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Preface to the First Edition

It has been a wonderfully exciting experience, these past three decades, to

take part in that great scientific adventure which has led to our present

understanding of the channels, carriers, and pumps, the subject of this book.

Many of these entities which, 30 years ago, had been mere hypotheses, mod-

els, or concepts, have now been isolated and shown to be proteins, and the

genes coding for these proteins have been cloned and sequenced. In one or

two cases, these transport proteins have been crystallized and their three-

dimensional structures determined by crystallographic methods. We know a

good deal about transport kinetics and about what regulates transport through

the channels, carriers, and pumps. But we do not have, even in one instance,

a clear understanding of how these molecules function. We do not know

how they distinguish so effectively between their substrates and other similar

ions or molecules. We do not know how the transported substrates move

through the transporting proteins, nor how these transporting proteins cata-

lyze those movements and, in some cases, link transport to the consumption

of metabolic energy.

This book is meant as an introduction to these subjects so that the reader

can learn what is already known about them and can prepare to take part in

the exploration of the unknown. Readers of this book will thus include those

who are about to begin working on membrane transport or have just begun

to do so. In addition, those working, for instance, on membrane-bound recep-

tors who want to understand how these receptors function will find this book

useful as an introduction to the transport proteins which the receptors help to

regulate. The beginning neurobiologist will read it to learn about the function

of the channels, carriers, and pumps that are the basis of nervous behavior at

the molecular level. The pharmacologist-to-be will find that it provides an

approach to understanding cellular and intercellular behavior at the mem-

brane level.

A major aim of the book is to furnish a link between the experimental

basis of the subject and theoretical model building. Many examples of exper-

imental work are presented in the illustrations, many taken from original

papers, others recalculated and redrawn. Scattered throughout the book are

“boxes” in which material of special, often highly current, interest is devel-

oped in a detail that might otherwise interfere with the flow of thought in

that particular chapter. These boxes are meant, however, to be studied

xi



carefully, and form an integral part of the whole. The selected reference lists

at the ends of the chapters are not intended to be comprehensive, but should

be sufficient to support the arguments presented and to provide the reader

with an entry into subjects that hold a special attraction. My earlier book,

Transport and Diffusion across Cell Membranes, published by Academic

Press in 1986, provides a more comprehensive bibliographic source.

It is a pleasure to acknowledge the help I have received from colleagues

who read part or all of earlier drafts of this book. In particular, Hagai

Ginsburg, Steven Karlish, and Chana Stein suggested many important

improvements. I am much indebted also to an anonymous reader, brought to

this task by Academic Press, whose penetrating criticisms, based on a depth

of knowledge and understanding, suggested that he or she should really have

been the person to write this book! In this and other matters, the staff of

Academic Press has been most helpful. Finally, I am very grateful to those

who have given permission for the reproduction in this book of their original

illustrations, as acknowledged in the figure legends.

Wilfred D. Stein

xii Preface to the First Edition



Preface to the Second Edition

Twenty-five years after the first edition of this book went to press it is, once

again, wonderful and exciting to review what has been happening in our

field. Whereas previously we had only one or two molecular structures of

membrane proteins determined, we now have thousands. As many as 20

structures are known of a single transporter—a calcium pump—in the vari-

ous states in which it binds its substrate and then finds itself at one and then

the other face of the membrane. In the preface to the previous edition we

wrote “We do not have, even in one instance, a clear understanding of how

these molecules function.” Now, we can make convincing models of function

for many systems and, with the aid of detailed structural models and molecu-

lar dynamics simulations, follow the transport substrates as they cross from

one face of the membrane to the other. Many thousands of membrane trans-

porters have had their DNA sequences determined, allowing us to understand

the evolution of the transporters and their family interrelationships.

Some things have not changed. Fick’s Law is still on the Statute Books.

Transport kinetics still provides the basis for posing the problems that struc-

ture determinations and molecular dynamics can answer. Thus, we have

retained those sections of the first edition which we feel needed little change,

but we have described in some detail what we have now learned about struc-

ture, the family relationships between the transporters, and evolution. The

distinction that the book’s title made between channels, carriers, and pumps

(for a time questioned) has indeed been strengthened by the new structural

information.

Once again, we aim this book at readers who are at the beginning of their

work on membrane transport in the hope that its study will help them to

make further advances in our field. We envisage that these advances will lie

in integrating structure with the process of moving along the transport path

itself, to reach a fourth dimension where 3D structure and time are consid-

ered together. If there is to be a third edition of this book, surely movies will

replace the pictures that lie flat on the present pages.

We have tried to place this book in today’s digital world. As far as possi-

ble, all first mentions of a membrane protein will show its citation with a

ctrl/click. Likewise, all references to the online accessible literature are simi-

larly linked, and protein structures are linked to the Protein Data Bank.
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Hard-copy readers are urged to have the online version of the book in

easy reach.

The list of those colleagues who have made helpful comments on drafts

of sections of this revision includes Suresh Ambudkar, Anthony Carruthers,

Flemming Cornelius, Biff Forbush, Lucy Forrest, Hagai Ginsburg, Maria

Helena Høyer-Hansen, Ron Kaback, Steve Karlish, Ann Kenworthy,

Kazuhiko Kinosita Jr., Hermann Koepsell, Etana Padan, Shimon Schuldiner,

Ernest Wright, and Thomas Zeuthen. Of course, the errors that remain are

ours. We are most grateful to those publishers who have given permission

for the reproduction in this book of their original illustrations, as acknowl-

edged in the figure legends.

Wilfred D. Stein and Thomas Litman
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Chapter 1

Structural Basis of Movement
Across Cell Membranes

How do molecules and ions move across cell membranes? How does the

cell membrane act as a barrier to such movements? How do special compo-

nents of the membrane enable specific substrates to overcome this barrier

and even allow metabolites to be concentrated within the cell or actively

extruded from it? We shall try to answer these questions in this book. But

first we need to look at the structure of cell membranes, since this structural

information is essential in order to understand how all membrane transport

takes place.

1.1 MEMBRANE STRUCTURE: ELECTRON MICROSCOPY
OF BIOLOGICAL MEMBRANES

All living cells are enclosed by one or more membranes, which define the

cell as a living unit—cutting it off from its environment. Figure 1.1A

shows a cross section of the membrane that encloses the human red blood

cell. The cell membrane is seen as a double line of material lying diago-

nally across the photograph. The cytoplasm of the cell is the darker mate-

rial lying to the right and above this line, while the extracellular

environment lies below and to the left of the double line. The thickness of

the membrane is some 7.5 nm (75 Å).

Figure 1.1B is an electron micrograph looking down on the surface of the

membrane of the human red blood cell. In this case, the membrane was pre-

pared by the “freeze-fracture” method (Figure 1.1C), which allows a

researcher to look at the structure within the plane of the membrane. (Cell

membranes are rapidly frozen and then fractured with a glass knife. This

freeze-fracturing splits the membrane along a plane that appears to lie at the

middle of the two lines seen in Figure 1.1A. The frozen and fractured speci-

men can then be “etched,” a process in which the ice layers in a freeze-

fractured specimen are sublimed away, exposing also the outermost surface

of the membrane.) Look first at the convex surface in the center of

Figure 1.1B. This shows the inner surface of half of the membrane, the half

that lies on the right of the double line in Figure 1.1A. This is the face that

1
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FIGURE 1.1 Structure of the cell membrane. (A) The picture was made using an electron micro-

scope, the cell membrane having been “fixed” prior to microscopy by treatment with a solution of

potassium permanganate, a strong oxidizing agent, which reacts with the phospholipid components

of the membrane. Magnification: 3280,000. Taken, with kind permission, from Robertson JD, in

“Cellular Membranes in Development” (Locke M, ed.), pp. 1�81. Academic Press, New York,

1964. (B) Etched, freeze-fracture image of a ferritin-conjugated red cell membrane. Magnification:

357,000. Taken, with kind permission, from Branton D, Philos Trans R Soc London B

1971;261:133�138. (C) Diagram to show freeze-fracturing and freeze-etching of a cell membrane.

In “Technique,” a glass knife is used to split the membrane between its hydrophobic layers. In

“Results,” the superficial ice is sublimed away to reveal part of the underlying surface. Taken

from http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity. (D) Fluid

mosaic membrane model. The phospholipid molecules are depicted as the bilayer of yellow heads

(the phosphate head-group) with green tails (the lipid region), the protein molecules, as the large

irregular shapes embedded in this bilayer. The blue shape is a glycoprotein, with glycosylation

sites at its extracellular side. Taken, with kind permission, from micro.magnet.fsu.edu.
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is adjacent to the cytoplasm of the cell. We can see small globules lying in a

smooth matrix material. Around this convex surface is the thin ring of an

etched face. This is what one sees from the extracellular medium. We are

looking down on the surface that lies to the left of the double line shown in

Figure 1.1A. It, too, shows some small globules, somewhat bigger but more

sparse than those on the convex surface, embedded in a smooth matrix.

(The pale, rather fuzzy surface at the lower left and right edges of the picture

is ice, frozen from the extracellular medium. The ice is attached to the

extracellular face of the membrane that appears in the picture as emerging

from beneath the ice layer.) The small globules shown in Figure 1.1B lie

within the center of the double-layered structure in Figure 1.1A and, clearly,

also extend out to the extracellular surface. Figure 1.1D is an idealized

picture of what the freeze-fracture technique suggests is the structure of the

cell’s plasma membrane.

What are the materials that compose the cell membrane, this thin but

complex structure that separates each cell so effectively from the world

around it?

1.2 CHEMICAL COMPOSITION OF BIOLOGICAL MEMBRANES

To determine the chemical composition of cell membranes, we must isolate

them. To isolate the plasma membranes (the membranes that bound the cell

as opposed to those membranes that bound the intracellular organelles), we

first break the cells, bursting them apart by forcing water or bubbles of air

into them or else shattering the membranes in a homogenizer. The mem-

branes are then separated from other cell constituents by centrifugation. To

prepare membranes from the cellular organelles (mitochondria, chloroplasts,

endoplasmic reticulum (ER), lysosomes, and endocytic vesicles), the orga-

nelles themselves must first be separated from other cell constituents by dif-

ferential centrifugation and their membranes then isolated as for the plasma

membrane (for more on the cellular organelles, see Alberts et al., 2007).

Chemical analysis of the purified membranes shows that they are made up of

lipids and proteins, together with smaller amounts of associated carbohy-

drates. The lipids form the smooth matrix of the image seen in Figure 1.1B;

the proteins are the globules seen in that micrograph, with the carbohydrates

being attached to some of the lipids or proteins. Different membranes vary

greatly in their relative proportions of lipids and proteins, ranging from 20%

protein in the case of the myelin layers of membranes that surround nerve

cells to 75% protein for the inner membrane of the mitochondrion. In gen-

eral, those membranes that are the most active metabolically have the great-

est proportion of protein. The lipids in any cell membrane are a complex

mixture (as we discuss below), and the proteins are very varied. Lipids

isolated from cell membranes spontaneously form structured aggregates in

water. Certain types of these aggregates, the liposomes, appear in cross

Structural Basis of Movement Across Cell Membranes Chapter 1 | 3



section in the electron microscope rather similar to the double-layered

images seen in Figure 1.1A and, in freeze-fracture (Figure 1.1C), as a fea-

tureless, complementary pair of plane surfaces. This is the basis for the view

that it is the lipid of the cell membrane that forms the matrix, almost uniform

in structure, depicted in Figure 1.1B. In contrast, the globular structures seen

in Figure 1.1B can be shown by more indirect methods to be proteins.

(Indeed, they are visible in Figure 1.1B only because of their attachment to

ferritin, an iron-containing molecule and itself a protein, which can be bound

specifically to the membrane proteins.) Biological membranes are thus made

of a matrix of lipid molecules into which are inserted proteins. Other proteins

may be attached to this fundamental structure (Figure 1.1D).

1.2.1 Membrane Lipids

Figure 1.2 shows the chemical structure of a few of the lipids that have been

isolated from biological membranes. Many of the most common lipids found

in biological membranes are built on the backbone of a glycerol molecule,

FIGURE 1.2 Structure of some common lipids. The zigzag lines above each

subfigure represent the hydrocarbon backbone of the lipids. Below each, these same molecules

as 3D structures. PE is phosphatidylethanolamine, PC is phosphatidylcholine, PS is phosphati-

dylserine, and PI is phosphatidylinositol, with cholesterol also shown. For dynamic visualization

of these lipids, just click on (in the on-line version of this book) the links below: PE, PC, PS, PI,

and Cholesterol.
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esterified at one end by a phosphate residue and, at the other two hydroxyls,

by fatty acids.

Lipids of this general class are called phospholipids. The charge on the

phosphate can be neutralized by its further esterification by a chain bearing

an amino group or choline, or the whole molecule can retain a net negative

charge. Half of the fatty acid chains are saturated; the others carry one, two,

or more double bonds. Apart from the fatty acid esters listed in Figure 1.2,

the sterol cholesterol (seen on the right half of Figure 1.2) is an important

constituent of many animal cell membranes; ergosterol takes its place in

plant cell membranes. All of these lipids (and the many other types found as

more minor constituents in biological membranes) have the essential physi-

cal characteristic of a hydrophilic (“water-loving”) portion that interacts

strongly with water (the phosphate head-group, in many cases, or the

hydroxyl-containing portion of the molecule in some other lipids that are not

phosphate esters) and a hydrophobic (“water-hating”) portion that inserts

into an aqueous environment only with difficulty, if at all (the fatty acid

chains and all except the hydroxyl residue of the sterol). Such molecules,

which have both a polar and a nonpolar portion, are described as being

amphiphilic (or, what is the same thing, amphipathic)—penetrating both into

the water and into the nonaqueous media.

1.2.2 Membrane Proteins

Many membrane proteins are firmly bound to the membranes and can be

removed only by treatment with strong detergents. These are the “intrinsic” or

“integral” proteins. The fact that the intrinsic proteins require detergent treat-

ment to release them from cell membranes suggests that, within the lipid

matrix, they are bound to the lipid hydrocarbon chains. The detergent, in fact,

replaces the hydrocarbon of the lipid. Other proteins are more loosely attached

to the cell membrane. They can be removed by treatment with solutions of

low ionic strength, often containing EDTA (ethylenediaminetetraacetic acid),

to chelate divalent cations. In red cells, for instance, where half the weight of

the dried membrane is protein, some one-third of this protein is lightly

attached and can be removed by the above treatment. Such loosely bound pro-

teins are known as “extrinsic” or “peripheral” proteins. Many extrinsic pro-

teins are bound to the membrane by being bonded to the intrinsic proteins.

1.2.3 Membrane Carbohydrates

Membrane carbohydrates are attached to the proteins, to the nitrogen of

asparagine or the hydroxyl oxygen of hydroxylysine, hyrdoxyproline, serine,

or threonine to form the glycoproteins, or to some of the lipid classes, form-

ing the glycosphingolipids. Protein-bound carbohydrate residues are on the

extracellular surface of the cell membrane and take part in cell�cell interac-

tions, including those of the immune system.
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