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Preface

Since cell signaling is a major area of biomedical/ biological 
research and continues to advance at a very rapid pace, sci-
entists at all levels, including researchers, teachers, and 
advanced students, need to stay current with the latest find-
ings, yet maintain a solid foundation and knowledge of the 
important developments that underpin the field. Carefully 
selected articles from the 2nd edition of the Handbook of 
Cell Signaling offer the reader numerous, up-to-date views 
of intracellular signal processing, including membrane 
receptors, signal transduction mechanisms, the modula-
tion of gene expression/translation, and cellular/organo-
typic signal responses in both normal and disease states. In 
addition to material focusing on recent advances, hallmark 
papers from historical to cutting-edge publications are 
cited. These references, included in each article, allow the 
reader a quick navigation route to the major papers in vir-
tually all areas of cell signaling to further enhance his/her 
expertise.

The Cell Signaling Collection consists of four independ-
ent volumes that focus on Functioning of Transmembrane 
Receptors in Cell Signaling, Transduction Mechanisms 
in Cellular Signaling, Regulation of Organelle and Cell 
Compartment Signaling, and Intercellular Signaling in 
Development and Disease. They can be used alone, in 
various combinations or as a set. In each case, an over-
view article, adapted from our introductory chapter for 
the Handbook, has been included. These articles, as they 
appear in each volume, are deliberately overlapping and 
provide both historical perspectives and brief summaries of 

the material in the volume in which they are found. These 
summary sections are not exhaustively referenced since the 
material to which they refer is.

The individual volumes should appeal to a wide array of 
researchers interested in the structural biology, biochemistry, 
molecular biology, pharmacology, and pathophysiology of cel-
lular effectors. This is the ideal go-to books for individuals at 
every level looking for a quick reference on key aspects of cell 
signaling or a means for initiating a more in-depth search. 
Written by authoritative experts in the field, these papers 
were chosen by the editors as the most important articles for 
making the Cell Signaling Collection an easy-to-use refer-
ence and teaching tool. It should be noted that these volumes 
focus mainly on higher organisms, a compromise engendered 
by space limitations.

We wish to thank our Editorial Advisory Committee 
consisting of the editors of the Handbook of Cell Signaling, 
2nd edition, including Marilyn Farquhar, Tony Hunter, 
Michael Karin, Murray Korc, Suresh Subramani, Brad 
Thompson, and Jim Wells, for their advice and consultation 
on the composition of these volumes. Most importantly, 
we gratefully acknowledge all of the individual authors 
of the articles taken from the Handbook of Cell Signaling, 
who are the ‘experts’ upon which the credibility of this 
more focused book rests.

Ralph A. Bradshaw, San Francisco, California

Edward A. Dennis, La Jolla, California

January, 2011

Preface
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  Cell signaling, which is also often referred to as signal 
transduction or, in more specialized cases, transmembrane 
signaling, is the process by which cells communicate with 
their environment and respond temporally to external cues 
that they sense there. All cells have the capacity to achieve 
this to some degree, albeit with a wide variation in pur-
pose, mechanism, and response. At the same time, there 
is a remarkable degree of similarity over quite a range of 
species, particularly in the eukaryotic kingdom, and com-
parative physiology has been a useful tool in the develop-
ment of this field. The central importance of this general 
phenomenon (sensing of external stimuli by cells) has been 
appreciated for a long time, but it has truly become a domi-
nant part of cell and molecular biology research in the past 
three decades, in part because a description of the dynamic 
responses of cells to external stimuli is, in essence, a 
description of the life process itself. This approach lies at 
the core of the developing fields of proteomics and metab-
olomics, and its importance to human and animal health is 
already plainly evident. 

  ORIGINS OF CELL SIGNALING RESEARCH 

 Although cells from polycellular organisms derive sub-
stantial information from interactions with other cells 
and extracellular structural components, it was humoral 
components that first were appreciated to be intercellular 
messengers. This idea was certainly inherent in the ‘inter-
nal secretions’ initially described by Claude Bernard in 
1855 and thereafter, as it became understood that ductless 
glands, such as the spleen, thyroid, and adrenals, secreted 
material into the bloodstream. However, Bernard did not 

directly identify hormones as such. This was left to Bayliss 
and Starling and their description of secretin in 1902 [ 1 ]. 

 Recognizing that it was likely representative of a larger 
group of chemical messengers, the term  hormone  was 
introduced by Starling in a Croonian Lecture presented 
in 1905. The word, derived from the Greek word mean-
ing ‘to excite or arouse,’ was apparently proposed by a 
colleague, W. B. Hardy, and was adopted, even though it 
did not particularly connote the messenger role but rather 
emphasized the positive effects exerted on target organs 
via cell signaling (see Wright [ 2 ] for a general descrip-
tion of these events). The realization that these substances 
could also produce inhibitory effects, gave rise to a sec-
ond designation, ‘chalones,’ introduced by Schaefer in 
1913 [ 3 ], for the inhibitory elements of these glandular 
secretions. The word autocoid was similarly coined for 
the group as a whole (hormones and chalones). Although 
the designation chalone has occasionally been applied to 
some growth factors with respect to certain of their activi-
ties (e.g., transforming growth factor), autocoid has essen-
tially disappeared. Thus, if the description of secretin and 
the introduction of the term hormone are taken to mark the 
beginnings of molecular endocrinology and the eventual 
development of cell signaling, then we have passed the 
hundredth anniversary of this field. 

 The origins of endocrinology, as the study of the glands 
that elaborate hormones and the effect of these entities on 
target cells, naturally gave rise to a definition of hormones 
as substances produced in one tissue type that traveled 
systemically to another tissue type to exert a character-
istic response. Of course, initially these responses were 
couched in organ and whole animal responses, although 
they increasingly were defined in terms of metabolic and 
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other chemical changes at the cellular level. The early days 
of endocrinology were marked by many important discov-
eries, such as the discovery of insulin [ 4 ], to name one, 
that solidified the definition, and a well-established list of 
hormones, composed primarily of three chemical classes 
(polypeptides, steroids, and amino acid derivatives), was 
eventually developed. Of course, it was appreciated even 
early on that the responses in the different targets were not 
the same, particularly with respect to time. For example, 
adrenalin was known to act very rapidly, while growth hor-
mone required a much longer time frame to exert its full 
range of effects. However, in the absence of any molecular 
details of mechanism, the emphasis remained on the dis-
tinct nature of the cells of origin versus those responding 
and on the systemic nature of transport, and this remained 
the case well into the 1970s. An important shift in endo-
crinological thinking had its seeds well before that, how-
ever, even though it took about 25 years for these ‘new’ 
ideas that greatly expanded endocrinology to be enunciated 
clearly. 

 Although the discovery of polypeptide growth factors 
as a new group of biological regulators is generally asso-
ciated with nerve growth factor (NGF), it can certainly be 
argued that other members of this broad category were 
known before NGF. However, NGF was the source of the 
designation  growth factor  and has been, in many impor-
tant respects, a Rosetta stone for establishing principles 
that are now known to underpin much of signal transduc-
tion. Thus, its role as the progenitor of the field and the 
entity that keyed the expansion of endocrinology, and with 
it the field of cell signaling, is quite appropriate. The dis-
covery of NGF is well documented [ 5 ] and how this led 
directly to identification of epidermal growth factor (EGF) 
[ 6 ], another regulator that has been equally important in 
providing novel insights into cellular endocrinology, sig-
nal transduction and, more recently, molecular oncology. 
However, it was not till the sequences of NGF and EGF 
were determined [ 7 ,  8 ] that the molecular phase of growth 
factor research began in earnest. Of particular importance 
was the postulate that NGF and insulin were evolutionar-
ily related entities [ 9 ], which suggested a similar molecu-
lar action (which, indeed, turned out to be remarkably 
clairvoyant), and was the first indication that the identified 
growth factors, which at that time were quite limited in 
number, were like hormones. This hypothesis led quickly 
to the identification of receptors for NGF on target neu-
rons, using the tracer binding technology of the time (see 
Raffioni  et al.  [ 10 ] for a summary of these contributions), 
which further confirmed their hormonal status. Over the 
next several years, similar observations were recorded for 
a number of other growth factors, which in turn, led to the 
redefinition of endocrine mechanisms to include paracrine, 
autocrine, and juxtacrine interactions [ 11 ]. These studies 
were followed by first isolation and molecular characteriza-
tion using various biophysical methods and then cloning of 

their cDNAs, initially for the insulin and EGFR receptors 
[ 12–14 ] and then many others. Ultimately, the powerful 
techniques of molecular biology were applied to all aspects 
of cell signaling and are largely responsible for the detailed 
depictions we have today. They have allowed the broad 
understanding of the myriad of mechanisms and responses 
employed by cells to assess changes in their environment 
and to coordinate their functions to be compatible with the 
other parts of the organism of which they are a part.  

  INTRACELLULAR SIGNALING 
MECHANISMS 

 At the same time that the growth factor field was under-
going rapid development, major advances were also occur-
ring in studies on hormonal mechanisms. In particular, 
Sutherland and colleagues [ 15 ] were redefining hormones 
as messengers and their ability to produce second mes-
sengers. This was, of course, based primarily on the iden-
tification of cyclic AMP (cAMP) and its production by a 
number of classical hormones. However, it also became 
clear that not all hormones produced this second messenger 
nor was it stimulated by any of the growth factors known 
at that time. This enigma remained unresolved for quite a 
long time until tyrosine kinases were identified [ 16 ,  17 ] 
and it was shown, first with the EGF receptor [ 18 ], that 
these modifications were responsible for initiating signal 
transduction for many of those hormones and growth fac-
tors that did not stimulate the production of cAMP. 

Aided by the tools of molecular biology, it was a fairly 
rapid transition to the cloning of most of the receptors for 
hormones and growth factors and the subsequent develop-
ment of the main classes of signaling mechanisms. These 
data allowed the six major classes of cell surface recep-
tors for hormones and growth factors to be defined, which 
included, in addition to the receptor tyrosine kinases 
(RTKs) described previously, the G-protein coupled recep-
tors (GPCRs) (including the receptors that produce cAMP) 
that constitute the largest class of cell surface receptors; the 
cytokine receptors, which recruit the soluble JAK tyrosine 
kinases and directly activate the STAT family of transcrip-
tion factors; serine/threonine kinase receptors of the TGF β  
superfamily; the tumor necrosis factor (TNF) receptors that 
activate nuclear factor kappa B (NF κ B) via TRAF mol-
ecules, among other pathways; and the guanylyl cyclase 
receptors. Structural biology has not maintained the same 
pace, and there are still both ligands and receptors for 
which we do not have three-dimensional information. 

 In parallel with the development of our understanding 
of ligand/receptor organization at the plasma membrane, 
a variety of experimental approaches have also revealed 
the general mechanisms of transmembrane signal trans-
duction in terms of the major intracellular events that are 
induced by these various receptor classes. There are three 
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 principal means by which intracellular signals are propa-
gated: protein posttranslational modifications (PTMs), 
lipid messengers, and ion fluxes (see  Figure 1.1   ). There 
are also additional moieties that play significant roles, such 
as cyclic nucleotides, but their effects are generally mani-
fested in downstream PTMs. There is considerable inter-
play between the three, particularly in the more complex 
pathways. 

 By far the most significant of the PTMs is phosphoryla-
tion of serine, threonine, and tyrosine residues (although 
phosphorylation of several other residues is also known 
albeit that these modifications are usually found in lower 
organisms). As already noted, the RTK and cytokine recep-
tors initiate their responses with tyrosine phosphorylation, 
and there are more than 30 additional nonreceptor tyrosine 
kinases that also have significant roles in many signaling 
responses that can be activated by these and other types of 
receptors. However, the vast bulk of protein phosphoryla-
tion occurs downstream from the receptors and is mainly 
on serine and threonine residues in a ratio of about 20:1. 
These are produced by a myriad of protein kinases that are 

activated themselves through PTMs or through the produc-
tion of lipid messengers (see below). Indeed, there are over 
500 protein kinases in the human genome with more than 
100 phosphatases, which emphasizes the investment that 
has been made in this modification by higher eukaryotes 
[ 19 ]. Therefore, it is perhaps not surprising that through 
the agency of substantive technological advances in pro-
teomic analyses, mainly in the area of mass spectrometry 
and its quantitative applications, it has become clear that 
the level of this PTM, both in terms of type and amount, 
is significantly greater than originally envisioned [ 20 ]. It 
could not have been readily anticipated from the pioneer-
ing studies of Krebs and Fischer in the 1960s [ 21 ] when 
they observed the regulation of muscle phosphorylase 
activity by protein phosphorylation that this modification 
would occur essentially universally in cells and that hun-
dreds, if not thousands, of enzyme activities and protein–
protein interactions would be regulated by it. Nonetheless, 
thousands of phosphorylation events have indeed been 
detected in cellular paradigms that have been appropriately 
stimulated by one or another growth factor (see, e.g., Olsen 

 FIGURE 1.1    Intracellular events following receptor activation include the activation of kinase/phosphatase cascades, phospholipases liberating a variety 
of lipid mediators, cyclic nucleotide production and their downstream events, and numerous G-protein triggered pathways. The immediate  signaling 
 pathways often amplify their signals by a series of posttranslational events that in turn release various messengers, often lipids or ions, which over time 
 ultimately result in the modulation of transcriptional events in the nucleus.    
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 et  al.  [ 22 ]) and in no case has the complete set of modifi-
cations been identified. Clearly, the new challenges are to 
determine which of these modifications are physiologically 
meaningful and which kinases (or another type of modify-
ing enzyme) are responsible for which alterations. Further 
findings using proteomic methodology have demonstrated 
that other PTMs are also important, if not as widespread. 
O-GlyNAcylation (also on serine and threonine residues) 
[ 23 ] and N  ε  -acetylation of lysine residues [ 24 ] are exam-
ples of modifications that are receiving increasing attention. 

 As intracellular signaling was being unraveled, it 
became increasingly clear that receptor activation and sub-
sequent activations through PTM additions were inducing 
more than just enzyme activations. Rather, many modifica-
tions were providing new, specific sites for forming pro-
tein complexes. These were appropriately designated as 
‘docking sites,’ and it introduced the concept of both adap-
tors and scaffolds, with activated enzymes being called 
‘effectors.’ Adaptors, such as Grb or Shc proteins, and the 
larger, multisite scaffolds, such as the insulin receptor sub-
strate (IRS), recognize newly formed sites through specific 
motifs and as the process is repeated, successively build up 
multicomponent signaling structures [ 25 ]. There has now 
emerged a significant number of binding motifs, recogniz-
ing, in addition to PTMs, phospholipids and proline-rich 
peptide segments to name a few, that are quite widely scat-
tered through the substantial repertoire of signaling mol-
ecules and that are activated by different types of receptors 
in a variety of cell types. 

 The elucidation of cell signaling mechanisms and the 
variety of molecules that are employed in these myriad 
of processes is particularly well exemplified by the lipid 
messengers. With the exception of steroid hormones, lip-
ids have long been thought to function mainly in energy 
metabolism and membrane structure. Experimental work 
for the last two decades has revealed a broad recognition 
that membrane phospholipids provide many of the impor-
tant cell signaling molecules via phospholipases and lipid 
kinases. Key is the role of phospholipase C of which there 
are four subtypes that are activated by various receptor sys-
tems to hydrolyze phosphatidylinositol bisphosphate (PIP 2 ) 
to release diglyceride that activates protein kinase C (PKC) 
and inositol triphosphate (IP 3 ), which mobilizes intracel-
lular Ca 2+  central to so many regulatory processes. The 
phosphorylation of PIP 2  at the 3-position to produce PIP 3  
promotes vesicular trafficking and other cellular processes. 
Phospholipase D releases phosphatidic acid, and phosphol-
ipase A2 provides arachidonic acid, which is converted into 
prostaglandins, leukotrienes, lipoxins, and various P450 
products; these ligands in turn bind to unique families of 
receptors as does platelet activating factor (PAF). The more 
recent recognition, in the last decade, of the importance of 
sphingolipids and ceramide in signaling and the discover-
ies of the unique lysophosphatidic acid and sphingosine 
phosphate families of receptors have sparked the search for 

other new lipid messengers and their receptors. The newly 
emerging field of lipidomics (see  www.lipidmaps.org ) 
holds the promise of expanding our ability to interrogate in 
greater detail the specificity of agonists and receptors and 
their effects on lipid signaling events [ 26–28 ]. 

 The extent and complexity of GPCRs, in terms of both 
the ligands that bind them and the effectors they in turn 
activate, is unparalleled in the other signaling systems. The 
receptors of this family, with their seven transmembrane 
segments, function by linking to heteromeric G protein 
complexes composed of three subunits:  α ,  β , and  γ . The 
 α -subunit binds GTP and the receptor-G-protein complex 
functions as a guanine nucleotide exchange factor (GEF). 
The ligand induces the G-protein to split into two compo-
nents –  α -GTP and  β  γ  – both of which are active in the 
further propagation of the signal. When the GTP is hydro-
lyzed to GDP, it recycles back to the GTP form so it is 
ready to be reutilized. This type of biochemical ‘switch’ 
is widely encountered in biological systems ranging from 
translation to vesicle transport and is also utilized (as Ras) 
in the major pathway leading to ERK activation by RTKs. 
GPCRs are utilized as sensors of peptide/protein hormones, 
neurotransmitters, amino acids, lipids, and various physio-
logical processes such as light, taste, and smell. The adeny-
lyl cyclases are a major effector for the GPCR signals and 
are affected by both the  α -GTP and  β  γ  subunits. However, 
they also activate some of the nonreceptor tyrosine kinases, 
PI-3-K and the  β -type of PLC among others. 

 cAMP, the product of adenylyl cyclase activation, was 
of course the discovery of Sutherland and colleagues [ 15 ], 
and it exerts much of its effects by the activation of PKA. 
This is one of the most important mediators in signal trans-
duction pathways. It is composed of two regulatory and 
two catalytic subunits and is activated when cAMP binds 
to the regulatory subunits, causing dissociation of the het-
erotetramer and the concomitant activation of the catalytic 
subunits. In addition to its multiple cellular roles, it has 
been an important model for understanding the structure–
function relationships of the protein kinase superfamily.  

  FOCUS AND SCOPE OF THIS VOLUME 

 The chapters of this volume have been selected from a 
larger collection [ 29 ] and have been organized to empha-
size receptor organization and transduction mechanisms 
functioning in cell signaling. They have been contributed 
by recognized experts and they are authoritative to the 
extent that size limitations allow. It is our intention that this 
survey will be useful in teaching, particularly in introduc-
tory courses, and to more seasoned investigators new to 
this area. 

 It is not possible to develop any of the areas covered in 
this volume in great detail, and expansion of any topic is 
left to the reader. The references in each chapter provide an 
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excellent starting point, and greater coverage can also be 
found in the parent work [ 29 ]. It is important to realize that 
this volume does not cover other aspects of cell signaling 
such as the structure and role of cell surface receptors in 
signaling activities, transcriptional activation and responses 
in other organelles, and organ-level manifestations, includ-
ing disease correlates. These can be found in other volumes 
in this series [ 30–32 ].   
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    INTRODUCTION 

 Ever   since the discovery 50 years ago that reversible 
 phosphorylation regulates the activity of glycogen phos-
phorylase  [1] , there has been intense interest in the role 
of protein phosphorylation in regulating protein function. 
With the advent of DNA cloning and sequencing in the 
mid-1970s it rapidly became apparent that a large fam-
ily of eukaryotic protein kinases exists, and the burgeon-
ing numbers of protein kinases led to the speculation that a 
vertebrate genome might encode as many as 1001 protein 
kinases  [2] . Since then, the importance of protein phospho-
rylation as a regulatory mechanism has continued to grow, 
and recent phosphoproteomic analyses suggest that the 
majority of intracellular proteins can be phosphorylated at 
one or more sites under an appropriate condition. Protein 
phosphorylation not only regulates enzymatic activity 
through inducing conformational changes or through direct 
steric effects, but also modulates the function of structural 
proteins through conformational and charge effects. In 
addition, a major function of protein-linked phosphates is 
to provide docking sites for other proteins, thus promoting 
inducible protein – protein association  [3] . 

 The   catalytic domains of eukaryotic serine/threo-
nine- and tyrosine-specific protein kinases are related in 
sequence, and belong to the eukaryotic protein kinase (ePK) 
superfamily, which in turn is a subset of PKL (protein-
kinase like) kinases that share a common fold and catalytic 
mechanism  [4] . A few structurally unrelated proteins also 
have reported protein kinase activity, and a wide variety 
of protein families can phosphorylate non-protein substrates 
 [5] . Non-ePK protein kinases are termed aPKs, or atypical 
protein kinases. In addition to Ser, Thr, and Tyr, several 
other amino acids in proteins can be phosphorylated, includ-
ing Lys, Arg, and His. The provenance of the responsible 

protein kinases remains unclear, although NDPK-B has 
recently been reported to be a  bona fide  mammalian his-
tidine kinase  [6] . The prokaryotic two-component protein 
kinases, commonly known as  “ histidine ”  kinases, form yet 
another distinct family. These autophosphorylate on his-
tidine, and then transfer the phosphate to an aspartate on 
a substrate protein. These kinases are also found in plants 
and protists, but are absent from animals, apart from the 
unusual mitochondrial PDHK family members, which 
phosphorylate Ser/Thr. 

 The    � 270 amino acid ePK catalytic domain is char-
acterized by a series of conserved sequence motifs, which 
define 11 subdomains, and serve as key catalytic elements 
of the kinase domain        [7, 8] . These motifs in combination 
with the overall catalytic domain sequence can be used to 
identify other protein kinases through pairwise and HMM 
profile sequence searches. aPKs can be found using simi-
lar approaches. Using this strategy, we have surveyed a 
series of sequenced eukaryotic genomes to define the pro-
tein kinase complement (kinome) of each organism                    [9 – 16]  
and used this as a basis to explore the evolution and global 
functions of all protein kinases.  

    THE HUMAN KINOME 

 In   our original survey completed in 2002  [11] , we predicted 
that the human genome has 518 protein kinase genes (2.3 
percent of all  � 22,500 genes) ( Figure 2.1   ). Of these, 478 
encode ePKs, with the others divided between 9 small aPK 
families, which include the PIKK (PI3 kinase-like kinase), 
the PDHK (pyruvate dehydrogenase kinase) and alpha 
kinase (E2F kinase) families. There are 90 tyrosine kinase 
genes (16 percent of all protein kinases). The complexity 
of the kinome is further increased by alternative  splicing of 
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over half of all kinases  [17] , which in many cases is known 
to modulate function, as well as by the existence of regu-
latory subunits and differential targeting within the cell 
through association with scaffolding proteins. 

 Since   the 2002 catalog, we have added 7 Ser/Thr kinases 
(6 four-jointed kinases and a second copy of PITSLRE/
CDC2L2), lost 2 Tyr kinases (twinfilin/A6 family), and 
added NDPK-B (and 8 homologs) as a  bona fide  histidine 
kinase, to give a total of 532. The list may grow further, as 
humans have members of other classes of PKLs that are 
usually thought of as small-molecule kinases but have mem-
bers known to phosphorylate proteins (e.g., ACAD10/11 
from the CAK family  [4] ) Other ATPases or structurally 
distinct proteins may also emerge to have kinase activity (as 
seen in the MinD family of bacterial tyrosine kinases  [18] ). 
A few kinases currently in the catalog, such as SgK424 and 
PRKY are dubious, and may be relegated to pseudogenes. 

 The   major control functions of protein kinases are 
reflected in their involvement in disease. Thirty-five percent 
of the kinome (175 genes) has been directly implicated in 
human disease, through mutation, mis-expression, or copy 
number changes  [19] ; 121 protein kinases are implicated in 
cancer, including 51 of the 90 tyrosine kinases. Many more 
protein kinases are weakly implicated and are emerging 
from genome-scale studies, including recent efforts to re-
sequence the entire kinome in a wide variety of human can-
cers to pinpoint driver mutations involved in carcinogenesis. 
For instance, 164 kinases were mapped to common ampli-
cons  [11] , and many more such data are now emerging. 

 Protein   kinase catalytic function is often dependent on 
additional domains in the protein, which regulate activity, 

localize, and recruit regulatory proteins/second messengers 
and substrates. About half the protein kinases are predicted 
to have additional domains, many of which are implicated 
in signaling. Of the tyrosine kinases, 25 have P.Tyr bind-
ing SH2 domains that play a cardinal role in  establishing 
 tyrosine-phosphorylation based signaling networks. In 
 contrast, perhaps surprisingly, only one serine kinase 
contains a P.Ser/Thr binding domain (an FHA domain in 
CHK2). In addition, 46 protein kinases have domains that 
interact with other proteins (e.g., SH3); 55 tyrosine and 
serine kinases have lipid interaction domains (e.g., PH); 
38 have domains linked to small GTPase signaling; and 
28 serine kinases have domains linked to calcium signal-
ing. Generally, most members of a protein kinase fam-
ily have the same set of ancillary domains, but there are 
some exceptions, and alternative splicing is often used to 
generate distinct domain combinations from a single gene. 
A complete listing of additional domains found in human 
protein kinases is given at  http://kinase.com/.  

 The   kinase catalytic domain itself often has ancillary 
functions. In fact, close to 10 percent of all kinase domains 
are predicted to have lost enzymatic function, but are 
retained for non-catalytic reasons. Of the 492 human ePK 
catalytic domains, 48 are predicted to be inactive, based 
on loss of key catalytic residues (Lys72/Asp166/Asp184 in 
PKA) and review of experimental data  [20] . These  “ pseu-
dokinase domains ”  may serve as docking platforms or scaf-
folds (e.g., ErbB3 and ILK), structural elements (receptor 
guanylyl cyclase kinase homology domains), and/or regu-
latory domains, which might bind and sense ATP levels 
 [21] . Alternatively, they can act as regulators of protein 
kinases, mimicking mechanisms used by active protein 
kinases. Most human pseudokinase domains are con-
served in all vertebrates, and several are even more ancient: 
CCK4 is inactive in all metazoans, and the inactive second 
kinase domain of GCN2 is found in almost all eukaryo-
tes, suggesting that these domains play vital biological 
roles  [11] . 

 There   were predicted to be 106 kinase pseudogenes in 
the human genome. These have sequence similarity to pro-
tein kinases, but have stop codons or frameshifts within their 
sequence, and in many cases (75) lack introns, indicating 
that they are retrotransposed copies of expressed kinases. For 
reasons that are unclear, some protein kinase families have 
a very high ratio of pseudogenes to functional genes (e.g., 
MARK 28:4). The mouse genome has a similar count of 97 
kinase pseudogenes. None of these are orthologous to human, 
and the families that have high pseudogene counts are distinct 
from human, implying that no cryptic function remains for 
most kinase pseudogenes. On the other hand, retrotransposi-
tion appears to be the origin of several recently-derived func-
tional kinases, such as the primate-specific TAF1L, CK1 α 2, 
and PKAC γ  genes  [14] . Pseudogenes are rare in most inver-
tebrate kinomes, although  C. elegans  has 24 kinase pseudo-
genes, mostly in recently expanded families  [22] .  

 FIGURE 2.1          The human kinome.  
    A stylized phylogenetic tree represents the 492 ePK domains in the 
human genome, shaded by group classification. For further details, see 
 http://kinase.com/human/kinome/.      Reproduced by permission of  Science  
magazine and  Cell Signaling Technologies .    


