


V O L U M E N I N E T Y S I X

CURRENT TOPICS IN

DEVELOPMENTAL BIOLOGY

Myogenesis



Series Editor

Paul M. Wassarman
Department of Developmental and Regenerative Biology
Mount Sinai School of Medicine
New York, NY 10029-6574
USA

Olivier Pourquié
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PREFACE

Skeletal muscle is a vital tissue for movement, breathing, and metabolism. In
addition, it is one of the few tissues that exhibit extensive regenerative
ability in the adult due to the presence of stem cells called satellite cells.
Skeletal muscle biology has engendered interest from numerous angles:
sports medicine, developmental biology, gene regulation, physiology,
immunology, and stem cells. In recent years, skeletal muscle research has
rapidly expanded in many exciting directions. The goal of this book is to
cover some key areas of muscle biology related to satellite and other
progenitor cells, muscle regeneration, signal transduction, gene expression,
and disease.

Key questions related to developmental origins of muscle and cancer
(Chapters 1 and 2) as well as gene regulation and signal transduction
(Chapters 3 and 4) are explored. Further areas that are discussed include
the effects of nonmyogenic cells on satellite cells and muscle regeneration
(Chapters 5 and 6) and how fibrosis develops when muscle regeneration is
impaired (Chapter 7). Complementing these discussions on muscle regen-
eration is a consideration of how myoblast fusion is regulated by a recently
described family of molecules (Chapter 8). New emerging areas of research
include the effects of circadian rhythms on skeletal muscle function (Chap-
ter 9) and the challenges of controlling nucleocytoplasmic transport in
multinucleated myofibers (Chapter 10).

GRACE K. PAVLATH
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Abstract

Muscle development, growth, and regeneration take place throughout verte-

brate life. In amniotes, myogenesis takes place in four successive, temporally

distinct, although overlapping phases. Understanding how embryonic, fetal,

neonatal, and adult muscle are formed from muscle progenitors and committed

myoblasts is an area of active research. In this review we examine recent

expression, genetic loss-of-function, and genetic lineage studies that have

been conducted in the mouse, with a particular focus on limb myogenesis. We

synthesize these studies to present a current model of how embryonic, fetal,

neonatal, and adult muscle are formed in the limb.
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1. Introduction

Muscle development, growth, and regeneration take place throughout
vertebrate life. In amniotes, myogenesis takes place in successive, temporally
distinct, although overlapping phases. Muscle produced during each of these
phases is morphologically and functionally different, fulfilling different needs
of the animal (reviewed in Biressi et al., 2007a; Stockdale, 1992). Of intense
interest is understanding how these different phases of muscle arise. Because
differentiated muscle is postmitotic, muscle is generated from myogenic
progenitors and committed myoblasts, which proliferate and differentiate
to form muscle. Therefore, research has focused on identifying myogenic
progenitors and myoblasts and their developmental origin, defining the
relationship between different progenitor populations and myoblasts, and
determining how these progenitors andmyoblasts give rise to different phases
of muscle. In this review, we will give an overview of recent expression,
genetic loss-of-function, and genetic lineage studies that have been con-
ducted in mouse, with particular focus on limb myogenesis, and synthesize
these studies to present a current model of how different populations of
progenitors and myoblasts give rise to muscle throughout vertebrate life.

2. Myogenesis Overview

In vertebrates, all axial and limb skeletal muscle derives from progeni-
tors originating in the somites (Emerson and Hauschka, 2004). These
progenitors arise from the dorsal portion of the somite, the dermomyotome.
The limb muscle originates from limb-level somites, and cells delaminate
from the ventrolateral lip of the dermomyotome and migrate into the limb,
by embryonic day (E) 10.5 (in forelimb, slightly later in hindlimb). Once in
the limb, these cells proliferate and give rise to two types of cells: muscle or
endothelial (Hutcheson et al., 2009; Kardon et al., 2002). Thus, the fate of
these progenitors only becomes decided once they are in the limb. Those
cells destined for a muscle fate then undergo the process of myogenesis.
During myogenesis, the progenitors become specified and determined as
myoblasts, which in turn differentiate into postmitotic mononuclear myo-
cytes, and these myocytes fuse to one another to form multinucleated
myofibers (Emerson and Hauschka, 2004).

Myogenic progenitors, myoblasts, myocytes, and myofibers critically
express either Pax or myogenic regulatory factor (MRF) transcription
factors. A multitude of studies have shown that progenitors in the somites
and in the limb express the paired domain transcription factors Pax3 and
Pax7 (reviewed in Buckingham, 2007). Subsequently, determined

2 Malea Murphy and Gabrielle Kardon



myoblasts, myocytes, and myofibers in the somite and in the limb express
members of the MRF family of bHLH transcription factors. The MRFs
consist of four proteins: Myf5, MyoD, Mrf4 (Myf6), and Myogenin. These
factors were originally identified by their in vitro ability to convert 10T1/
2 fibroblasts to a myogenic fate (Weintraub et al., 1991). Myf5, MyoD, and
Mrf4 are expressed in myoblasts (Biressi et al., 2007b; Kassar-Duchossoy
et al., 2005; Ontell et al., 1993a,b; Ott et al., 1991; Sassoon et al., 1989),
while Myogenin is expressed in myocytes (Ontell et al., 1993a,b; Sassoon
et al., 1989). In addition, MyoD, Mrf4, and Myogenin are all expressed in
the myonuclei of differentiated myofibers (Bober et al., 1991; Hinterberger
et al., 1991; Ontell et al., 1993a,b; Sassoon et al., 1989; Voytik et al., 1993).
Identification of these molecular markers of the different stages of myogenic
cells has been essential for reconstructing how myogenesis occurs.

In amniotes, there are four successive phases of myogenesis (Biressi et al.,
2007a; Stockdale, 1992). In the limb, embryonic myogenesis occurs
between E10.5 and E12.5 in mouse and establishes the basic muscle pattern.
Fetal (E14.5–P0; P, postnatal day) and neonatal (P0–P21) myogenesis are
critical for muscle growth and maturation. Adult myogenesis (after P21) is
necessary for postnatal growth and repair of damaged muscle. Each one of
these phases involves proliferation of progenitors, determination and com-
mitment of progenitors to myoblasts, differentiation of myocytes, and fusion
of myocytes into multinucleate myofibers. The progenitors in embryonic
and fetal muscle are mononuclear cells lying interstitial to the myofibers.
After birth, the neonatal and adult progenitors adopt a unique anatomical
position and lie in between the plasmalemma and basementmembrane of the
adult myofibers and thus are termed satellite cells (Mauro, 1961). During
embryonic myogenesis, embryonic myoblasts differentiate into primary
fibers, while during fetal myogenesis fetal myoblasts both fuse to primary
fibers and fuse to one another to make secondary myofibers. During fetal and
neonatal myogenesis, myofiber growth occurs by a rapid increase in myo-
nuclear number, while in the adult myofiber hypertrophy can occur in the
absence of myonuclear addition (White et al., 2010).

Embryonic, fetal, and adult myoblasts and myofibers are distinctive. The
different myoblast populations were initially identified based on their in vitro
characteristics. Embryonic, fetal, and adult myoblasts differ in culture in
their appearance, media requirements, response to extrinsic signaling mole-
cules, drug sensitivity, and morphology of myofibers they generate (sum-
marized in Table 1.1; Biressi et al., 2007a; Stockdale, 1992). Recent
microarray studies also demonstrate that embryonic and fetal myoblasts
differ substantially in their expression of transcription factors, cell surface
receptors, and extracellular matrix proteins (Biressi et al., 2007b). It pres-
ently is unclear whether neonatal myoblasts differ substantially from fetal
myoblasts. Differentiated primary, secondary, and adult myofibers also
differ, primarily in their expression of muscle contractile proteins, including

Origin of Vertebrate Limb Muscle 3



Table 1.1 Summary of characteristics of embryonic, fetal, and adult myoblasts and myofibers

Culture appearance

and clonogenicity

Signaling molecule

response Drug sensitivity

Myofiber morphology

in culture

Embryonic

myoblasts

Elongated, prone to

differentiate and form

small colonies, do not

spontaneously

contract in culture

Differentiation

insensitive to

TGFb-1 or BMP4

Differentiation

insensitive to

phorbol esters

(TPA), sensitive to

merocynine 540

Mononucleated

myofibers or

myofibers with few

nuclei

Fetal myoblasts Triangular, proliferate

(to limited extent) in

response to growth

factors, spontaneously

contract in culture

Differentiation blocked

by TGFb-1 and

BMP4

Differentiation

sensitive to

phorbol esters

(TPA)

Large, multinucleated

myofibers

Satellite cells/

Adult myoblasts

Round, clonogenic, but

undergo senescence

after a limited

number of passages,

spontaneously

contract in culture

Differentiation blocked

by TGFb-1 and

BMP4

Differentiation

sensitive to

phorbol esters

(TPA)

Large, multinucleated

myofibers

All from Biressi et al. (2007b) or review of Biressi et al. (2007a).

MyHCemb MyHCperi MyHCI MyHCIIa MyHCIIx MyHCIIb

Embryonic myofibers þ � þ � � �
Fetal myofibers þ þ þ/� þ/� þ/� þ/�
Adult myofibers � � � þ þ þ

Derived from Agbulut et al. (2003), Gunning and Hardeman (1991), Lu et al. (1999), Rubinstein and Kelly (2004), and Schiaffino and Reggiani (1996).


