
Myogenesis

Edited by Grace K. Pavlath

CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Myogenesis

Series Editor

Paul M. Wassarman Department of Developmental and Regenerative Biology Mount Sinai School of Medicine New York, NY 10029-6574 USA

Olivier Pourquié Institut de Génétique et de Biologie Cellulaire et Moléculaire (IGBMC) Inserm U964, CNRS (UMR 7104) Universite´ de Strasbourg Illkirch, France

Editorial Board

Blanche Capel

Duke University Medical Center Durham, NC, USA

B. Denis Duboule Department of Zoology and Animal Biology NCCR 'Frontiers in Genetics' Geneva, Switzerland

Anne Ephrussi European Molecular Biology Laboratory Heidelberg, Germany

Janet Heasman Cincinnati Children's Hospital Medical Center Department of Pediatrics Cincinnati, OH, USA

Julian Lewis Vertebrate Development Laboratory Cancer Research UK London Research Institute London WC2A 3PX, UK

Yoshiki Sasai Director of the Neurogenesis and Organogenesis Group RIKEN Center for Developmental Biology Chuo, Japan

Philippe Soriano Department of Developmental Regenerative Biology Mount Sinai Medical School Newyork, USA

Cliff Tabin Harvard Medical School Department of Genetics Boston, MA, USA

Founding Editors

A. A. Moscona Alberto Monroy

Current Topics in DEVELOPMENTAL BIOLOGY Myogenesis

Edited by

GRACE K. PAVLATH Department of Pharmacology Emory University, Atlanta Georgia, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101–4495, USA 225 Wyman Street, Waltham, MA 02451, USA 32, Jamestown Road, London NW1 7BY, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK

First edition 2011

Copyright © 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http: //elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

ISBN: 978-0-12-385940-2 ISSN: 0070-2153

For information on all Academic Press publications visit our website at elsevierdirect.com

Printed and bound in USA

11 12 13 14 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

CONTENTS

Con	tributors	ix
Prej	face	xiii
1.	Origin of Vertebrate Limb Muscle: The Role of Progenitor and Myoblast Populations	1
	Malea Murphy and Gabrielle Kardon	
	1. Introduction	2
	2. Myogenesis Overview	2
	3. Expression Analyses of PAX3/7 and MRF Transcription Factors	7
	 Functional Analysis of PAX3/7 and MRF Transcription Factors Cre-Mediated Lineage and Ablation Analyses of PAX3, PAX7, 	11
	and MRF+ Cells	17
	6. Molecular Signals Distinguishing Between Different Phases	
	of Myogenesis	22
	7. Current Model of Myogenesis	24
	Acknowledgments	26
	References	27
2.	Developmental Origins of Fusion-Negative Rhabdomyosarcomas	33
	Ken Kikuchi, Brian P. Rubin, and Charles Keller	
	1. Introduction	34
	2. Mutations Seen in Fusion-Negative RMS	35
	3. Cell of Origin of RMS	44
	4. Tumor Phenotype and Cancer Stem Cells	48
	References	50
3.	Sculpting Chromatin Beyond the Double Helix: Epigenetic	
-	Control of Skeletal Myogenesis	57
	Vittorio Sartorelli and Aster H. Juan	
	1. Introduction	58
	2. Satellite Cells	58
	3. Repressing Muscle Gene Expression: Skeletal Muscle Developmental Regulators and Polycomb Proteins in Embryonic Stem (ES) and	5-
	Nonmuscle Cells	59

	4. Sculpting Chromatin for Transcription in Skeletal Muscle Cells	61
	5. Conclusions	72
	Acknowledgment	72
	References	72
4.	NF-кB Signaling in Skeletal Muscle Health and Disease	85
	Jennifer M. Peterson, Nadine Bakkar, and Denis C. Guttridge	
	1. Introduction	86
	2. The NF- κ B Family and Signaling Pathway Activation	87
	3. Classical NF-KB Signaling	89
	4. Regulation of NF- κ B in Skeletal Myogenesis	92
	5. Alternative NF- κ B Signaling During Muscle Differentiation	95
	6. NF-KB Function in Postnatal Skeletal Muscle Development	96
	7. Regulation of NF- κ B in Skeletal Muscle Adaptations	97
	8. NF-κB Involvement in Skeletal Muscle Disorders	100
	9. NF-κB Therapeutics	108
	10. Concluding Remarks	111
	Acknowledgments	111
	References	111
5٠	Blood Vessels and the Satellite Cell Niche	121
	Rémi Mounier, Fabrice Chrétien, and Bénédicte Chazaud	
	1. Introduction	122
	2. Satellite Cell Proximity to Blood Vessel	123
	3. Angiogenesis, Myogenesis, and the Regulation of Muscle	
	Homeostasis	124
	4. The Amplifying/Differentiating Niche: Role of ECs and Surrounding	
	Stromal Cells	126
	5. The Quiescence Niche: Role of Periendothelial Cells	128
	6. Conclusions and Few Questions	131
	References	134
6.	Nonmyogenic Cells in Skeletal Muscle Regeneration	139
	Ben Paylor, Anuradha Natarajan, Regan-Heng Zhang, and Fabio Rossi	
	1. Introduction	140
	2. Accessory Cells in Skeletal Muscle Regeneration	141
	3. Accessory Cells in Regeneration: A Mechanism Common	
	to Multiple Tissues	143
	4. Primary and Accessory Cell Communication	144
	5. Development Versus Adult Regeneration	145
	6. Regulation of Acute Muscle Regeneration and Repair by Immune Cells	146

	7. MSCs and Tissue Regeneration8. ConclusionReferences	152 157 158		
7.	Cellular and Molecular Mechanisms Regulating Fibrosis in Skeletal Muscle Repair and Disease Antonio L. Serrano, Christopher J. Mann, Berta Vidal, Esther Ardite, Eusebio Perdiguero, and Pura Muñoz-Cánoves			
	 Introduction Muscle Tissue Regeneration: To Repair or Pathologically Scar 	168 170		
	 Fibrosis Development in Dystrophic Muscle by the TGFβ Family of Growth Factors From Muscle Injury to the Chronic Inflammatory Response and 	173		
	Pathological Muscle Fibrosis 5. Alteration of the ECM Proteolytic Environment Leads to Fibrosis	178		
	Development in Dystrophic Muscle	184		
	6. Age-Associated Changes in Muscle Function and Fibrosis	189		
	7. Concluding Remarks	194		
	Acknowledgments	195		
	References	195		
8.	Ferlin Proteins in Myoblast Fusion and Muscle Growth	203		
	Avery D. Posey Jr., Alexis Demonbreun, and Elizabeth M. McNally			
	1. Introduction	204		
	2. Ferlin Expression and Localization and Interacting Proteins in Muscle	211		
	3. Cytoskeletal Rearrangement in Myogenesis	214		
	4. Ferlin Proteins in Cytoskeletal Rearrangements During Myogenesis	218		
	5. Ferlin Proteins Participate in Muscle Damage Repair	221		
	6. Concluding Remarks	223		
	Acknowledgments	224		
	References	224		
9.	Circadian Rhythms, the Molecular Clock, and Skeletal Muscle	231		
	Mellani Lefta, Gretchen Wolff, and Karyn A. Esser			
	1. Introduction	232		
	2. Characteristics of Oscillating Systems	233		
	3. Environmental Influence on Endogenous Oscillators	237		
	4. Organization of the Circadian System	242		
	5. The Organization of the Mammalian Molecular Clock	243		
	6. The Molecular Clock in Skeletal Muscle	254		
	7. Summary	262		
	References	262		

10.	Regulation of Nucleocytoplasmic Transport in Skeletal Muscle				
	Мо	nica N. Hall, Anita H. Corbett, and Grace K. Pavlath			
	1.	Introduction	274		
	2.	Nuclear Envelope	275		
	3.	Nuclear Pore Complexes	276		
	4.	Nuclear Import Pathways	278		
	5.	Identifying Classical Nuclear Import-Dependent Cargoes	287		
	6.	Remodeling of the Nuclear Transport Machinery	289		
	7.	Challenges in Studying Nucleocytoplasmic Transport in			
		Multinucleated Cells	291		
	8.	Summary	293		
	Acl	knowledgments	293		
	References		293		
Inde	x		303		
Con	tent	s of Previous Volumes	309		

CONTRIBUTORS

Esther Ardite

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain

Nadine Bakkar

Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA

Bénédicte Chazaud

Inserm, U1016, Institut Cochin, 24 Rue du Faubourg Saint Jacques, and CNRS, UMR8104, and Univ Paris Descartes, Paris, France

Fabrice Chrétien

Institut Pasteur, Unité Histopathologie humaine et modèles animaux, 28 Rue du Docteur Roux, Paris, France

Anita H. Corbett

Department of Biochemistry, Emory University, Atlanta, Georgia, USA

Alexis Demonbreun

Department of Medicine, The University of Chicago, Chicago, Illinois, USA

Karyn A. Esser

Center for Muscle Biology, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA

Denis C. Guttridge

Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA

Monica N. Hall

Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA

Aster H. Juan

Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA

Gabrielle Kardon

Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA

Charles Keller

Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA

Ken Kikuchi

Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA

Mellani Lefta

Center for Muscle Biology, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA

Christopher J. Mann

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain

Elizabeth M. McNally

Genomics and Systems Biology, Committee on Genetics; Department of Medicine; and Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA

Rémi Mounier

Inserm, U1016, Institut Cochin, 24 Rue du Faubourg Saint Jacques, and CNRS, UMR8104, and Univ Paris Descartes, Paris, France

Pura Muñoz-Cánoves

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, and ICREA, Barcelona, Spain

Malea Murphy

Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA

Anuradha Natarajan

Biomedical Research Center, University of British Colombia, Vancouver, British Colombia, Canada

Grace K. Pavlath

Department of Pharmacology, Emory University, Atlanta, Georgia, USA

Ben Paylor

Biomedical Research Center, University of British Colombia, Vancouver, British Colombia, Canada

Eusebio Perdiguero

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain

Jennifer M. Peterson

Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA

Avery D. Posey Jr.

Genomics and Systems Biology, Committee on Genetics, The University of Chicago, Chicago, Illinois, USA

Fabio Rossi

Biomedical Research Center, University of British Colombia, Vancouver, British Colombia, Canada

Brian P. Rubin

Pediatric Cancer Biology Program, Department of Anatomic Pathology, and Department of Molecular Genetics, Taussig Cancer Center and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA

Vittorio Sartorelli

Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, Maryland, USA

Antonio L. Serrano

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain

Berta Vidal

Department of Experimental and Health Sciences, Cell Biology Unit, CIBERNED, Pompeu Fabra University, Barcelona, Spain

Gretchen Wolff

Center for Muscle Biology, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA

Regan-Heng Zhang

Biomedical Research Center, University of British Colombia, Vancouver, British Colombia, Canada

This page intentionally left blank

PREFACE

Skeletal muscle is a vital tissue for movement, breathing, and metabolism. In addition, it is one of the few tissues that exhibit extensive regenerative ability in the adult due to the presence of stem cells called satellite cells. Skeletal muscle biology has engendered interest from numerous angles: sports medicine, developmental biology, gene regulation, physiology, immunology, and stem cells. In recent years, skeletal muscle research has rapidly expanded in many exciting directions. The goal of this book is to cover some key areas of muscle biology related to satellite and other progenitor cells, muscle regeneration, signal transduction, gene expression, and disease.

Key questions related to developmental origins of muscle and cancer (Chapters 1 and 2) as well as gene regulation and signal transduction (Chapters 3 and 4) are explored. Further areas that are discussed include the effects of nonmyogenic cells on satellite cells and muscle regeneration (Chapters 5 and 6) and how fibrosis develops when muscle regeneration is impaired (Chapter 7). Complementing these discussions on muscle regeneration is a consideration of how myoblast fusion is regulated by a recently described family of molecules (Chapter 8). New emerging areas of research include the effects of circadian rhythms on skeletal muscle function (Chapter 9) and the challenges of controlling nucleocytoplasmic transport in multinucleated myofibers (Chapter 10).

GRACE K. PAVLATH

This page intentionally left blank

Origin of Vertebrate Limb Muscle: The Role of Progenitor and Myoblast Populations

Malea Murphy and Gabrielle Kardon

Contents

1. Introduction	2
2. Myogenesis Overview	2
3. Expression Analyses of Pax3/7 and MRF Transcription Factors	7
4. Functional Analysis of Pax3/7 and MRF Transcription Factors	11
5. Cre-Mediated Lineage and Ablation Analyses of PAX3, PAX7,	
and MRF+ Cells	17
6. Molecular Signals Distinguishing Between Different Phases	
of Myogenesis	22
7. Current Model of Myogenesis	24
Acknowledgments	26
References	27

Abstract

Muscle development, growth, and regeneration take place throughout vertebrate life. In amniotes, myogenesis takes place in four successive, temporally distinct, although overlapping phases. Understanding how embryonic, fetal, neonatal, and adult muscle are formed from muscle progenitors and committed myoblasts is an area of active research. In this review we examine recent expression, genetic loss-of-function, and genetic lineage studies that have been conducted in the mouse, with a particular focus on limb myogenesis. We synthesize these studies to present a current model of how embryonic, fetal, neonatal, and adult muscle are formed in the limb.

Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA

Current Topics in Developmental Biology, Volume 96 ISSN 0070-2153, DOI: 10.1016/B978-0-12-385940-2.00001-2 © 2011 Elsevier Inc. All rights reserved.

1. INTRODUCTION

Muscle development, growth, and regeneration take place throughout vertebrate life. In amniotes, myogenesis takes place in successive, temporally distinct, although overlapping phases. Muscle produced during each of these phases is morphologically and functionally different, fulfilling different needs of the animal (reviewed in Biressi et al., 2007a; Stockdale, 1992). Of intense interest is understanding how these different phases of muscle arise. Because differentiated muscle is postmitotic, muscle is generated from myogenic progenitors and committed myoblasts, which proliferate and differentiate to form muscle. Therefore, research has focused on identifying myogenic progenitors and myoblasts and their developmental origin, defining the relationship between different progenitor populations and myoblasts, and determining how these progenitors and myoblasts give rise to different phases of muscle. In this review, we will give an overview of recent expression, genetic loss-of-function, and genetic lineage studies that have been conducted in mouse, with particular focus on limb myogenesis, and synthesize these studies to present a current model of how different populations of progenitors and myoblasts give rise to muscle throughout vertebrate life.

2. Myogenesis Overview

In vertebrates, all axial and limb skeletal muscle derives from progenitors originating in the somites (Emerson and Hauschka, 2004). These progenitors arise from the dorsal portion of the somite, the dermomyotome. The limb muscle originates from limb-level somites, and cells delaminate from the ventrolateral lip of the dermomyotome and migrate into the limb, by embryonic day (E) 10.5 (in forelimb, slightly later in hindlimb). Once in the limb, these cells proliferate and give rise to two types of cells: muscle or endothelial (Hutcheson *et al.*, 2009; Kardon *et al.*, 2002). Thus, the fate of these progenitors only becomes decided once they are in the limb. Those cells destined for a muscle fate then undergo the process of myogenesis. During myogenesis, the progenitors become specified and determined as myoblasts, which in turn differentiate into postmitotic mononuclear myocytes, and these myocytes fuse to one another to form multinucleated myofibers (Emerson and Hauschka, 2004).

Myogenic progenitors, myoblasts, myocytes, and myofibers critically express either Pax or myogenic regulatory factor (MRF) transcription factors. A multitude of studies have shown that progenitors in the somites and in the limb express the paired domain transcription factors Pax3 and Pax7 (reviewed in Buckingham, 2007). Subsequently, determined myoblasts, myocytes, and myofibers in the somite and in the limb express members of the MRF family of bHLH transcription factors. The MRFs consist of four proteins: Myf5, MyoD, Mrf4 (Myf6), and Myogenin. These factors were originally identified by their *in vitro* ability to convert 10T1/ 2 fibroblasts to a myogenic fate (Weintraub *et al.*, 1991). Myf5, MyoD, and Mrf4 are expressed in myoblasts (Biressi *et al.*, 2007b; Kassar-Duchossoy *et al.*, 2005; Ontell *et al.*, 1993a,b; Ott *et al.*, 1991; Sassoon *et al.*, 1989), while Myogenin is expressed in myocytes (Ontell *et al.*, 1993a,b; Sassoon *et al.*, 1989). In addition, MyoD, Mrf4, and Myogenin are all expressed in the myonuclei of differentiated myofibers (Bober *et al.*, 1991; Hinterberger *et al.*, 1991; Ontell *et al.*, 1993a,b; Sassoon *et al.*, 1989; Voytik *et al.*, 1993). Identification of these molecular markers of the different stages of myogenic cells has been essential for reconstructing how myogenesis occurs.

In amniotes, there are four successive phases of myogenesis (Biressi et al., 2007a; Stockdale, 1992). In the limb, embryonic myogenesis occurs between E10.5 and E12.5 in mouse and establishes the basic muscle pattern. Fetal (E14.5–P0; P, postnatal day) and neonatal (P0–P21) myogenesis are critical for muscle growth and maturation. Adult myogenesis (after P21) is necessary for postnatal growth and repair of damaged muscle. Each one of these phases involves proliferation of progenitors, determination and commitment of progenitors to myoblasts, differentiation of myocytes, and fusion of myocytes into multinucleate myofibers. The progenitors in embryonic and fetal muscle are mononuclear cells lying interstitial to the myofibers. After birth, the neonatal and adult progenitors adopt a unique anatomical position and lie in between the plasmalemma and basement membrane of the adult myofibers and thus are termed satellite cells (Mauro, 1961). During embryonic myogenesis, embryonic myoblasts differentiate into primary fibers, while during fetal myogenesis fetal myoblasts both fuse to primary fibers and fuse to one another to make secondary myofibers. During fetal and neonatal myogenesis, myofiber growth occurs by a rapid increase in myonuclear number, while in the adult myofiber hypertrophy can occur in the absence of myonuclear addition (White *et al.*, 2010).

Embryonic, fetal, and adult myoblasts and myofibers are distinctive. The different myoblast populations were initially identified based on their *in vitro* characteristics. Embryonic, fetal, and adult myoblasts differ in culture in their appearance, media requirements, response to extrinsic signaling molecules, drug sensitivity, and morphology of myofibers they generate (summarized in Table 1.1; Biressi *et al.*, 2007a; Stockdale, 1992). Recent microarray studies also demonstrate that embryonic and fetal myoblasts differ substantially in their expression of transcription factors, cell surface receptors, and extracellular matrix proteins (Biressi *et al.*, 2007b). It presently is unclear whether neonatal myoblasts differ substantially from fetal myoblasts. Differentiated primary, secondary, and adult myofibers also differ, primarily in their expression of muscle contractile proteins, including

	Culture appearance and clonogenicity	Signaling molecule response	Drug sensitivity	Myofiber morphology in culture
Embryonic myoblasts	Elongated, prone to differentiate and form small colonies, do not spontaneously contract in culture	Differentiation insensitive to TGFβ-1 or BMP4	Differentiation insensitive to phorbol esters (TPA), sensitive to merocynine 540	Mononucleated myofibers or myofibers with few nuclei
Fetal myoblasts	Triangular, proliferate (to limited extent) in response to growth factors, spontaneously contract in culture	Differentiation blocked by TGFβ-1 and BMP4	Differentiation sensitive to phorbol esters (TPA)	Large, multinucleated myofibers
Satellite cells/ Adult myoblasts	Round, clonogenic, but undergo senescence after a limited number of passages, spontaneously contract in culture	Differentiation blocked by TGFβ-1 and BMP4	Differentiation sensitive to phorbol esters (TPA)	Large, multinucleated myofibers

 Table 1.1
 Summary of characteristics of embryonic, fetal, and adult myoblasts and myofibers

All from Biressi et al. (2007b) or review of Biressi et al. (2007a).

	MyHCemb	MyHCperi	MyHCI	MyHCIIa	MyHCIIx	MyHCIIb
Embryonic myofibers	+	_	+	-	-	-
Fetal myofibers	+	+	+/-	+/-	+/-	+/-
Adult myofibers	-	_	-	+	+	+

Derived from Agbulut et al. (2003), Gunning and Hardeman (1991), Lu et al. (1999), Rubinstein and Kelly (2004), and Schiaffino and Reggiani (1996).