 Strava global heatmap. Brighter blues indicate higher rates of Strava application use to record cycle trips. Source: Strava.com – Global Heat-
map. http://labs.strava.com/heatmap/.
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management system that allowed people to register with an email address, identify the location of their rink, and then to update
continuously throughout the winter which days they could skate (or not) as temperatures changed (Fig. 2).

RinkWatch helps people make the link between climate change and impacts to their daily life. Despite increasing availability of
information and growing public awareness of climate change, it remains difficult to get the general public to take actions that
enhance their ability to adapt to its potential impacts (Burch, 2010). The link between climate change and the feasibility of outdoor
skating was made by Damyanov et al. (2012) through a modeling study that analyzed changes in weather station data and fore-
casted future change to the outdoor skating season in Canada. Given the cultural importance of outdoor skating to many northern
communities, RinkWatch was formed to examine climate change impacts on daily life and the culture connection to climate change
through citizen science. The RinkWatch project has three interrelated objectives: to better understand how temperature changes are
impacting people’s ability to engage in outdoor skating, to engage and inspire interest in climate change and climate change research
in a meaningful way, and to provide a testing bed for developing the “science of citizen science” (Robertson et al., 2015).

The response to the RinkWatch project was immediate and widespread, with hundreds of participants signing up in the first
weeks, and over 500 in its first season. Currently, now approaching the fifth year of operation, there are over 1900 registered rinks
with the project and over 30,000 skating reports. Partly responsible for this successful recruitment was widespread media interest in
Canada and the northeast United States, providing over 100 media opportunities to help publicize the project. We have since been
able to analyze the data in relation to local temperature records and couple relationships between skatability and temperature to
climate model scenarios (Robertson et al., 2015). While these projections are derived from relationships learned from only two
seasons of data, they enable the translation of climate model projections from units of temperature (e.g., change centigrade) to units
of days suitable for outdoor skating (see Brammer et al., 2014 for additional empirical work on this)da potentially more personally
relevant metric to inspire changes that will reduce personal carbon footprints (Whitmarsh et al., 2011).

Since the original launch of the website, the original web map interface has been replaced with a more comprehensive web
mapping framework including spatial data visualizations (e.g., “cold” maps, point clusteringdsee Fig. 2), full open access data
export for individuals and for all data, time series graphs, and some expert analyses of the data in relation to local temperature
data. We have also added user-engagement tools through user forums, and ability to post and share photos of rinks. We have collab-
orated with the sustainability arm of the National Hockey League (NHL Green) on communicating and promoting the project, and
sponsored student research projects into outdoor skating and climate change.

RinkWatch has been successful in generating attention and interest in the topic of outdoor skating and climate change. As well,
we have been able to leverage the data for research, showing regional variation in the skating-temperature relationship and how that
may change with projected changes in climate (Robertson et al., 2015). Data quality has been assessed qualitatively through
comparing plots of “skateability” to temperature recorded at local weather stations, finding generally consistent patterns and
evidence to support �5�C as a skating threshold (rinkwatch.org). Since we expect some variability in within-city temperatures
due to microclimates (e.g., shading), the spatial variability of observations within cities is an area of current investigation. Handling
variable submission rates among users has led to the development of new methods for dealing with messy, heterogeneous

Fig. 2 RinkWatch “coldmap” showing percentage of skateable reports submitted by participants and rink information for a selected rink. Source:
RinkWatch – http://www.rinkwatch.org/.

32 Current Themes in Volunteered Geographic Information

http://www.rinkwatch.org/


observations (Lawrence et al., 2015). In future seasons we plan to investigate the notion of climate fatigue, and how winter temper-
ature variability impacts outdoor activities (e.g., rebuilding rinks). Challenges have also been managerial in nature: keeping the
website current and updated with new content and features; finding resources to support software development (rinkwatch has
never been supported by research funding), and maintaining engagement with users through social media and online forums.

1.04.3.2 The ForestFuelsApp

The ForestFuelsApp. was a regional citizen science project to collect data about the fuel available to burn wildfires in the Wildland-
Urban Interface (WUI), where human development meets natural areas. Populations are expanding in the WUI (Radeloff et al.,
2005), and when wildfire occurs, there can be devastating human impacts (e.g., stress, injury, loss of life, and loss of homes and
other infrastructure) (Gray et al., 2015). The app was tested in Kelowna, BC, where rural and scenic ideals often lead to people living
in places where potential harm due to wildfire may occur. For example, the 2013 KelownaMountain Park Fire destroyed 239 homes
and forced 27,000 people to evacuate (City of Kelowna, 2016). Kelowna, BC is located in the Very Dry variant of the Ponderosa Pine
Biogeoclimatic Zone, where “[frequent low intensity] fires have played an important role in the ecology” (Hope et al., 1991). With
increased development, suppression of low-intensity fires has resulted in open stands characterized by Ponderosa pine (Pinus pon-
derosa Dougl. ex. Laws.) being succeeded by more closed stands of Lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.)
abundant ground and ladder fuels and closed canopies. In these stands, wildfires can burn at high intensity and spread rapidly
(Hope et al., 1991).

The aim of the ForestFuelsApp was to make tools to assess forest fuels loading accessible to a broader population, collect consis-
tent data, and increase awareness of WUI wildfire issues. The approach was inspired by ocular assessment methods, which provide
a rapid and accessible way to make a general assessment of forest conditions (e.g., distinguishing open and closed canopies) by
comparing field conditions with reference photographs (Keane, 2013). Forms from provincial protocols (Morrow et al., 2008)
were coded with reference photographs and illustrations developed by the research team (Fig. 3). Location was measured using
the device GPS. Photographs were acquired using the device camera and accelerometer to ensure consistent framing and leveling.
The device compass and accelerometer were used to measure slope and aspect. When initially opened, a brief tutorial was presented
with illustrations and text describing wildfire fuel assessments and use of the app.

Eighteen volunteers were recruited from the community through media coverage, classified advertisements, posters, and contact
with local hiking clubs and neighborhood associations. Questionnaires were administered before and after using the application.
Smartphones (Apple iPhone 4) were provided to volunteers for testing with the ForestFuelsApp loaded. Volunteers were accompa-
nied by a member of the research team and instructed to collect measurements at locations of their choice in the general vicinity of

Fig. 3 An example of estimating the crown closure of conifer trees using (A) reference photographs of different stand conditions and coding from
official protocols, (B and C) instructions and illustrations, and (D) capturing reference imagery using the accelerometer to ensure consistent acquisi-
tion angles.
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the University of British Columbia Okanagan campus, to simulate a volunteered and opportunistic dataset collected over the
Internet. Observational notes were collected. Finally, the locations chosen by volunteers were revisited by the research team to
collect reference measurements for comparison.

Many of the volunteers were recruited through hiking or neighborhood groups or had professional experience and interest inWUI
fuels conditions (50%). While the interest from professional foresters was higher than anticipated, this provided an opportunity to
both solicit professional feedback on the application, and compare differences between people with and without professional expe-
rience in wildfire and forestry topics. Both groups expressed similar motivations for volunteering in the project (the most common
reason was related to valuesdwanting to help solve a community problem), while people with professional forestry experiencemore
frequently expressed career motivations (e.g., learning new tools that may be useful for their job). One tension that existed was that
some professional foresters expressed concerns about nonprofessionals coming to incorrect conclusions or setting unrealistic expec-
tations for treatments that exceeded available resources. This concern was not reflected by the participants without professional expe-
rience, who generally indicated that they were more interested in helping out with the tedious task of collecting data to help their
community, than setting priorities for stand treatments. Some of the volunteers indicated that they would have found more physical
and demanding tasks, such as covering greater distances and submittingmore data, more rewarding. Themost frequently cited reward
for participation was related to understanding, both related to wildfires and technology. People over the median age more frequently
reported that they learned a new skill related to either the use of smartphones or wildfire management (Ferster et al., 2013).

For many of the fuel components, the volunteered measurements were consistent with the reference measurements. For
measurements of slope and aspect, measurements by people without professional experience were less accurate than people
with professional forestry experience, likely due to less practice with compass and inclinometer. This would be expected to improve
over time. Observations of height to live crown were more consistent when made by people without professional forestry experi-
ence. People with professional forestry experience were observed to have differing working definitions of this attribute based on
a range of experiences, while those without working experience more closely followed the instructions. People with no previous
professional experience with wildfires collected data that covered a greater spatial extent and a wider range of conditions, while
people with professional fire experience identified high priority locations near buildings with higher fire loads. For model building,
the two sets of measurements were complementary (Ferster and Coops, 2014).

The ForestFuelsApp followed a very traditional volunteering approach, requiring high levels of engagement and effort from
volunteers. One participant stated “tools are needed for people living in the [WUI], including communication, steps, and actions.
I could see this being useful for work parties in the community.” As a result, a number of volunteers were limited and volunteers
were highly dedicated. While a broader audience may have been reached using less intensive activities, at the same time, highly
engaged participants could have been given more demanding tasks. The implementation did not fully utilize the potential for social
connectivity; for example, volunteers could not see the data collected by other volunteers to find out where more measurements
were needed, and there were not opportunities to interact with other volunteers using social models (e.g., using social media to
promote, connect participants, analyze data, and discuss and share results). Concerns about liability and community conflict
restricted further growth. For example, there were concerns about people using the application to document fuel threats on private
land where landowners lacked resources to perform treatments and may suffer financial liabilities, leading to community conflict.
However, initial outcomes were promising, with useful data collected, positive responses from participants, and expression of
collective goals between people with different experiences in the community.

1.04.3.3 BikeMaps.org

BikeMaps.org is a global VGI tool that is filling the gap in available data on cycling safety. It is estimated that only 30%–40% of
cycling related incidents are recorded in official databases. Official databases are typically generated by police departments and
insurance reports, and primarily represent bike incidents that involved vehicles. However, in a study of injured adult cyclists, treated
in emergency departments, only 34% of incidents were collisions with motor vehicles and another 14% were a result of avoidance
of a motor vehicle (Teschke et al., 2014). When a bike collision occurs with infrastructure, another bike, or a pedestrian there is
typically no mechanism for reporting.

Another gap in cycling data is the lack of near miss reporting. Near miss events are critical for safety management in general
(Gnoni et al., 2013) and have the potential to provide early warning of high-risk areas. When compared to the number of human
errors or near miss incidents, a crash is a relatively rare event. Thus collecting sufficiently large near-miss databases can enable earlier
detection of problematic areas (Reason, 1991) and support robust statistical analysis. Near-miss information also provides critical
link to overcoming deterrents to ridership. Concerns about safety are a primary barrier to new ridership (Winters et al., 2012) and
with many cities setting goals to increase ridership understanding real and perceived safety concerns are critical. In cycling, near
misses can have significant physiological impacts that deter ridership (Aldred, 2016).

Through BikeMaps.org citizens can report cycling crashes, near misses, hazards, and thefts. BikeMaps.org includes a webmap,
smartphone apps, and visualization tools (Fig. 4) (Nelson et al., 2015). Citizens identify an incident location by clicking a “submit
new point” button and adding the location on the map where the incident occurred. Details of collisions and near misses are re-
ported via a digital form through pull-down options. All reports are anonymous. The attributes captured through the pull-down
menus are designed to enable research on determinants of cycling injury (Teschke et al., 2012). There are three categories of attri-
butes: incident details, conditions, and personal details, with a balance of required and optional questions to manage citizen
mapper burden. BikeMaps.org is also supported by Apps for both Android and iPhone devices. In addition to allowing mobile
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mapping, the Apps provide feedback to users through push notifications that alert cyclists to newmapping in their area. The website
also includes a visualization page where a spatial extent can be selected and temporal trends in crashes and near misses summarized
by day of the week and hour. The visualizations are dynamic enabling queries of data trends with the click of the mouse.

Launched in the fall of 2014, BikeMaps.org has over 3200 locations mapped in 35 countries (Fig. 5). The global response to the
website is an indication that BikeMaps.org is filling an important gap in data available to study cycling safety. Sixty percent of

Fig. 4 BikeMaps.org visualization tools. The visualizations are dynamic, adjusting with display extents as well as selection of incident types and
time periods. Source: BikeMaps.org – https://bikemaps.org/vis/.

Fig. 5 Global reports of BikeMaps.org incidents. Source: BikeMaps.org – https://bikemaps.org/.
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locations are mapped in Victoria and Vancouver, Canada, where outreach efforts were initially focused. In most other locations,
uptake has been more organic, resulting from social and earned media. In Victoria and Vancouver, we have undertaken a range
of outreach activities. The biggest gains in data are typically associated with print media (Fig. 6). While social media, Twitter
(Fig. 7) especially, have been important for broader communication of our message, visits to the website and data submissions
are highest when local newspapers feature a story on BikeMaps.org. Guerrilla marketing strategies have also proven effective
(Fig. 8). In one campaign, we delivered 500 branded water bottles to parked bikes around the city. When cyclists returned to their
bikes, they found a note to encourage them to contribute to safer cycling by mapping their experience.

A strength of the BikeMaps.org VGI project is the use of data for community engagement, research, and policy decisions. With
expertise in spatial analysis, the BikeMaps.org team is able to create map products from data, such as maps of cycling safety hot
spots, and these have been invaluable for ongoing engagement of users. Maps are also a great way to generate earned media as
they tell a story of broad interest. As data sets increase in size, we are also using BikeMaps.org data for peer-reviewed publications
on cycling safety, bringing credibility to the project. In areas where a substantial number of incidents have been reported, city

Fig. 6 Local print media covering BikeMaps.org is often associated with increased use. Source: Paterson, T. (2016) ‘BikeMaps charts course across
the country’, Saanich News, 19 May, p.1.

Fig. 7 BikeMaps.org Twitter feed. Source: BikeMaps.org Twitter – https://twitter.com/bikemapsteam?lang=en.
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planners have requested data and used them for planning. For example, in 2015 BikeMaps.org data were used in the City of
Victoria’s bicycle network planning (Fig. 9).

1.04.4 Summary and Conclusions

VGI is a new source of data that is changing what we can study and how we explore our world. Growth in VGI is fueled by tech-
nology such as GPS, GIS, and the ability to quickly build and share maps over the Internet. Digital maps are everywhere and mobile
GPS technology has been made mainstream through smartphones. As such, a huge proportion of individuals are carrying out day-
to-day tasks with a device that is perfect for VGI collection, a smartphone. The power of VGI is that it leverages the fact that each of us
has knowledge or can make observations. When we combine an individual’s knowledge or experience within a coherent data struc-
ture, the whole becomes more than the sum of the parts. The types of VGI that are generated are diverse, from simple actions such as
georeferencing other shared media (e.g., a Tweet or a photography) to intentional efforts to engage a wide audience in generating
information. The motivations for both project organizers and participants of VGI projects are wide and ranging. It is informative to
consider motivations when evaluating project popularity and outcomes for individuals, management, and science.

Issues of data quality and representation bias seem to be the primary criticism of VGI. However, even with limitations, VGI often
represents the best available data. While we can and should design technology and methods that optimize the collection of
high-quality and consistent data, VGI projects will benefit from research that develops approaches to working with uncertain
data. Solutions to uncertain data may take several approaches. For example, an important solution could be to develop tools
that enable tracking of confirmatory VGI that emphasizes patterns that are consistent. A second solution is to develop statistical
approaches to integrating or conflating VGI with traditional data sets. For example, Jestico et al. (2016) leverage the spatial and
temporal extents of Strava by integrating it with official counts that have complete attribution. Finally, awareness of barriers to
VGI use by groups of people can lead to greater inclusion or alternate strategies to solicit input.

RinkWatch links climate and the culturally important activity of outdoor ice skating to engage interest and awareness of climate
change. This approach attracted extensive media attention and garnered many contributions through submitted data, discussion
forums, and data visualizations. The submitted reports are useful for exploring regional variation in climate and linking climate
change models to the “skateability” of outdoor rinks, a metric that is relatable for many people.

The ForestFuelsApp showed that people who do not traditionally take part in forestry data collection can assist with data collec-
tion tasks, there are people in the community who are motivated to assist, and these people reported enjoyment and learning from
some of the tasks. However, compared to the other projects (RinkWatch and BikeMaps.org), which had lower requirements in terms
of entry levels of effort, a relatively small audience was engaged. More dynamic and less tedious forms of engagement may reach
larger audiences, while deeper forms of engagement may still have a role for certain types of tasks.

A flagship success of BikeMaps.org is that within 1 year of project launch the data were used to support planning of cycling infra-
structure in Victoria, Canada. The project goal was to overcome the lack of available cycling safety data and when data began being
requested for decision making the BikeMaps.org project had begun to achieve its mission. Essential to success were the quality of
VGI technology and the careful development of the attributes associated with data. As well, promotion efforts were substantive
during the first year which generated a quantity of data that was sufficient to demonstrate utility of the site. The overarching reason
for success is that the VGI generated by citizen cyclists fills a specific data niche, making it a valuable resource for planning and
research.

As an author team we have run a variety of VGI projects and a key lesson learned is that VGI projects require maintenance. Both
the technology and promotion of VGI tools require ongoing support. It can be costly to keep apps and websites maintained and the
knowledge of the technology may need to transfer from one technician to another over time. As well, it is rare that a VGI project will
become self-promoting. Rather, it is typical that continued use of a VGI tool requires ongoing outreach to the user community.

Fig. 8 Examples of BikeMaps.org guerrilla marketing include distributing branded saddle covers, water bottles, and other goods.
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Fig. 9 An example of BikeMaps.org data presented for use in bicycle network planning in Vancouver, British Columbia, Canada. Source:
BikeMaps.org – https://bikemaps.org/blog/post/10th-avenue-corridor-vancouver-bc-cycling-safety-trouble-spots.
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Gamification of tools and generating products from data will help. However, a plan is required to ensure the investment in VGI
technology will have long-term use and benefits. In the case of BikeMaps.org, the project initially began as a research project but
is now morphing into a team that has both a research arm and a nonprofit outreach arm.
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1.05.1 Introduction

With the growing capability of recording individual’s digital footprints and the emerging open culture, the open big data are flood-
ing everywhere (Batty, 2012). Geospatial data are an important component of open data unfolding right in front of our eyes (Warf
and Arias, 2008). Geographic information system (GIS) research is shifting toward analyzing ever-increasing amounts of large-scale,
diverse data in an interdisciplinary, collaborative, and timely manner. Goodchild (2013) proposed the crowd, social, and
geographic approaches to assess big data quality. Sui (2014) argued that open GIS should involve eight dimensions related to
data, software, hardware, standards, research, publication, funding, and education facilitated by web-based tools and the growing
influence of the open culture. The key pillars of open GIS have always been and will continue to be open source, open data, open
modeling, open collaboration, and open publishing for future GIS research and applications (Rey, 2014). Sui (2014) noted that
“the big data torrent will eventually be more powerful if they can be made to conform to open standards such as those developed
by OGC over the years”. This article places greater emphasis on open data and open source GIS. According to Sui (2014), open GIS
offers four exciting opportunities for participation and collaboration among both GIS experts and volunteers: (1) technology-driven
opportunities for addressing big data challenges; (2) application-led opportunities for improving decisions across all levels; (3)
curiosity-inspired, crowd-powered opportunities for developing citizen science; and (4) education-focused opportunities for real-
izing a spatial university.

To realize science’s powerful capacity for self-correction, it is critical to reproduce the outcomes of scientific research (Ye et al.,
2015). However, if data and codes are not transparent, the reproductivity will not work due to bottlenecks or restrictions from copy-
right, patents, or other mechanisms of control. Open data and open source GIS aim to make GIS research open to everyone. In other
words, data and codes should be made legally open and accessible to both professional and nonprofessional communities
(Stodden, 2009).

The growing and evident interdisciplinary efforts dedicated to “open data and open source GIS” represent a transformative trend
shaped by increased scholarly collaboration and research methods sharing (Sui, 2014). Instead of following the traditional propri-
etary approach, open data and open source GIS can lead to a large number of benefits to both citizens and businesses across the
globe, with the success of GIS research, education, and applications.

The rest of this article is organized as follows. Elements of the emerging open data are described in section “Open Data”. Section
“Open source GIS” discusses how open source GIS plays a pivotal role in the research and education. Section “Practicing Open
Source GIS” demonstrates the use of open source GIS for regional economic analysis. The article ends with a summary and conclu-
sion for open GIS paradigm in section “Summary” toward the goal of reproducibility and the desired reuse.

1.05.2 Open Data

Knowledge is eventually derived from data. The term “open data”was coined in 1995 to deal with the disclosure of geophysical and
environmental data realizing the idea of common good applied to knowledge (Chignard, 2013). Open data is gaining popularity
with the launch of open government data initiatives. The volume of open space–time data in various disciplines and domains has
dramatically increased due to the growing sophistication and ubiquity of information and communication technology (Jiang,
2011). Open data can be used and reused at no cost or restriction without mechanisms of control such as copyright and patents
(Auer et al., 2007). The intention of open data movement is to make publicly acquired data available for direct manipulation
such as cross tabulation, visualization, and mapping (Gurstein, 2011). It is clear that a space–time perspective in using such
data has become increasingly relevant to our understanding of socioeconomic and environmental dynamics in the collaborative
and transdisciplinary manner. As noted by (Rey, 2014), “Open data constitutes available, intelligible, accessible, and usable
data. For science’s error–correction mechanisms to kick in, data underlying research projects must be made accessible to the wider
research community”. Featured by the ever-growing volume, variety, and velocity of ubiquitous geospatial information, the big
spatial data in the changing environmental, urban, and regional contexts demand innovative thinking that can capture the rich
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information of patterns and processes and provide spatial strategies for sustainable development. Meanwhile, the volume of data
created by an ever-increasing number of geospatial sensor platforms such as remote sensing and social sensing (including citizen
sensors) to collect data at ever-increasing spatial, spectral, temporal, and radiometric resolutions currently exceeds petabytes of data
per year and is only expected to increase. Data come from various sources, types, organizations (governments, military, NGOs, etc.),
and purposes. Recent developments in information technology commonly referred to as big data along with the related fields of
data science and analytics are needed to process, examine, and realize the value of the overwhelming amount of open geospatial
data. The research agenda has been substantially redefined in light of open data, which have transformed the focus of GIS research
toward dynamic, spatial, and temporal interdependence of human–environment issues across multiple scales. Metadata is informa-
tion about data. The use of metadata enhances the opportunities for semantical interoperability involving open data, lowering the
cost of access, and manipulating and sharing across data boundaries (Nogueras-Iso et al., 2004). As declared by (FGDC 2017),
“Geospatial metadata describes maps, Geographic Information Systems (GIS) files, imagery, and other location-based data
resources. The FGDC is tasked by Executive Order 12906 to enable access (see GeoPlatform.gov) to National Spatial Data Infrastruc-
ture (NSDI) resources and by OMB Circular A-16 and the A-16 Supplemental Guidance to support the creation, management, and
maintenance of the metadata required to fuel data discovery and access”.

Twelve critical factors were identified to city-level, regional, and transnational cases regarding the publication and use of open data
(Susha et al., 2015): (1) a national guide on legal intellectual property right issues; (2) a clear data publishing process; (3) addressing
of societal issues andpublishing of related data; (4) interest for users; (5)where to publish datasets; (6) a virtual competence center for
technical help; (7) a strategy for maintaining published datasets; (8) allowing citizens to post, rate, and work with datasets and web
services; (9) a clear user interface; (10) standards for data, metadata, licenses, URIs, and exchange protocols; (11) integrate metadata
schemas and federated controlled vocabularies; and (12) application programming interfaces for open data provision.

As (Maguire and Longley, 2005, p. 3) noted, “geoportals are World Wide Web gateways that organize content and services such
as directories, search tools, community information, support resources, data and applications”. The Geospatial One-Stop emerged
as an easier, faster, and less expensive gateway for searching relevant geographic information sponsored by the US Federal Govern-
ment (Yang et al., 2007). As (Goodchild et al., 2007, p. 250) pointed out, “humans have always exchanged geographic information,
but the practice has grown exponentially in recent years with the popularization of the Internet and the Web, and with the growth of
geographic information technologies. The arguments for sharing include scale economies in production and the desire to avoid
duplication. The history of sharing can be viewed in a three-phase conceptual framework, from an early disorganized phase, through
one centered on national governments as the primary suppliers of geographic information, to the contemporary somewhat chaotic
network of producers and consumers”. Many governments have been developing various programs to open data available via
websites for public consumption such as the US, the UK, and Canada. These datasets typically contain records with spatial prop-
erties in democratizing public sector data and driving innovation (Arribas-Bel, 2014). Data.gov as a website launched in 2009
aims to enhance accessing the repository for federal government information and to ensure better accountability and transparency
over 50 US government agencies with over 194,708 datasets (Hendler et al., 2012; Data.Gov, 2017).

In line with the spirit of crowdsourcing and citizen science, open data movement is that data should be legally and technically
open to the scientific community, industry, and the public to use and republish. In other words, data should be provided in open
machine-readable formats and readily located, along with the relevant metadata evaluating the reliability and quality of the data to
promote increased data use and facilitate credibility determination. To advocate both transparency and innovation, open govern-
ment data initiatives have been implemented in many countries from local to global level regarding accessibility, persistent iden-
tification, and long-term availability. The open data initiatives encourage peer production, interactivity, and user-generated
innovation, which have stimulated the sharing and distribution of information across communities and disciplines. The underlying
philosophy of open government or the theory of open source governance is that the interested citizens can access the documents of
the government to facilitate effective public oversight and enable the direct involvement in the legislative process to promote open-
ness, participation, and efficiency in government (Janssen et al., 2012). Civic hacking is utilizing government data to make govern-
ments more accountable through solving civic problems by those who care about their communities. For instance, Code for
America is a nonprofit organization founded in 2009 to deal with the growing cross-sector gap in their effective use of technology
and design for good (Wadhwa, 2011). Some civic hackers are employed by Code for America. National Day of Civic Hacking is
a nationwide day of action where various developers come together to coordinate civic tech events dedicated to civic hacking (John-
son and Robinson, 2014). Transparency and participation through data integration and dissemination across domains and bound-
aries will facilitate collaboration among researchers, private sectors, and civilians leveraging their skills to help the society. (Gurstein,
2011) also examined the impact of such open data initiatives on the poor andmarginalized and call for ensuring a wide opportunity
for effective data use in the context of digital divide.

Papers with publicly available datasets usually have a higher citation rate and visibility than similar studies without available
data, either by a direct data link or indirectly from cross-promotion (Piwowar and Vision, 2013). However, open data movement
often faces the economic, legal, organizational, political, social, and technical challenges at either individual or institutional levels.
Many researchers are still reluctant to share the original data used in their research to support the open access initiative, fearing the
loss of credits, future publications, and competitive advantage, as well as the time to document and deal with questions for users
(Fernandez, 2010; Sui, 2014). Their motivation for publication of datasets and intentions in doing so remain uncertain. Arguably,
different person-based policies among stakeholders with various backgrounds and interests need to be developed to encourage
sharing behavior in collaboration. Organizational support has been playing a substantial role in promoting researchers’ intentions
of sharing datasets through dealing with the heterogeneity of collaborators and the complexity of the data sharing process.
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1.05.3 Open Source GIS

The Free and Open Source Software for Geospatial Conference has been playing a pivotal role in promoting the open science in
software development. Open source GIS is gaining growing market shares in academia, business, and public administration.
This recognition came at a time when many open source programming and scripting languages such as Python and R are starting
to make major inroads in geospatial data production, analysis, and mapping (Ye and Rey, 2013). As a consequence, open source
software development has been a crucial element in the GIS community’s engagement with open GIS and the most well-developed
aspect of open GIS (Rey, 2009). The availability and widespread use of codes and tools to support more robust data analysis will
play a critical role in the adoption of new perspectives and ideas across the spatial sciences. The openness to scrutiny and challenge
underlies the open source GIS movement through the release of the source code, which has subsequently influenced software func-
tionality and support (Neteler and Mitasova, 2008). Users have the freedom to access, modify, and distribute the source code based
on licensing agreements such as MPL, MIT, Apache, GPL, and BSD. Making source code both legally and technically open is the very
first step of being promoted as a public good (Rey and Ye, 2010). In particular, scientists could benefit from the open source code,
which would reduce code duplication and free up additional developer time to enhance the respective applications (Rey, 2009).
Bonaccorsi and Rossi (2003) argued that “when programmers are allowed to work freely on the source code of a program, this
will inevitably be improved because collaboration helps to correct errors and enables adaptation to different needs and hardware
platforms”. The credibility of research findings tends to be higher for papers with the available code. Third-party researchers might
be more likely to adopt such papers as the foundation of additional research. In addition, coding repository platforms such as
GitHub and BitBucket are making this open source tide stronger. Links from code to a paper might enhance the search frequencies
of the paper because of accelerated awareness of the methods and findings.

The dramatic improvement in computer technology and the availability of large-volume geographically referenced data have
enabled the spatial analytical tools to move from the fringes to central positions of methodological domains. By and large, however,
many existing advanced spatial analysis methods are not in the open source context. The open source and free approach offer
unprecedented opportunities and the most effective solution for developing software packages through attracting both users and
developers. Instead of reinventing the wheel, we can study how the program works, to adapt it, and to redistribute copies including
modifications from a number of popular alternatives. Anselin (2010) emphasized the role of the open source software movement in
stimulating new development, transcending disciplinary boundaries, and broadening the community of developers and adopters.
With accelerated development cycle, open source tools can give GIS users more flexibility to meet the user community needs that are
only bound by our imaginations, which are aligned with more efficient and effective scientific progress. New theories and novel
practices can thus be developed beyond narrowly defined disciplinary boundaries (Sui, 2014). Regarding open source efforts on
spatial analysis, Arribas-Bel (2014) argued, “the traditional creativity that applied researchers (geographers, economists, etc.)
have developed to measure and quantify urban phenomena in contexts where data were scarce is being given a whole new field
of action”. Sui (2014) also noted that a hybrid model integrating both open/free paradigm and proprietary practices (copyright
and patent, IP stuff) would be the most realistic option and promising route to move GIS forward. Open source GIS can facilitate
the interdisciplinary research due to “the collaborative norms involving positive spillover effects in building a community of
scholars” (Rey, 2009; Ye et al., 2014).

During the past several decades, burgeoning efforts have been witnessed on the development and implementation of spatial
statistical analysis packages, which continue to be an active area of research (Rey and Anselin, 2006; Anselin, 2010). The history
of open source movement is much younger, but its impact on GIS world is impressive (Rey, 2009). As Rey (2009) commented,
“a tenet of the free software (open source) movement is that because source code is fundamental to the development of the field
of computer science, having freely available source code is a necessity for the innovation and progress of the field”. The development
of open source packages has been boosted. However, many duplicates and gaps in the methodological development have also been
witnessed. The open source toolkit development is community-based with developers as well as casual and expert users located
everywhere. Through the use of an online source code repository and mailing lists, users and developers can virtually communicate
to review the existing code and develop new methods. However, Tsou and Smith (2011, p. 2) argued that “open source software is
not well adopted in GIS education due to the lack of user-friendly guidance and the full integration of GIS learning resources”. Some
representative open source desktop GIS software packages include KOSMO, gvSIG, uDig, Quantum GIS (QGIS), Geographic
Resource Analysis Support System (GRASS), and so on. KOSMO was implemented using the Java programming language based
on the OpenJUMP platform and free code libraries. Developed by the European GIS community offering multiple language user
interfaces, gvSIG is known for having a user-friendly interface, being able to access a wide range of vector and raster formats. Built
upon IBM’s Eclipse platform, uDig (user-friendly desktop Internet GIS) is an open source (EPL and BSD) desktop application frame-
work. QGIS integrates with other open source GIS packages such as PostGIS, GRASS GIS, and MapServer, along with plugins being
written in Python or Cþþ. As a founding member of the Open Source Geospatial Foundation (OSGeo), GRASS offers comprehen-
sive GIS functions for data management, image processing, cartography, spatial modeling, and visualization.

1.05.4 Practicing Open Source GIS

The study of economic inequality and convergence continues to attract enormous attention thus becoming a dynamic academic
landscape where the interdisciplinary literature has evolved (Ye and Rey, 2013). This interest has been reflected in the analysis
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of spatial patterns of economic convergence and the temporal dynamics of geographical inequality. However, the literature studies
of process analysis and form analysis are mainly separated because most methods are standalone without the sharing of the code. At
the same time, the increasing availability of open space–time data has outpaced the development of space–time analytical
techniques across social sciences. The methodological integration of space and time call for open data and open source methods,
which will help narrow the gap between growth theories and their empirical testing. While the substantive focus of this case study is
on open source computing of regional income dynamics, the issues examined are relevant to the development of a wide class of
methods based on open science. This section suggests some novel exploratory approaches to compare spatial pattern and temporal
trend of regional development. The cross-fertilization between domain science and open source computing is identified and
illustrated.

There is a growing list of papers using local indicator of spatial autocorrelation (LISA) to measure the spatial structure of socio-
economic patters due to the following two reasons: the availability of open socioeconomic data across administrative units and the
implementation of LISA indicators in software packages (Anselin, 1995). However, the release of spatial panel data calls for the
extension of static spatial methods into the dynamic context. A LISA time path can be used to measure how economies covary
over space and time in a regional context, giving insights to the debate about cooperative versus competitive regional growth.
The challenging issue is that most domain users cannot handle the LISA time path due to the lack of programming skills.

Once the new space–time indicators are developed, an extensive set of inferential approaches is needed to evaluate their
sampling distributions for comparative analysis between two regional systems. A tortuous LISA time path indicates that the focal
economy and its average neighbor have instable convergence/divergence rates, while a frequent crossing suggests mixed conver-
gence and divergence trends over time. With the growing awareness of the potential importance of the spatial dimension of
economic structure, these space–time constructs can be implemented into empirical specifications to test the existence of poverty
traps, convergence clubs, and spatial regimes. Two interesting questions arise from this analysis (the value hereafter refers to
tortuous indicator or crossing ratio):

1. Is a LISA time path statistically more or less tortuous than what is expected if the path is randomly organized?
2. Is a LISA time path’s crossing ratio statistically larger/smaller than what is expected if the path is randomly organized?

Both LISA time path and various simulation procedures can be modified based on codes from open source packages STARTS and
PySal (Rey, 2009, 2014). It is expected that LISA coordinates are independent from each other; however, an individual region’s
economic growth at one time point relates to its history and its neighbors’ temporal economic dynamics. An alternative to the afore-
mentioned methods is to employ a Monte Carlo simulation approach and thus circumvent the assumption of independence that
causes inferential problems. The presence of space–time effects needs to be considered when examining the distributional proper-
ties of a LISA time path indicator. Three sets of permutation approaches are suggested to test the independence of space, time, and
trend through python code implementation.

The spatial independence test answers the following questions: Can the observed value (or the differences between two observed
values) be used to reject the null hypothesis of spatial randomness? The temporal independence test answers the following ques-
tion: Can the observed value (or the differences between two observed values) be used to reject the null hypothesis of temporal
randomness? The trend independence test answers the following question: Can the observed value (or the difference between
two observed values) be used to reject the null hypothesis of trend randomness?

Figs. 1–3 show the effects of these three independence tests, the top left view is a LISA time path of region i from Time 1 to Time
10. In Fig. 1, through random permutations on the spatial coordinates of all regions, the other three graphs show three different
LISA time paths with different groups of points (LISA coordinates). In Fig. 2, through randomly relabeling time stamps, the other
three graphs show different LISA time paths based on the same group of points. In Fig. 3, through randomly normalization the path
segments to follow a normal distribution, the other three graphs show different LISA time paths that retain the trends of the original
path.

We test LISA path significance using tortuosity and crossing ratio using provincial GDP data in mainland China from 1998 to
2008, consisting of 31 provinces in total. This work uses the k-nearest neighbors method to construct the spatial matrix, and default
k is 4. The related code is adopted from PySal (http://pysal.readthedocs.io/en/latest/users/tutorials/weights.html). We compute the
observations ot and their lag values lt for each time points. Both values are standardized as z-scores. Construct a dictionary D that
uses the time point t as key, and a matrix comprised two rows transposed from ot and lt. We then construct the observed LISA path
with the values extracted from the dictionary D. A LISA time path Pi for a given province i consists of several spatial coordinates with
their temporal labeling, represented as:

Pi ¼ xk; yk; tkð Þf g; 0 < k < nþ 1

The first two elements xk and yk in the tuple are the attribute value and its spatial lag value, respectively, of the province i, while tk
is the kth year when the value is measured. Finally, we obtain a set of paths Sp for all provinces. For each path, Pi in the path set Sp,
two indexes are integrated in the following simulation procedures: tortuosity and crossing ratio. Tortuosity is represented as:

Tp ¼ distance x1; y1ð Þ; xn; ynð Þð Þ�len Pð Þ
where (x1,y1) and (xn,yn) are the head and tail spatial coordinates of the LISA path P, and len(P)measures the total length of all the
segments of the path. The value of tortuosity is in the range [0, 1], with 0 representing higher degree of path tortuosity, and 1 for the
path to be completely straight spatially, stretching in a stable direction.
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The crossing ratio is represented as:

cp ¼ 2 � icp
.

np2 � np
� �

where icp represents the self-intersection count of the LISA path p, and np represents the number of points in p. The self-intersection
count is calculated by checking whether segments of this path P intersect with each other. The value of crossing ratio also lies in the
range [0, 1], with 0 representing no crossing, which indicates that the path is highly stable, and 1 for another extreme case where all
the segments in the path happen to intersect with each other, indicating highly unstable evolvements of the path over time.
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We permute the original data 999 times using one of the following three modes: spatial independence, temporal independence,
and trend independence.

(i) Spatial independence test
The spatial independence acts on all the provinces. For each time point t, randomly permutate the spatial coordinates for all

the regions. This process rearranges the LISA and the lag values among the provinces, and a new LISA time path is constructed
for the given region.

(ii) Temporal independence test
The temporal independence test uses the data solely from the observed LISA path. The test randomly permutates the

temporal order of the spatial coordinates of the given region and form a new LISA time path.
(iii) Trend independence test

Similar to the temporal independence test, the trend independence test takes only the data from the observed LISA path.
The test starts with breaking the observed LISA path into a set of vectors. These vectors are then normalized to follow a normal
distribution centered at zero and with unit length as standard deviation while preserving their directions. A trend list is thus
formed. The new LISA time path is generated by first randomly picking a starting coordinate and then uses the trend list to
construct the whole path.

The values calculated in the simulation process are then ordered, and the pseudo significance level is then computed. This simply
sorts the empirically generated 999 values and then develops a pseudo significance level by calculating the share of the empirical
values that are higher than the actual value.

The results show that spatial independence and temporal independence tests show stronger significance level than trend inde-
pendence test. The ranks of the tortuosity and crossing ratio in each test are not much correlated but are relatively stable respectively
across three tests. Under the hypothesis of spatial or temporal independence, all provinces are significantly tortuous than expected,
except three provinces (Jiangxi, Jilin, and Shanghai). However, none of the provinces shows significant crossing frequencies. In other
words, there are no obvious mixed convergence and divergence trends over time.

1.05.5 Summary

Spatial turn in many socioeconomic theories has been noted in a vast field, encompassing both social and physical phenomena
(Krugman, 1999; Goodchild et al., 2000; Batty, 2012). The fast growth in socioeconomic dynamics analysis is increasingly seen
as attributable to the availability of space–time datasets (Rey and Ye, 2010; Ye et al., 2016). Rigorous space–time analysis and
modeling open up a rich empirical context for scientific research and policy interventions. To help scholars and stakeholders
deal with the challenges and issues, methodologies and best practice guidelines are needed at both international and national
or local level. Making data and source code available for both replication and continuing research will have far-reaching and broader
impacts in both GIS and domain communities, highlighting the growing recognition of the role of geography in interdisciplinary
research (Karnatak et al., 2012). Such improved discoverability is beneficial for both investigators and the science community as
a whole. Open source GIS research has received increased attention and will lead to the revolutionary advances in individual
and collective decision-making processes (Sui et al., 2012). The goal of this article is to make amodest effort to synthesize an agenda
surrounding and hopefully to stimulate further discussions that promote open GIS as the driving force to guide the development of
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GIS at a finer scale (Sui, 2014). To gain momentum under the general umbrella of big data and new data, GIS should fully embrace
the vision of an open data and open source GIS paradigm to enhance government efficiency and to improve citizen services (Wright,
2012). Although there are academic, legal, social/political, and environmental impediments for the practice, open GIS will provide
numerous technology-driven, application-led, science-inspired, and education-focused opportunities (Sui, 2014).

Methods developed in the mainstream spatial science disciplines need to be progressed with more attention paid to the
potential reuse of data and codes. Though a growing list of research papers have highlighted the increasing awareness of spatio-
temporal thinking and action, the gap has been widening between a small group of method developers and users. Hence,
a crucial step is to develop the dialog between computational scientists and domain users, seeking the cross-fertilization
between the two fast-growing communities. As Rey (2009) suggested, “increased adoption of open source practices in spatial
analysis can enhance the development of the next generation of tools and the wider practice of scientific research and educa-
tion”. The methods are built in open source environments and thus easily extensible and customizable. Hence, open source
project can promote collaboration among researchers who want to improve current functions or add extensions to address
specific research questions.
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