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Since cell signaling is a major area of biomedical/
biological research and continues to advance at a very 
rapid pace, scientists at all levels, including researchers, 
teachers, and advanced students, need to stay current with 
the latest findings, yet maintain a solid foundation and 
knowledge of the important developments that underpin 
the field. Carefully selected articles from the 2nd edition of 
the Handbook of Cell Signaling offer the reader numerous, 
up-to-date views of intracellular signal processing, includ-
ing membrane receptors, signal transduction mechanisms, 
the modulation of gene expression/translation, and cellular/
organotypic signal responses in both normal and disease 
states. In addition to material focusing on recent advances, 
hallmark papers from historical to cutting-edge publications 
are cited. These references, included in each article, allow 
the reader a quick navigation route to the major papers in 
virtually all areas of cell signaling to further enhance his/
her expertise.

The Cell Signaling Collection consists of four independ-
ent volumes that focus on Functioning of Transmembrane 
Receptors in Cell Signaling, Transduction Mechanisms 
in Cellular Signaling, Regulation of Organelle and Cell 
Compartment Signaling, and Intercellular Signaling in 
Development and Disease. They can be used alone, in 
various combinations or as a set. In each case, an over-
view article, adapted from our introductory chapter for 
the Handbook, has been included. These articles, as they 
appear in each volume, are deliberately overlapping and 
provide both historical perspectives and brief summaries of 

the material in the volume in which they are found. These 
summary sections are not exhaustively referenced since the 
material to which they refer is.

The individual volumes should appeal to a wide array of 
researchers interested in the structural biology, biochemis-
try, molecular biology, pharmacology, and pathophysiology 
of cellular effectors. This is the ideal go-to books for indi-
viduals at every level looking for a quick reference on key 
aspects of cell signaling or a means for initiating a more in-
depth search. Written by authoritative experts in the field, 
these papers were chosen by the editors as the most impor-
tant articles for making the Cell Signaling Collection an 
easy-to-use reference and teaching tool. It should be noted 
that these volumes focus mainly on higher organisms, a 
compromise engendered by space limitations.

We wish to thank our Editorial Advisory Committee 
consisting of the editors of the Handbook of Cell Signaling, 
2nd edition, including Marilyn Farquhar, Tony Hunter, 
Michael Karin, Murray Korc, Suresh Subramani, Brad 
Thompson, and Jim Wells, for their advice and consultation 
on the composition of these volumes. Most importantly, we 
gratefully acknowledge all of the individual authors of the 
articles taken from the Handbook of Cell Signaling, who 
are the ‘experts’ upon which the credibility of this more 
focused book rests.

Ralph A. Bradshaw, San Francisco, California

Edward A. Dennis, La Jolla, California

January, 2011

PrefacePreface
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  Cell signaling, which is also often referred to as signal 
transduction or, in more specialized cases, transmembrane 
signaling, is the process by which cells communicate with 
their environment and respond temporally to external cues 
that they sense there. All cells have the capacity to achieve 
this to some degree, albeit with a wide variation in pur-
pose, mechanism, and response. At the same time, there 
is a remarkable degree of similarity over quite a range of 
species, particularly in the eukaryotic kingdom, and com-
parative physiology has been a useful tool in the develop-
ment of this field. The central importance of this general 
phenomenon (sensing of external stimuli by cells) has been 
appreciated for a long time, but it has truly become a domi-
nant part of cell and molecular biology research in the past 
three decades, in part because a description of the dynamic 
responses of cells to external stimuli is, in essence, a 
description of the life process itself. This approach lies at 
the core of the developing fields of proteomics and metab-
olomics, and its importance to human and animal health is 
already plainly evident. 

  ORIGINS OF CELL SIGNALING RESEARCH 

 Although cells from polycellular organisms derive sub-
stantial information from interactions with other cells 
and extracellular structural components, it was humoral 
components that first were appreciated to be intercellular 
messengers. This idea was certainly inherent in the ‘inter-
nal secretions’ initially described by Claude Bernard in 
1855 and thereafter, as it became understood that ductless 
glands, such as the spleen, thyroid, and adrenals, secreted 

material into the bloodstream. However, Bernard did not 
directly identify hormones as such. This was left to Bayliss 
and Starling and their description of secretin in 1902 [ 1 ]. 

 Recognizing that it was likely representative of a larger 
group of chemical messengers, the term  hormone  was 
introduced by Starling in a Croonian Lecture presented 
in 1905. The word, derived from the Greek word mean-
ing ‘to excite or arouse,’ was apparently proposed by a 
colleague, W. B. Hardy, and was adopted, even though it 
did not particularly connote the messenger role but rather 
emphasized the positive effects exerted on target organs via 
cell signaling (see Wright [ 2 ] for a general description of 
these events). The realization that these substances could 
also produce inhibitory effects, gave rise to a second des-
ignation, ‘chalones,’ introduced by Schaefer in 1913 (see 
Schaefer [ 3 ]), for the inhibitory elements of these glandular 
secretions. The word ‘autocoid’ was similarly coined for 
the group as a whole (hormones and chalones). Although 
the designation chalone has occasionally been applied to 
some growth factors with respect to certain of their activi-
ties (e.g., transforming growth factor  β ), autocoid has 
essentially disappeared. Thus, if the description of secretin 
and the introduction of the term hormone are taken to mark 
the beginnings of molecular endocrinology and the even-
tual development of cell signaling, then we have passed the 
hundredth anniversary of this field. 

 The origins of endocrinology, as the study of the glands 
that elaborate hormones and the effect of these entities on 
target cells, naturally gave rise to a definition of hormones 
as substances produced in one tissue type that traveled sys-
temically to another tissue type to exert a characteristic 
response. Of course, initially these responses were couched 
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in organ and whole animal responses, although they increas-
ingly were defined in terms of metabolic and other chemical 
changes at the cellular level. The early days of endocrinol-
ogy were marked by many important discoveries, such as 
the discovery of insulin [ 4 ], to name one, that solidified the 
definition, and a well-established list of hormones, com-
posed primarily of three chemical classes (polypeptides, 
steroids, and amino acid derivatives), was eventually devel-
oped. Of course, it was appreciated even early on that the 
responses in the different targets were not the same, par-
ticularly with respect to time. For example, adrenalin was 
known to act very rapidly, while growth hormone required 
a much longer time frame to exert its full range of effects. 
However, in the absence of any molecular details of mecha-
nism, the emphasis remained on the distinct nature of the 
cells of origin versus those responding and on the systemic 
nature of transport, and this remained the case well into 
the 1970s. An important shift in endocrinological thinking 
had its seeds well before that, however, even though it took 
about 25 years for these ‘new’ ideas that greatly expanded 
endocrinology to be enunciated clearly. 

 Although the discovery of polypeptide growth factors 
as a new group of biological regulators is generally asso-
ciated with nerve growth factor (NGF), it can certainly be 
argued that other members of this broad category were 
known before NGF. However, NGF was the source of the 
designation  growth factor  and has been, in many important 
respects, a Rosetta stone for establishing principles that 
are now known to underpin much of signal transduction. 
Thus, its role as the progenitor of the field and the entity 
that keyed the expansion of endocrinology, and with it the 
field of cell signaling, is quite appropriate. The discovery 
of NGF is well documented [ 5 ] and how this led directly 
to identification of epidermal growth factor (EGF) [ 6 ], 
another regulator that has been equally important in provid-
ing novel insights into cellular endocrinology, signal trans-
duction and, more recently, molecular oncology. However, 
it was not till the sequences of NGF and EGF were deter-
mined [ 7 ,  8 ] that the molecular phase of growth factor 
research began in earnest. Of particular importance was the 
postulate that NGF and insulin were evolutionarily related 
entities [ 9 ], which suggested a similar molecular action 
(which, indeed, turned out to be remarkably clairvoyant), 
and was the first indication that the identified growth fac-
tors, which at that time were quite limited in number, were 
like hormones. This hypothesis led quickly to the identi-
fication of receptors for NGF on target neurons, using the 
tracer binding technology of the time (see Raffioni  et al.  
[ 10 ] for a summary of these contributions), which further 
confirmed their hormonal status. Over the next several 
years, similar observations were recorded for a number of 
other growth factors, which in turn led to the redefinition of 
endocrine mechanisms to include paracrine, autocrine, and 
juxtacrine interactions [ 11 ]. These studies were followed 
by first isolation and molecular characterization using vari-
ous biophysical methods and then cloning of their cDNAs, 

initially for the insulin and EGFR receptors [ 12–14 ] and 
then many others. Ultimately, the powerful techniques of 
molecular biology were applied to all aspects of cell sign-
aling and are largely responsible for the detailed depictions 
we have today. They have allowed the broad understanding 
of the myriad of mechanisms and responses employed by 
cells to assess changes in their environment and to coordi-
nate their functions to be compatible with the other parts of 
the organism of which they are a part.  

  RECEPTORS AND INTRACELLULAR 
SIGNALING 

 At the same time that the growth factor field was undergo-
ing rapid development, major advances were also occurring 
in studies on hormonal mechanisms. In particular, Sutherland 
and colleagues [ 15 ] were redefining hormones as messengers 
and their ability to produce second messengers. This was, of 
course, based primarily on the identification of cyclic AMP 
(cAMP) and its production by a number of classical hor-
mones. However, it also became clear that not all hormones 
produce this second messenger nor was it stimulated by any of 
the growth factors known at that time. This enigma remained 
unresolved for quite a long time until tyrosine kinases were 
identified [ 16 ,  17 ] and it was shown, first with the EGF recep-
tor [ 18 ], that these modifications were responsible for initiat-
ing the signal transduction for many of those hormones and 
growth factors that did not stimulate the production of cAMP. 

 Aided by the tools of molecular biology, it was a fairly 
rapid transition to the cloning of most of the receptors for 
hormones and growth factors and the subsequent develop-
ment of the main classes of signaling mechanisms. These 
data allowed the six major classes of cell surface recep-
tors for hormones and growth factors to be defined, which 
included, in addition to the receptor tyrosine kinases 
(RTKs) described previously, the G-protein coupled recep-
tors (GPCRs) (including the receptors that produce cAMP) 
that constitute the largest class of cell surface receptors; the 
cytokine receptors, which recruit the soluble JAK tyrosine 
kinases and directly activate the STAT family of transcrip-
tion factors; serine/threonine kinase receptors of the TGF β  
superfamily; the tumor necrosis factor (TNF) receptors that 
activate nuclear factor kappa B (NF κ B) via TRAF mol-
ecules, among other pathways; and the guanylyl cyclase 
receptors. Structural biology has not maintained the same 
pace, and there are still both ligands and receptors for which 
we do not have three-dimensional information as yet. 

 In parallel with the development of our understanding 
of ligand/receptor organization at the plasma membrane, 
a variety of experimental approaches have also revealed 
the general mechanisms of transmembrane signal trans-
duction in terms of the major intracellular events that are 
induced by these various receptor classes. There are three 
principal means by which intracellular signals are propa-
gated: protein posttranslational modifications (PTMs), lipid 
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 messengers, and ion fluxes. There are also additional moie-
ties that play significant roles, such as cyclic nucleotides, 
but their effects are generally manifested in downstream 
PTMs. There is considerable interplay between the three, 
particularly in the more complex pathways. 

 By far the most significant of the PTMs is phosphoryla-
tion of serine, threonine, and tyrosine residues. Indeed, there 
are over 500 protein kinases in the human genome with 
more than 100 phosphatases. Many of these modifications 
activate various enzymes, which are designated effectors, 
but it also has become increasingly clear that many PTM 
additions were inducing new, specific sites for protein–
protein interactions. These ‘docking sites’ introduced the 
concept of both adaptors, such as Grb or Shc proteins, and 
the larger, multisite scaffolds, such as insulin receptor sub-
strate (IRS) that bound to the sites introduced by the PTMs 
through specific motifs and as the process is repeated, suc-
cessively built up multicomponent signaling structures [ 19 ]. 
There has now emerged a significant number of binding 
motifs, recognizing, in addition to PTMs, phospholipids and 
proline-rich peptide segments to name a few, that are quite 
widely scattered through the large repertoire of signaling 

molecules and that are activated by different types of recep-
tors in a variety of cell types.  

  TRANSCRIPTIONAL RESPONSES 

 Although the intracellular signaling pathways are charac-
terized by a plethora of modifications and interactions that 
alter existing proteomic and metabolomic landscapes, the 
major biological responses, such as mitosis, differentiation, 
and apoptosis, require alterations in the phenotypic pro-
file of the cell and these need be directed by changes in 
transcription and translation (see  Figure 1.1   ). Indeed, sig-
naling can be thought of at two levels: responses (events) 
that affect (or require) preexisting structures (proteins) and 
those that depend on generating new proteins. Temporally, 
rapid responses are perforce of the first type, while longer-
term responses generally are of the second. Thus, it may 
be viewed that the importance of the complex largely cyto-
plasmic machinery, involving receptors, effectors, adaptors 
and scaffolds, has two purposes: to generate immediate 
changes and then to ultimately reprogram the transcrip-
tional activities for more permanent responses. 

 FIGURE 1.1    Subcellular organelles play critical roles in compartmentalizing signaling events. Of central importance are the numerous nuclear 
 receptors/effectors and the subsequent regulation of transcriptional and translational processes. Signaling in various compartments and organelles, such 
as mitochondria, the Golgi, and the endoplasmic reticulum, as well as peroxisomes, lysosomes, and other vesicles, play critical roles in converting 
 extracellular signals to meet specialized cellular requirements.    
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 The process of gene expression in eukaryotes can be 
considered at several levels: the generation of the primary 
RNA transcript, its processing and transport, translation 
of the mRNA into protein, and finally its turnover. Since 
the amount of the potential activity associated with a given 
protein is fundamentally dependent on both its rate of syn-
thesis and its rate of degradation, the turnover of the protein 
itself is also critical to signaling processes and is certainly 
largely, if not completely, affected by signaling events, too. 
In eukaryotes, transcription and mRNA processing take 
place in the nucleus; translation and mRNA turnover are 
cytoplasmic events. All of these processes are controlled or 
affected by signal transduction pathways. 

 The most common form of regulation is based on the 
phosphorylation of either sequence-specific transcription 
factors or proteins that directly interact with such tran-
scription factors. These events can occur in the cytoplasm 
by kinases activated during signal transduction or by acti-
vated kinases that are transferred to the nuclear compart-
ment. Thus, the phosphorylation event(s) can affect the 
subcellular distribution of the transcription factor (e.g., 
NFAT, NF- κ B), that is, it is present in the cytoplasm and 
modification directs its nuclear transport, its ability to bind 
DNA, or its ability to activate or repress transcription    (e.g., 
CREB, c-Jun). The regulation can be achieved through 
phosphorylation of the transcription factor itself or through 
phosphorylation of an interacting protein, such as an inhib-
itor (e.g., I κ B), which regulates the activity or subcellular 
distribution of the transcription factor. 

 One class of transcription factors, the nuclear receptor 
family, requires ligand binding before they are functional. 
Members of this family form the core of signal transduc-
tion pathways that regulate gene expression in response to 
steroid and thyroid hormones, fatty acids, bile acids, cho-
lesterol metabolites, and certain xenobiotic compounds. In 
fact, this can be viewed as an extension of lipid signaling, 
as most of the ligands for these receptors are hydrophobic 
in character. The ligands exert their affects through allos-
teric regulation, which has a dramatic effect on either the 
DNA binding or transcriptional activation properties of the 
transcription factor. Unlike the multicomponent pathways 
that control transcription in response to activation of cell 
surface receptors, nuclear receptors are multifunctional 
proteins that incorporate signal detection, amplification, 
and execution in one molecule. This branch of the family 
of signal transduction mechanisms does not utilize cell sur-
face receptors but are activated by ligands that are passively 
transported across the plasma membrane and associate with 
their receptors either in the cytoplasm or the nucleus. 

 Although sequence-specific transcription factors repre-
sent the most common target for signal transduction path-
ways, some of the coactivators, corepressors, or mediators 
with which these factors interact, may also be subject to 
regulation. Coactivators, co-repressors, and mediators are 
often large multicomponent protein complexes that are 

recruited to promoters or enhancers through interactions 
with sequence-specific transcription factors. These protein 
complexes may act either through chromatin modifications 
or direct interactions with the RNA polymerase holoen-
zyme. In addition to modulation of chromatin structure via 
recruitment of chromatin modifiers to sequence-specific 
transcription factors, signal-responsive protein kinases may 
directly phosphorylate histones and regulate chromatin 
structure via a more direct route. Additional posttransla-
tional modifications, such as the acetylation, methylation, 
and ubiquitinylation, that modify the N-terminal region of 
these nucleosome components and contribute to the ‘his-
tone code’, are an essential part of the epigenetic mecha-
nisms that also regulate gene expression, although the 
connection of these events, in terms of both modification 
and demodification, to transmembrane signaling has not 
yet been well defined. 

 The importance of transcriptional and posttranscrip-
tional control of gene expression in adapting to adverse 
environmental conditions is underscored by the various 
stress responses that cells can undergo. Heat shock and UV 
and the different responses that are elicited by DNA dam-
age, provide valuable insight relevant to transcriptional 
responses to many other aspects of cell regulation and sig-
nal transduction. In addition to metabolic control, these 
stress responses are evolutionarily ancient and are con-
served in many eukaryotic orders.  

  ORGANELLE SIGNALING 

 Following the synthesis of a mRNA precursor and its con-
version, by exon-intron splicing, to the mature mRNA, it 
is transported to the cytoplasm where it is translated into 
its cognate protein. Translation itself is a tightly regulated 
process, taking place on soluble ribosomes, or in the case 
of proteins targeted to the endoplasmic reticulum (ER), 
extruded across the ER membrane by ribosomes that have 
docked there. The correct folding in both compartments is 
aided by chaperones and, in either case, there are quality 
control mechanisms and pathways dedicated to the removal 
of misfolded or otherwise damaged proteins as these can 
be quite toxic if not efficiently removed. In the ER, this is 
known as the unfolded protein response (UPR) and is of 
marked importance in insuring that the ER protein secre-
tion pathway, which is responsible for providing new cell 
surface receptors, is functioning properly. These degrada-
tion processes usually involved recognition, tagging with 
polyubiquitin moieties, and degradation via proteasomes. 

 The mitochondrion is a seemingly self-contained entity, 
whose origin in eukaryotic cells is thought to have been 
via adventitious incorporation of a primitive prokaryote 
into an early precursor to form a symbiotic relationship. 
Its  principal role appeared for a long time to be the major 
organelle responsible for generating cellular energy  currency, 
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 particularly  nucleotide triphosphates. As such, it was not 
generally thought of as being important in signaling activi-
ties. However, its critical role in apoptosis (by releasing 
cytochrome c and other programmed cell death participants) 
dramatically altered this view. Mitochondria do not, as a 
rule, actively export macromolecules – rather they import 
the majority of their constituent proteins, whose synthesis 
is directed by nuclear chromosomes and occurs in the cyto-
plasm, via a mechanism, related to but distinct from, the ER 
transport system – but they do release a variety of ions and 
metabolites that act as small molecule messengers. These are 
controlled by a number of inner membrane-bound channels 
and transporters (the best known of which is the ADP/ATP 
transporter, putatively the most abundant eukaryotic protein). 
These can variously affect metabolism, largely as allosteric 
effectors, and gene expression. Thus, they are important con-
tributors to the overall signaling capacity of the cell. 

 Two biological phenomena of critical importance in 
all organisms are cell generation (cell division or mitosis/
meiosis) and cell death (apoptosis and necrosis). Both are 
extensively regulated and not surprisingly, much of this 
control is under the aegis of cell signaling events. The 
progression through the cell cycle and its various check-
points is a symphony of protein modifications coupled to 
programmed protein turnover. The key players are a com-
plement of kinases, known as cyclin-dependent kinases 
(Cdks), whose activation and deactivation are involved in 
every stage of the cycle. Interaction with cyclins, required 
for their activity, allows them to cycle in an on-off man-
ner, and the ubiquitin-dependent degradation of the cyclins 
controls the vectoral nature of the cycle. The cyclin–Cdk 
complexes can be further regulated by phosphorylation or 
complexation with other proteins, which also allows for 
pausing at checkpoints if the cell senses it should not con-
tinue with the division process. There are also feedforward 
mechanisms that allow early steps to regulate successive 
ones. Apoptosis is equally tightly regulated and its progres-
sion easily recognized by distinct phenotypic responses 
(membrane blebbing, cell shrinking, and chromosomal con-
densation) as the cell progresses to its end. It is predicated 
on a family of cysteine proteases, called caspases (because 
they cleave their substrates to the C-terminal side of aspar-
tic acid residues) that are activated in either an extrinsic or 
intrinsic pathway. The ten caspases generally exist as inac-
tive precursors (zymogens) and can be subclassified into 
executioner, initiator, and inflammatory types. These have 
different structural features and different roles in apopto-
sis. One apoptotic pathway is directly related to the TNF 
superfamily, transmembrane receptors that contain a death 
domain. When activated, these lead to the activation of 
caspase 8, which in turn, activates the executioner caspase 
3. Apoptosis is also triggered by cellular stress, and this 
leads to the involvement of the mitochondria (as noted pre-
viously). In a complex pathway involving many proteins, 
an apoptosome is formed which also leads to the eventual 

activation of the executioner caspases. Clearly, the connec-
tions between these two fundamental processes are of great 
importance and are closely related to a number of human 
diseases, notably cancer and neural degeneration.  

  FOCUS AND SCOPE OF THIS VOLUME 

 The chapters of this volume have been selected from a 
larger collection [ 19 ] and have been organized to empha-
size transcriptional regulation and the function of nuclei 
and other subcellular organelles in signaling activities. 
They have been contributed by recognized experts and they 
are authoritative to the extent that size limitations allow. It 
is our intention that this survey will be useful in teaching, 
particularly in introductory courses, and to more seasoned 
investigators new to this area. 

 It is not possible to develop any of the areas covered in 
this volume in great detail, and expansion of any topic is 
left to the reader. The references in each chapter provide 
an excellent starting point, and greater coverage can also 
be found in the parent work [ 19 ]. It is important to realize 
that this volume does not cover other aspects of cell sign-
aling such as receptor organization and function, transduc-
tion mechanisms, and organ-level manifestations, including 
disease correlates. These can be found in other volumes in 
this series [ 20–22 ].   
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