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Preface 

THIS BOOK rests on two main assumptions. First, scientific and engineering 

progress in a discipline requires the invention and use of appropriate 

mathematical apparatus with which to express and unify good ideas. 

Second, symbolic logic forms a most important part of the mathematics 

of Artificial Intelligence ( A I ) . Perhaps each of these assumptions needs 

some defense. 

One might think that our first tenet should be noncontroversial. Yet 

in new fields, where the knowledge corpus is still mainly tied to practice 

and case studies, there often is substantial resistance to attempts at 

mathematicization. (One of us, for example, remembers hearing some 

electrical engineers during the 1950s complain about the irrelevance of 

differential equations to the study of electrical circuits and control systems!) 

We do not claim that knowing the mathematical ideas and techniques of 

a field is all that is needed to succeed in that field—either in research or 

in practice. We do note, however, that successful preparation in mature 

fields of science and engineering always includes a solid grounding in 

the mathematical apparatus of that field. This preparation provides the 

all-important framework needed to interpret, understand, and build the 

discipline. 

Because the field of A I is relatively new, it is not surprising then that 

there are spirited debates between the "formalists" and the "experimental-

ists." The formalists claim that the experimentalists would progress faster 
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if the latter had a more thorough understanding of various A I theoreti-

cal ideas. The experimentalists claim that the formalists would be more 

helpful if the latter were less concerned with form and more with content. 

Even if we were to grant that most of the advances in A I (or in any field 

of engineering) are inspired by experimentalists and that formalists serve 

mainly to "tidy up," it is nevertheless our opinion that the important new 

results in A I will be achieved by those researchers whose experiments are 

launched from the high platform of solid theory. 

The theoretical ideas of older branches of engineering are captured in the 

language of mathematics. We contend that mathematical logic provides 

the basis for theory in A I . Although many computer scientists already 

count logic as fundamental to computer science in general, we put forward 

an even stronger form of the logic-is-important argument. In Chapters 1 

and 2, we claim that A I deals mainly with the problem of representing 

and using declarative (as opposed to procedural) knowledge. Declarative 

knowledge is the kind that is expressed as sentences, and A I needs a 

language in which to state these sentences. Because the languages in which 

this knowledge usually is originally captured (natural languages such as 

English) are not suitable for computer representations, some other language 

with the appropriate properties must be used. It turns out, we think, that 

the appropriate properties include at least those that have been uppermost 

in the minds of logicians in their development of logical languages such as 

the predicate calculus. Thus, we think that any language for expressing 

knowledge in A I systems must be at least as expressive as the first-order 

predicate calculus. 

If we are going to use a predicate-calculus-like language as a knowledge-

representation language, then the theory that we develop about such 

systems must include parts of proof theory and model theory in logic. 

Our view is rather strong on this point: Anyone who attempts to 

develop theoretical apparatus relevant to systems that use and manipulate 

declaratively represented knowledge, and does so without taking into 

account the prior theoretical results of logicians on these topics, risks (at 

best) having to repeat some of the work done by the brightest minds of the 

twentieth century and (at worst) getting it wrong! 

Given these two assumptions, then, the book develops the major topics 

of A I using the language and techniques of logic. These main topics 

are knowledge representation, reasoning, induction (a form of learning), 

and architectures for agents that reason, perceive, and act. W e do not 

treat the various applications of these ideas in expert systems, natural-

language processing, or vision. Separate books have been written about 

these application areas, and our goal here has been to concentrate on the 

common, fundamental ideas with which people in all these other areas 

ought to be familiar. 

W e propose the first-order predicate calculus as a language in which to 

represent the knowledge possessed by a reasoning agent about its world. 
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We imagine that the agent exists in a world of objects, functions, and 

relations that form the basis for a model of the agent's predicate-calculus 

sentences. We propose that deductive inference is the major reasoning 

technique employed by an intelligent agent. Thus, we devote Chapters 1 

through 5 of the book to a brief but complete presentation of the syntax and 

semantics of first-order predicate calculus, of logical deduction in general, 

and of resolution-refutation methods in particular. 

The material in Chapters 1 through 5 and in Chapters 11 and 12 (on 

reasoning about actions and plans) is by now almost classical in A I . Much 

of the rest of the book is much closer to the current research frontier. 

We have attempted to draw together those recent research results that 

we think will, in time, become classical. We suspect that ours is the 

first textbook that treats these ideas. These topics include nonmonotonic 

reasoning, induction, reasoning with uncertain information, reasoning 

about knowledge and belief, metalevel representations and reasoning, and 

architectures for intelligent agents. W e think that a field advances when 

important ideas migrate from research papers into textbooks. We are aware 

of the fact (and the reader should be too) that one takes one's chances with 

early migrations. 

We should say something about why there is almost no mention in this 

book of the subject of search. Search is usually thought to be a cornerstone 

of A I . (One of us, in an earlier book, acknowledged the primacy of search 

in A I . ) Nevertheless, as its title implies, this book is not intended to be a 

general introduction to the entire field of A I . A discussion of search would 

have detracted from the emphasis on logic that we wanted this book to 

have. In any case, search is well treated in other books on A I . 

The book is aimed at advanced college seniors and graduate students 

intending to study further in A I . It assumes some knowledge of ideas of 

computer programming, although one does not have to program in order to 

learn from the book. The book also assumes mathematical sophistication. 

The reader who has already encountered some probability theory, logic, 

matrix algebra, list notation, and set theory will have an easier time with 

some parts of the book than will people less acquainted with these topics. 

Some of the more advanced sections might be skipped on a first reading; 

they are indicated by an asterisk ( * ) following the section title. 

Exercises are included at the end of each chapter. (Solutions to the 

exercises are given at the end of the book.) Some ideas not presented in 

the text itself are introduced in the exercises. Most of these problems have 

been used successfully in classes taught by the authors at Stanford. The 

reader who is using this book for independent study is especially encouraged 

to work through the exercises. Even if the reader does not do the exercises, 

he should at least study those the solutions of which we have worked out— 

treating them as additional examples of concepts introduced in the book. 

We briefly discuss important citations at the end of each chapter in 

sections entitled "Bibliographical and Historical Remarks." References to 
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all cited works are collected at the end of the book. With these citations, 

Chapters 6 through 10 and 13 especially can be considered as a thorough 

introduction to the literature of these advanced topics. 

At least three different languages are used in this book, and we have 

attempted to follow rigorously certain typographical conventions to help 

inform the reader which language is being used. Ordinary English is set 

in ordinary Roman type font (with italics for emphasis). Sentences in 

the predicate calculus are set in a typewriter-style font. Mathematical 

equations and formulas are set in a mathematical italic font. A n 

explanation of these conventions with examples is given beginning on 

page xvii. The authors are grateful to Donald Knuth for inventing T ^ X 

and to Leslie Lamport for developing JATjgX. We used these typesetting 

systems from the very first days of preparing the manuscript, and they 

helped us immensely in dealing with the book's complex typography. 

The authors would appreciate suggestions, comments, and corrections, 

which can be sent to them directly or in care of the publisher. 
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Typographical Conventions 

(1) Elements of a conceptualization—objects, functions, and relations— 
are written in italics, as in the following example: 

The extension of the on relation is the set {(a, 6), (6, c), (d, e)}. 

(2) Expressions and subexpressions in predicate calculus are written in 
boldface, "typewriter" font, as in: 

(Vx Apple(x)) V (3x Pear(x)) 

(3) We use lowercase Greek letters as metavariables ranging over 
predicate-calculus expressions and subexpressions. The use of 
these variables is sometimes mixed with actual predicate-calculus 
expressions, as in the following: 

(0(a) V P(A) => </0 

Sometimes, for mnemonic clarity, we use Roman characters, in 
mathematical font, as metavariables for relation constants and 
object constants, as in the following sample text: 

Suppose we have a relation constant P and an object constant 
A such that P(A) P A Q(B). 
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(4) We use uppercase Greek letters to denote sets of predicate calculus 

formulas, as in: 

If there exists a proof of a sentence (j> from a set A of premises 

and the logical axioms using Modus Ponens, then </> is said to 

be provable from A (written as A h (f>). 

Since clauses are sets of literals, we also use uppercase Greek letters 
as variables ranging over clauses, as in: 

Suppose that 3> and \I> are two clauses that have been standard-

ized apart. 

( 5 ) We use ordinary mathematical (not typewriter) font for writing 

metalogical formulas about predicate-calculus statements, as in: 

If a is an object constant, then cr
7
€|/| . 

Sometimes, metalogical formulas might contain predicate-calculus 

expressions: 

A
7
 = a 

(6) We use an uppercase script T to denote a predicate-calculus 

"theory." 

(7) Algorithms and programs are stated in typewriter font: 

Procedure Resolution (Gamma) 

Repeat Termination(Gamma) ==> Return(Success), 

Phi <- Choose(Gamma), Psi <- Choose(Gamma), 

Chi <- Choose(Resolvents(Phi,Psi)), 

Gamma <- Concatenate (Gamma, [Chi]) 

End 

(8) W e use the notation { x / A } to denote the substitution in which the 

object constant A is substituted for the variable x. W e use lowercase 

Greek letters for variables ranging over substitutions, as in: 

Consider the combination of substitutions crp . 

(9) Lowercase ps and qs are used to denote probabilities: 

p(P A Q) 

(10) Sets of possible worlds are denoted by uppercase script letters, such 

as W . 

(11) Vectors and matrices are denoted by boldface capital letters, such 

as V and P. 

(12) We also use boldface capital letters (and sequences of capital letters) 

to denote modal operators, such as B and K. 
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CHAPTER 1 

Introduction 

A R T I F I C I A L I N T E L L I G E N C E ( A I ) is the study of intelligent behavior. Its 

ultimate goal is a theory of intelligence that accounts for the behavior 

of naturally occurring intelligent entities and that guides the creation of 

artificial entities capable of intelligent behavior. Thus, A I is both a branch 

of science and a branch of engineering. 

As engineering, A I is concerned with the concepts, theory, and practice 

of building intelligent machines. Examples of machines already within 

the reach of A I include expert systems that give advice about specialized 

subjects (such as medicine, mineral exploration, and finance), question-

answering systems for answering queries posed in restricted but large 

subsets of English and other natural languages, and theorem-proving 

systems for verifying that computer programs and digital hardware 

meet stated specifications. Ahead lie more flexible and capable robots, 

computers that can converse naturally with people, and machines capable 

of performing much of the world's "knowledge work." 

As science, A I is developing concepts and vocabulary to help us to 

understand intelligent behavior in people and in other animals. Although 

there are necessary and important contributions to this same scientific 

goal by psychologists and by neuroscientists, we agree with the statement 

made by the sixteenth-century Italian philosopher Vico: Certum quod 

factum (one is certain of only what one builds). Aerodynamics, for 
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