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Preface

All animal cells produce two major types of sulfated linear polysaccharide
glycosaminoglycans (GAGs): heparan sulfate and chondroitin sulfate. Due to
their structural diversity, GAGs have been claimed to be the most information-
dense biopolymers found in nature. GAGs bind to numerous protein ligands
and receptors involved in diverse biological processes, including cell division,
growth control, signal transduction, cell adhesion, hemostasis, and lipid
metabolism (Chapters 1 and 2). Emerging from its roots in classical chemistry
and biochemistry, the progress in the field of GAGs has greatly accelerated
during the past 20 years through genetic analysis. Transgenic and knockout
animal data (Chapters 2–13) provide compelling evidence that this structural
diversity is a component of a sugar/sulfation-GAG code. The sugar/sulfation-
GAG code imparts unique and specific biological functions during develop-
ment, health, and disease (Chapters 2–16), which makes GAG an essential
component of modern molecular biology and human physiology.

Heparin, the mostly sulfated heparan sulfate made by mast cells, has the
highest anticoagulation activity by inhibiting thrombin generation and throm-
bin activities among different GAGs and has been used as an anticoagulant
drug for over 70 years. Crude heparin isolated from animal tissues consists of
� 50% heparin and � 50% less sulfated GAGs including heparan sulfate,
chondroitin sulfate, and dermatan sulfate. Heparin manufacturers purchase
crude heparin from small vendors and produce heparin from crude heparin by
removing the low-sulfated GAGs using sophisticated techniques. In 2007 and
2008, contaminated heparin was associated with hundreds of anaphylactic
reactions and at least 149 anaphylactic reaction-associated deaths in the United
States. It turns out that the heparin contaminants are chemically sulfated/
modified low-sulfated GAGs.

The contaminated heparin associated anaphylactic reactions are a result of
up-regulated immune system by oversulfated GAGs through contact system
activation. The contact system was first discovered as an in vitro thrombin
generation system where artificial surfaces induce thrombin generation and
clotting. Injury-associated thrombin generation in animals instantly leads to
immune system up-regulation. However, the in vivo role of contact system
activation-generated thrombin and immune system up-regulation has been
overlooked during the past 50 years. Chapters 17–20 demonstrate that contact

xvii



system activation-generated thrombin and immune system up-regulation
induced by abnormal GAG/protein aggregates are the outcomes of different
autoimmune diseases, including Lupus, rheumatoid arthritis, psoriasis, hepa-
rin-induced thrombocytopenia/thrombosis (HIT), and different kinds of
human cancers.

The Editor is indebted to many others who made this book possible.
Special thanks are due to Dr. Michael Conn, the editor of Progress in Molecular
Biology and Translational Science book series, who projected this book volume;
and to Lisa Tickner, Delsy Retchagar, Malathi Samayan, and Sunita Sundarar-
ajan at Elsevier for keeping us on track and converting our efforts into a
product. Last but not least, we acknowledge the support and hard work of
our families and lab members in producing each chapter in the book. It now
remains for the reader to decide whether we have achieved our goals in
compiling the GAG book.

LIJUAN ZHANG

Missouri, USA
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Two major types of glycosaminoglycan (GAG) polysaccharides, heparan
sulfate and chondroitin sulfate, are polymerized and modified by enzymes
that are encoded by more than 40 genes in animal cells. Because of the
expression repertoire of the GAG assembly and modification enzymes, each
heparan sulfate and chondroitin sulfate chain has a sulfation pattern, chain
length, and fine structure that is potentially unique to each animal cell. GAGs
interact with hundreds of proteins. Such interactions protect growth factors,
chemokines, and cytokines against proteolysis. GAGs catalyze protease (such as
thrombin) inhibition by serpins. GAGs regulate multiple signaling pathways
including, but not limited to, fibroblast growth factor (FGF)/FGFR, hepato-
cyte growth factor (HGF)/c-Met, glial cell line-derived neurotrophic factor
(GDNF)/c-Ret/GFRa1, vascular endothelial growth factor (VEGF)/VEGFR,
platelet derived growth factor (PDGF)/PDGFR, BAFF/TACI, Indian hedge-
hog, Wnt, and BMP signaling pathways,where genetic studies have revealed an
absolute requirement for GAGs in these pathways. Most importantly, protein/
GAG aggregates induce thrombin generation and immune system upregulation
by activating the contact system. Abnormal protein/GAG aggregates are asso-
ciated with a variety of devastating human diseases including, but not limited
to, Alzheimer’s, diabetes, prion or transmissible spongiform encephalopathies,
Lupus, heparin-induced thrombocytopenia/thrombosis, and different kinds of
cancers. Therefore, GAGs are essential components of modern molecular
biology and human physiology. Understanding GAG structure and function at

Progress in Molecular Biology Copyright 2010, Elsevier Inc.
and Translational Science, Vol. 93 1 All rights reserved.
DOI: 10.1016/S1877-1173(10)93001-9 1877-1173/10 $35.00



molecular level with regard to development and health represents a unique
opportunity in combating different kinds of human diseases.

Abbreviations: CS, chondroitin sulfate; GAG, glycosaminoglycan; HS, heparan sulfate

I. Glycosaminoglycans (GAGs)

GAGs are linear polysaccharides that are made by all animal cells. Two
major types of GAGs are heparan sulfate (HS) and chondroitin sulfate (CS).
HS and CS comprise repeating hexosamine-uronic acid disaccharides that are
sulfated to varying degrees1,2 (Fig. 1). Heparin is the most highly sulfated
HS made by mast cells. DS is one type of CS containing IdoA residues and is
made by many types of animal cells.

Proteoglycan

Chondroitin sulfate

Heparan sulfate

O OO O
COOHCOOH

OO

CH2OH/SO3

OH/SO3

NHAc/HOH/SO3

OH/SO3
NHAc/SO3/H

OO

CH2OH/SO3

OH/SO3

OH/SO3

~40–200

~20–100

FIG. 1. Diagrammatic representation of GAG assembly on a proteoglycan core protein. Both
HS and CS are attached to specific serine residues of proteoglycan core protein by the linkage
tetrasaccharide GlcA (black)-Gal (yellow)-Gal (yellow)-Xyl (pink). Biosynthesis starts with the
transfer of xylose from UDP-xylose to a serine residue of a core protein catalyzed by two xylosyl-
transferases. The linkage region is then synthesized by the sequential addition of two galactose
residues (by galactosyltransferase I and II), and glucuronic acid (by glucuronosyltransferase I) from
the corresponding UDP-sugars. After completion of the linkage tetrasaccharides, the addition of
first HexNac residue occurs. Addition of GalNAc from UDP-GalNAc by N-acetylgalactosaminyl
transferase I to the nonreducing terminal GlcA commits the intermediate to CS sysnthesis, which
occurs subsequently through alternating addition of GlcA and GalNAc (green) by chondroitin
synthase. If GlcNAc is added to the linkage tetrasaccharide instead by N-acetylglucosaminyltrans-
ferase I, HS synthesis occurs. Alternating GlcA and GlcNAc (red) residues are then added by HS
copolymerases (EXT-1 andEXT-2) from their correspondingUDP-sugars. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this chapter.)
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HS and CS are abundantly produced (� 105–106 copies on the cell surface,
�mg/ml concentrations in the extracellular matrix) by animal cells.3 This
synthesis occurs in the Golgi in the form of HS, CS, or HS/CS hybrid proteo-
glycans. In proteoglycans, anywhere between one (e.g., decorin) to over one
hundred GAG chains (e.g., aggrecan) can be assembled on a proteoglycan core
protein (Fig. 1). The number of repeating disaccharides of HS and CS varies
depending on the source of cells or tissues used for GAG isolation. GAGs adopt
an extended helical coil structure with a length ranging from 40 to 160 nm.
Such abundance and size implies that GAGs are a dominant feature of the cell
surface and are an important feature of the extracellular matrix.

II. Proteoglycan

All mammalian cells produce proteoglycans and can secrete them into the
extracellular matrix, insert them into the plasma membrane, or store them in
secretory granules. Over 50 proteoglycan cDNAs have been cloned (Table I).
Some of the proteoglycan gene products were known as important functional
proteins long before they were known to be proteoglycans. It is typical for a cell
to express multiple types of HS and CS proteoglycans. For example, at least 11
different proteoglycans are expressed by human lung fibroblasts4–10 and at least
23 types are expressed in the nervous system.11 Most core proteins not only
serve as GAG carriers but also have their own functional protein domains.
In some instances, they may also contain GAG-binding domains. The core
proteins usually determine the number of GAG chains, the type (HS or CS),
and the ultimate destination (apical, luminal, intra- or extracellular) of the
finished proteoglycan. GAG chains carried by proteoglycans are sometimes
cleaved before they become biologically active. Extracellular heparanases
(heparan sulfate endoglucuronidases),12 sulfatases,13,14 and free GAG chains
have been extensively reported.15–18

The structural variation of proteoglycans in different cells or tissues is due
to a number of factors. First, over 50 core proteins have been identified, and
these can be substituted with CS or both HS and CS. Another source of
variability lies in the stoichiometry of GAG chain substitution. For example,
syndecan-1 has five GAG attachment sites, but not all of the sites are used
equally. Thus, a preparation of syndecan-1 represents a diverse population of
syndecan-1 molecules. Other proteoglycans, such as thrombomodulin, can be a
‘‘part time proteoglycan’’ that is, they may exist with or without a GAG chain or
with only a truncated GAG chain. These characteristics, typical of all proteo-
glycans, create diversity that may facilitate the formation of binding sites of
variable density and affinity for different ligands in a cell- and tissue-specific
manner, beyond its GAG-binding specificity.
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TABLE I
CLONED PROTEOGLYCANS

HS proteoglycans CS proteoglycans

Syndecan Syndecan-1 (TM) Lectican Aggrecan

Syndecan-2 (TM) Versican/PG-M

Syndecan-3 (TM) Neurocan

Syndecan-4 (TM) Brevican (soluble or GPI-linked)

Glypican Glypican-1 (GPI-Linked) IPM IPM150 (interphotoreceptor
matrix PG, TM)

Glypican-2 (GPI-Linked) IPM 200 (TM)92

Glypican-3 (GPI-Linked) SPACRCAN (TM)93

Glypican-4 (GPI-Linked) SLRP Decorin (small leucine-rich
proteoglycans)

Glypican-5 (GPI-Linked) Biglycan

Glypican-6 (GPI-Linked) PG-lb

Testican Testican-1 Others CD44 (CS splicing form, TM)

Testican-2 Thrombomodulin (TM)

Testican-3 Invariant chain

Others Betaglycan (TM) APP (amyloid precursor protein)

Tyrosine kinase receptor (TM) APLP2

PRPg (proline rich PG) Lepecan94

Perlecan Bicunin

Agrin Chromogranin A

Collagen XVIII a2(IX) collagen

CD44 (HS splicing form, TM) Tanasin-C

Serglycin Laminin a495

CSF (colony stimulating factor)

Phosphocan (3 splicing forms,
soluble or TM)

Claustrin

NG2 (TM)

Neuroglycan-C (TM)

MCSP (melanoma-associated
CSPG)96

PRG4 (megakaryocyte
stimulating factor)97

Endoglycan98

Endocan99

Bamacan100

Accession numbers of nonreferenced genes can be found in Refs. 11,22.
TM, transmembrane protein.
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III. GAG Biosynthesis

HS and CS are elaborated after the synthesis of the GAG-protein linkage
region, GlcA-Gal-Gal-Xyl, which is attached to specific Ser residues on the
proteoglycan core protein (Fig. 1). The synthesis of this region is initiated by
the addition of a Xyl to Ser followed by the addition of two Gal residues and is
completed by the addition of GlcA. The pathways of HS and CS synthesis
diverge after formation of the linkage region. The addition of GlcNAc to the
linkage region commits the intermediate proteoglycan molecule to the assem-
bly of HS. Similarly, the addition of a GalNAc commits it to CS synthesis.

CS assembly on the linkage region represents a default pathway.19–21 HS
assembly requires amino acid determinants proximal to the linkage tetrasacchar-
ide. The enzyme necessary for initiating HS synthesis prefers sites containing
multiple acidic residues, one or more hydrophobic residues, and repetitive Ser-
Gly units.22 Later on, it was discovered that certain structural determinants exist
in glypican-1 that prevent CS formation. These may act by blocking access of the
initiating b-GalNAc transferase. The proportion of HS to CS carried on a HS
proteoglycan is cell type- (or tissue-) dependent. For example, the only
‘‘absolute’’ HS proteoglycan, glypican-1, carries 90% HS and 10% CS when
expressed in COS cells and 80% HS and 20% CS when expressed in CHO
cells.23 Very low percentages of HS have been detected on certain CS proteo-
glycans, for example biglycan, and aggrecan.24,25 The enzymes responsible for
making essential GAG building blocks and linkage region are summarized in
Table II.

The fine structure of HS is determined by the step-wise action of multiple
enzymes and enzyme isoforms (Table III). The two subunits of the HS copo-
lymerase are each encoded by genes that are known to be tumor suppressor
genes (EXT-1 and EXT-2).26,27 EXT genes in humans are associated with
multiple hereditary exostoses, a syndrome characterized by neonatal growth
plate tumors.

As shown in Table III, several HS modification enzymes are present in
multiple isoforms. The expression of each isoform, including those of sulfotrans-
ferases NST, 6-OSTand 3-OST, is tissue specific.1 This is thought to be important
for generating HS with unique saccharide sequences. In this regard, it is instruc-
tive to point out that 3-OST-1 modified HS binds antithrombin and has antico-
agulant activity,1,28 whereas 3-OST-3 modified HS binds to herpes envelope
protein gD and serves as an entry receptor for the herpes simplex virus-1.29,30

In contrast, 3-OST-5 modified HS binds to both antithrombin and herpes
envelope protein gD and has both anticoagulant and entry receptor properties.31

In summary, at least 20 genes are involved in HS polymerization and
modification. Combinatorial expression of these genes means that the structure
of HS can be altered to modulate a wide variety of tissue-specific functions.
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TABLE II
CLONED ENZYMES FOR MAKING GAG BUILDING BLOCKS AND FOR GAG INITIATION

DTDST sulfate transporter 1 UDP-GlcA transporter UDP-glucose dehydrogenase Galactosyltransferase I
PAPS synthetase-1 UDP-GlcNAc transporter UDP-GlcA decarboxylase Galactosyltransferase II

PAPS synthetase-2 UDP-GalNAc transporter Xylosyltransferase I Glucuronosyltransferase I (knockout mice; chapter
‘‘Mice Deficient in Glucuronyltransferase-I’’)

PAPS transporter UDP-Gal transporter Xylosyltransferase II Glucuronosyltransferase II

Accession numbers of corresponding human genes can be found in Ref. 1. Three glucuronosyltransferases for linkage tetrasaccharide biosynthesis inDrosophila have been
identified.101



CS has been classified as CS-A, CS-B (dermatan sulfate), CS-C, CS-D, and
CS-E (Table IV) according to the major constituent of the repeating disacchar-
ides. However, all CSs are hybrid structures that contain more than two types
of disaccharides. CS-B, or dermatan sulfate, is distinguished because it con-
tains IdoA residues.

The fine structure of CS also depends on the temporal and tissue-specific
expression of a variety of modifying enzymes and enzyme isoforms (Table V).

Some sulfation appears to be specific to CS or HS. GlcA 3-O-sulfation has
been detected only in CS.32,33 Conversely, N-sulfation occurs only in HS but
not in CS. Because the HS epimerase requires N-sulfated residues for its
activity and CS is devoid of N-sulfation, epimerization of GlcA to IdoA residues
of CS are catalyzed by two distinct CS epimerases.34

TABLE III
CLONED ENZYMES FOR HS FORMATION

aGlcNAcTIA (EXTL1) NDST-1 Epimerase 6-OST-3 3-OST-3B
aGlcNAcTIB (EXTL2) NDST-2 2-OST 3-OST-1 3-OST-4

Copolymerase EXT1 NDST-3 6-OST-1 3-OST-2 3-OST-5

Copolymerase EXT2 NDST-4 6-OST-2 3-OST-3A 3-OST-6

Accession numbers of corresponding human genes can be found in Ref. 1.
EXT1 conditional knock out: chapter ‘‘Roles of Heparan Sulfate in Mammalian Brain Development:

Current Views Based on the Findings from Ext1 Conditional Knockout Studies.’’
NDST-1 knockout and conditional knockout mice: chapters ‘‘Mice Deficient in Heparan Sulfate N-Deacety-

lase/N-Sulfotransferase 1, Endothelial Heparan Sulfate in Angiogenesis, and Hepatic Heparan Sulfate
Proteoglycans and Endocytic Clearance of Triglyceride-Rich Lipoproteins.’’

Epimerase knockout mice: chapter ‘‘Mice Deficient in Glucuronyl C5-Epimerase—An Enzyme Converting
Glucuronic Acid to Iduronic Acid in Heparan Sulfate/Heparin Biosynthesis.’’

6-OST-1 knockout mice: chapter ‘‘Mice Deficient in Heparan Sulfate 6-O-Sulfotransferase-1.’’
3-OST-1 knockout mice: chapter ‘‘Anticoagulant Heparan Sulfate: To Clot or Not.’’

TABLE IV
TYPES OF CS DISACCHARIDES

Major disaccharides Other disaccharides found

CS-A: GlcA-GalNAc4S GlcA-GalNAc GlcA2S-GalNAc

CS-B: IdoA-GalNAc4S IdoA2S-GalNAc4S GlcA3S-GalNAc

CS-C: GlcA-GalNAc6S IdoAGalNAc4S6S GlcA3S-GalNAc4S

CS-D: GlcA2S-GalNAc6S IdoA2SGalNAc4S6S GlcA3S-GalNAc4S6S

CS-E: GlcA-GalNAc4S6S IdoA2S-GalNAc GlcA3S-GalNAc6S
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In contrast to CS, which tend to have long tracts of fully modified dis-
accharides, the modification reactions in HS biosynthesis occur in clusters
along the chain, with regions devoid of sulfation separating the modified tracts.
This arrangement gives rise to segments referred to as N-acetylated (NA),
N-sulfated (NS), and mixed domains (NA/NS). In general, the sulfation reac-
tions fail to go to completion, resulting in tremendous chemical heterogeneity
within the modified regions in CS and HS.

In summary, HS and CS are characterized by a linear chain of 20–400
disaccharide units. The disaccharide repeat unit in HS can be modified by
N- and O-sulfation (6-O- and 3-O-sulfation of the glucosamine and 2-O-sulfa-
tion of the uronic acid) and by epimerization of the glucuronic acid to iduronic
acid. The disaccharide repeat unit in CS can be modified by 4-O- and 6-O-
sulfation of the galactosamine and 2-O- and 3-O-sulfation of the uronic acid and
by epimerization of glucuronic acid to iduronic acid. Together, the five different
modifications for disaccharides in HS and CS give rise to 25¼ 32 combinations.
With 23 disaccharides found in CS and 24 found in HS,1 a HS or CS hexasac-
charide could have several thousand possible sequences, thereby making HS
and CS not only the most acidic but also the most information-dense biopoly-
mers found in nature. Understanding how and in what order the cells assemble
specificHS andCS sequences is one of the important areas in research onGAG.

IV. GAG-Binding Proteins

GAGs participate in a variety of physiological processes such as binding,
activation, or immobilization of various protein ligands, such as growth factors,
cytokines, chemokines, extracellular matrix components, proteases, protease
inhibitors, and lipoprotein lipase.1,3,35–42 These interactions depend, to a large

TABLE V
ENZYMES FOR CS FORMATION

GalNAc I GlcA 3-OST 4OST3102 6OST3
GalNAc II Epimerase I and II IdoA-GalNAc 4-OST 6OST4

Chondroitin synthase 4-OST1 6OST1 GalNAc4S 6-OST

GlcA/IdoA 2-OST 4-OST2 6OST2 IdoA-GalNAc-IdoA 6OST

Accession numbers of non-referenced genes can be found in Ref. 2.
4-OST1 knockout mice: chapter ‘‘Roles of Heparan Sulfate in Mammalian Brain Development: Current

Views Based on the Findings from Ext1 Conditional Knockout Studies.’’
IdoA-GalNAc 4-OST deficiency in human: chapters ‘‘Congenital Disorders of Glycosylation with Emphasis

on Loss of Dermatan-4-Sulfotransferase.’’
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extent, on the composition and fine structure of the GAG chains, which in turn
depend on the substrate specificity of the various biosynthetic enzymes and
regulatory factors.

Heparin interacts with 23% of the plasma proteins.43 More than 200
GAG-binding proteins have been described in literature (Fig. 2). To a large
extent, these studies have focused on protein interactions with heparin. This
bias may reflect the commercial availability of heparin, which is frequently used
for fractionation studies and heparin-Sepharose affinity chromatography. The
binding of protein ligands to heparin is thought to mimic the physiological
interaction of proteins with the HS that is present on cell surfaces and in the
extracellular matrix.

Most animal tissues and organs contain more CS than HS.44 CS acts as a
biological activator in a number of instances, in apparent independence of its
co-existence with HS. Examples include modulation of axon growth,45,46

wound healing,47 NFkB transcriptional activation of endothelial cells,48

circumscribed release of short-lived kinin hormones from precursor depots to
regulate local blood pressure and inflammatory responses,49 heparin cofactor
II inhibition of localized coagulation,50 and low density lipoprotein (LDL)
binding that affects intramural retention of atherogenic lipoproteins.51 A variety
of bacterial-, viral-, and parasite-proteins also bind to GAGs (chapter ‘‘Diverse
Functions of Glycosaminoglycans in Infectious Diseases’’).

GAGs regulate many growth factor signaling pathways52 including, but not
limited to, fibroblast growth factor (FGF)/FGFR,53 hepatocyte growth factor
(HGF)/c-Met,54–57 glial cell line-derived neurotrophic factor (GDNF)/c-Ret/
GFRa1,58,59 vascular endothelial growth factor (VEGF)/VEGFR,60,61 platelet
derived growth factor (PDGF)/PDGFR,62 BAFF/TACI,63 Indian hedgehog
(Ihh), Wnt, and BMP signaling pathways, where genetic studies revealed an
absolute requirement for GAGs.64,65

Heparin has been used for preventing and treating thromboembolic
disorders for over 70 years as it inhibits thrombin generation and thrombin
activities. Thromboembolic disorders are the leading cause of disabilities and
deaths in a variety of unrelated human diseases, such as coronary heart
disease,66 cancer,67 diabetes,68 kidney failure,69 autoimmune diseases,70 and
heparin-induced thrombocytopenia and thrombosis (HITT).71 Thrombin is the
only known enzyme that causes thrombus formation. Thrombin also plays
multiple roles in development, tissue repair, inflammation, and hemostasis.72

Conditional loss of prothrombin leads to the rapid death of adult mice,73

suggesting that thrombin is a key survival factor, which is continuously
generated in blood circulation.

In 2007 and 2008, contaminated heparin was associated with hundreds of
anaphylactic reactions and at least 149 anaphylactic reaction-associated deaths
in the United States. Heparin is contaminated with chemically sulfated or
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FIG. 2. GAG-binding proteins. The GAG-binding proteins reported in literature were originally cataloged and compiled by Dr. Merton Bernfield and
were updated by the author.


