A Complete Reference for

MAYA PYTHON

for Games and Film

1dV uoyifd eAeyy ayl pue uoyihAd eleyy

Adam Mechtley - Ryan Trowbridge

Maya Python for Games and Film

Maya Python for Games and Film
A Complete Reference for Maya Python

and the Maya Python AP!

Adam Mechtley

Ryan Trowbridge

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢« LONDON
NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO
SAN FRANCISCO ¢ SINGAPORE * SYDNEY ¢ TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140814

International Standard Book Number-13: 978-0-12-378579-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

ACKNOWIEAZMENLSeeitieiiieiiie ettt ettt ettt ettt e saeesabeesbaesabesnbeessbeenseenees Xiii

Introduction: Welcome to Maya Pythoncoocueeiiiiiiiniiiiiiiiiiicceee e XV
PART 1 BASICS OF PYTHON AND MAYA

CHAPTER 1 Maya Command Engine and User Interface.. 3

Interacting With Maya.........cocueiiiiiiiiiiiiiiec e 4

Maya Embedded Languagecccceoveevieniiniiiniiniciiececneeeeeeee 5

PYLhON oo 5

C++ Application Programming Interface..........cccoeoevienininiiencnnennne. 6

Python APL.....cooiiii e 6

Executing Python in Mayaccceoeiiiiiiiiieieeieeeee e 6

Command LiNecccoeiiiiiniiiiiiiiiiiieeeeeeeeeeee e 6

SCHIPt EAIOr ...ouiiiiiiiiiieeee e 8

Maya Shelf..... .o 10

Maya Commands and the Dependency Graphcccccoceevenieienicnienncnne. 11

Introduction to Python Commandscccceevvieriienieniienienieeiie e 15

Flag Arguments and Python Core Object Types......ccccooevverervenvenuennenne. 19

INUINDETS ... 20

STIANES ©eeveteeiteieet ettt ettt sb ettt et 20

LLISES 1ot 20

TUPLES ..ttt s st ettt s 21

BOOIEANS.....ccuiiiiiiiiiiiii 21

FIag = ObJECt TYPE..uveeetieiiiiieiieeieeeite ettt ettt s 21

Command Modes and Command Arguments..........cccceeeeveeveeeneeenieeneennnenn 22

Create MOde.....co.viiiieeiieiiieeteeeeee ettt ettt 22

Edit MOGEooviiiiiiiiiiiiiiciccccc e 23

QUETY MOME ... 23

Python Command Reference...........coceevueiviieniiiiienieniiiiceeeeeseeee 24

SYNOPSIS -ttt 25

Return ValUuecoccooiiiiiiiiiiiieee e 25

REIALEA ..o 25

FLAGS e 25

Python EXamplesccceevuiiiiiiiiiiiiiieeeeeeeeeec e 26

PYthon Versionc.cecieieiiiieiieieeseeeee e 26

Python Online DocUmMEentationccocueerueerieriieenienieeeenee et 26

Concluding Remarks........cccooeeiuiiiiiiiiiie e 27

vi Contents

CHAPTER 2 Python Data Basics 29
Variables and Data.........ccceoevieiiiiiniinieeeee e 30
Variables in MELccccccooiiiiiiniiiiiiiccceeeeee e 33
KEYWOIAS ...t 33
Python’s Data Model.........coceeviieiiienieiieeriecieeeee e 34
Using Variables with Maya Commandsccccecevveenereinenieneneneeneenn 37
Capturing ReSUILS......ccovieiiiiieiiieieecie et e 39
GETATET ANA SETAT T watiiiiiiieeiee ettt e e e e e e e e e e e e e eaaaaaeees 40
connectAttr and disconnectALEr . i 41
Working with NUMDETScccviiriiieiiiiieiieeieeree et 43
INUMDET TYPES weevviinrieiiieiieiie sttt ettt et ettt e nbeesbeeaee e 43
BasiC OPETratorsS......cc.eeveeerieeriierieeieenieeieesieesteeieesieesbeesseesteesseenseenns 44
Working with BOOIEANSc.eovuiiiiiiiiiiiieiieiie et 45
Boolean and Bitwise OPerators...........ccceevveruereecuenieecieneeeeneeeenennen 45
Working with Sequence TYPESc.ceveeriirriienieiiieie ettt 46
OPLIALOTS ...ttt ettt ettt ettt 46
SEING TYPES ittt ettt s 50
Formatting Stringscccoeuieiiriiiienieiieieeeeeeeeee e 52
MOTE ON LISES...eeiiiiiieiieeiieeiee sttt ettt st 53
Other Container TYPES.....c..coveuiiiiiiiiiiiieeiceereeee e 56
LS ettt ettt ettt sttt et et b e et ebee e 57
DICHONATIES ..ttt st 58
Concluding Remarks.........ccooieiiiiiiiiiiieeeeeeeee e 62
CHAPTER 3 Writing Python Programs in Maya 63
Creating Python FUNCHONSc.eoviiiiiiiiiiiieciieieecec e 64
Anatomy of a Function Definitioncccceovveeveenieiiieeneenieeieeees 64
Function ATZUMENTSc.c.couiriiriirienienienienieneeeetesie et ene e saees 66
Return ValUesooiueiiiiiiiiiieiieeeeteeee e 74
Maya CommAandSc..coceeviirieriirieienieene ettt ettt 75
Listing and Selecting NOdes..........ccccocueviiiiiniiiiiiiiicccecceneee 76
The file ComMMAnd.........cccecueiriiriieiniieeieeiieeie et 78
Adding AIDULESocveiiiiiiiiiiiiiee e e 79
Iteration and Branchingcocooiiiiiiiiiiiiniiiiececeeec e 80
The for StatemMENtccouiiuieiiieiee et 80
Branchingccccoiiiiiiiiii e 84
List COMPIEh@NSIONSc.eeuiruiruirtirieieieieietetetese ettt 93
The while Statement..........cocueiiieriieiiiinieieceee e 94
EITOT TTapPingceveeviriiiiieieieieeteeseeteeeeet et e 96

try, except, raise, and finallyccoccooevinieniniiiinic, 96

Contents vii

Designing Practical TOOIS.......ccccoovieriniiiiniiiinieicceeceeeeeeeee 99
Concluding Remarks.........cooueviiiiiiiiiiiiieeieeeeeeeeee e 109
CHAPTER 4 Modules m
What Is @ Module?ccooiiiiiiiieee e 113
Modules and SCOPEeevueeriiiriiiiiiiiteeetee e 114
Module Encapsulation and AHributescecveveeveeneenenernienennens 115
The __main_ ModUlecoooviiiiiiiieeeeeeeee e 116
Creating @ ModUuleccooieriiiiiiiiiee e 118
The spike Module.........cooeiiviriiniiiiiiicice e 118
Default Attributes and help().....ccoceveeeierieiiininiiniiieeceeee 120
PaACKAZES ..ottt et 121
Importing ModUlesc..coceeviiiiniiieniiieeeeeee e 125
IMPOTrt Versus 1e10ad().....cccueeueeriiiiieiieiieeieeee e 125
The as KeYWOTd.ccviiiiiiiiieiieiie ettt 126
The from KeyWOTdcoviiiiiiiiiiieeiieiieeeeee e 126
Python Path.......ccocooiiiiiiiiiiecet e 127
SYSPAN ..ttt ettt s 128
Temporarily Adding a Path ... 129
USETSEIUP SCIIPLS..vteuetieiieriieeieeitte et eiee sttt ettt ettt et s e e 131
sitecustomize MOdUIEccceeviiiriiiiiiiiiiieeee e 133
Setting Up a PYTHONPATH Environment Variable 135
Using a Python IDE ..o 140
Downloading an IDE........c.ccccoociiiiiiiiiniiiiicceeecneeeees 140
Basic IDE Configurationccccocuevuenieienieieniieieneeieseeeesieeenens 141
Concluding Remarks..........ccocooiiiiiiiiiiiiiieece e 145
CHAPTER 5 Object-Oriented Programming in Maya 147
Object-Oriented versus Procedural Programming............cceceeviveenieenenne. 148
Basics of Class Implementation in Pythonc.coccevcieniinicnennn, 150
INStANtIAtIONottt 150
ATIDULES ...ttt ettt s 151
Data AUTTDULES ..cc.veeeeieiieciieeieete et 153
MELhOAS. ...ttt s 155
Class AUTTDULESeeuveeeiiieiieriteeieeste ettt e 160
HUuman Classcooueeviiiiiiiieeeee et 163
TNRETTEANCE ...ttt s 164
Procedural versus Object-Oriented Programming in Maya........c..cc....... 168
Installing PyMEL.......ccccciiiiiiiice e 168
Introduction to PYMEL........cccooiiiiiiiiiiieeeee e 168

PYNOGES ... 169

viii Contents

PYMEL FEaturesccvevuieieiirieiienieeieniteiesiteteete ettt 170
Advantages and Disadvantagesceccveeveerieniiienieniieenieenieeeeenens 171
A PYMEL EXAMPIE ..c.eooiiiiiiiiiiieniiiicsiecsitecceesceee et 172
Concluding Remarks..........oocvieiiinieniiiiiienienie e 175

PART2 DESIGNING MAYA TOOLS WITH PYTHON

CHAPTER 6 Principles of Maya Tool Design 179
Tips When Designing for USErS........ccvevierviienienieniienieeieeiee e 180
Communication and ObSErvationc..ceceeeeevererieneeneeneneenennens 181
Ready, Set, Plan!cocooviiiiiiieece e 181
Simplify and Educate..........cceecvieiiiniiiiiieniieiesie e 183
TOOIS TN IMAYA...ccutieiiiieiieiiecteet ettt ettt sttt 183
SEIECTION ...ttt sttt et n 184
Marking MENUS......ccuevuieriiiiiiiiesieeeeie ettt 186
Options WIndOWScoeiieriiiiiiieniiiieieceeeeeee e 190
Concluding Remarks.........coocueiiiiiniiiiiiiiiienieeeeee e 192
CHAPTER 7 Basic Tools with Maya Commands 193
Maya Commands and the Maya GUIccccccovvinininnincninicece, 194
Basic GUI Commandscooverieriiinieniieiienieeieesieeeeeeiee e 196
WINAOWS ..ottt 196
Building a Base Window Class.........coccovererieiieneeiienieieneeienceieneeens 198
Menus and Menu [emsc.cooeeviiiiieniinienieieeeeceee e 199
Executing Commands with GUI Objects........c..coceevuereenienenienennne 201
Layouts and COontrols..........cccceeeereririenienenieieneeiesceeene e 206
Complete AR_OptionsWindow Classccceecvereiveniencieenieeneeeneene 215
Extending GUI Classes........couerieririenenienieniieienieeiieeieete et 218
Radio BUtton GIOUPS......cccuevcieeriieiieeiieiie ettt 219
Frame Layouts and Float Field Groupsc..ccccceceevueneencncniicnicnnens 220
COlOT PICKEIS...c.viiiiiiiiiiiieietrte et 222
Creating More Advanced TOOISc.cooeerieriiienieniienieeieeie e 224
Pose Manager WindoW.......c.coeuieiieeiieniieinieenie e 224
Separating Form and Functioncccccevvveevieniiniienienieiiceseeeen 226
Serializing Data with the cPickle Module...........ccccceevieriiiniinnnnnnnen. 226
Working with File Dialogs........cccccoieviniininiiiiieiincieccecee 229
Concluding Remarks.........ccocuiiiiiniiiiiiiieieneeeeeee e 232
CHAPTER 8 Advanced Graphical User Interfaces with Qt 233
Qt and MaAYa c..ooiiieiiiiieeeee e e 234

Docking WINAOWSccuoviiiiiiiiiiiiiieiieieeieeee e 236

PART 3
CHAPTER 9

CHAPTER 10

Installing Qt TOOLSeeuveiieiiiiieierieetee ettt 237
The Qt SDK . ..ottt 237
QU DESIZNET ...ttt 239
WAAZELS ettt et st et eee 240
Signals and SIOLS......eeeuieriiiriieiieiie ettt 241
Qt Designer Hands OnNcccceecviiviieiiiniienieecenie e 241
Loading a Qt GUI in Maya......cceevuieiiiiriieiieniieeiecieecee et 246
The ToadUT command..........ccccoceeririeriinienienieieeeeeneetene e 248
Accessing Values on CONtrolS.........eecueevueerieenienieenieeieeniie e 250
Mapping Widgets with Signals and SIOtS........cccceevveriieenienienieennn. 251
PY QL e ettt ettt ene et e eneens 254
Installing Py QUcoouiiiiiiieeieeeeeeee e 254
Using PyQt in Maya 20114 ...oocooiiiiiiiiieeeeeeceeeee 255
Using PyQt in Earlier Versions of Maya........cccccoeveevieniieneeneennnen. 257
Concluding Remarks...........cocooiiiiiiiiiiiece e 257

MAYA PYTHON APl FUNDAMENTALS

Understanding C(++ and the APl Documentation 261
Advanced Topics in Object-Oriented Programming..........c.ccccocveeveennnnns 264
INRETILANCE ... e 264
Virtual Functions and PolymorphiSm..........ccccecevevveniencncnnicnennns 265
Structure of the Maya APIcccoooiiiiiiiiieee e 265
Introducing Maya’s Core Object Class: MODbject........ccccevereennennnee 266
How Python Communicates with the Maya APIcccoccooiniininnnen. 268
How to Read the API Documentationccceceeivuieenienieieienneeennne. 270
Key Differences between the Python and C++ APIs.......ccccoeeininenn 281
MString and MSHHNZATITAYooveerviriinieniieiiniieieeeeeeee e 281
IMISEALUS ..ottt et 281
VOId™ POINLETS ...t 281
Proxy Classes and Object OWNershipcceeceevcveenieeciieneenienieenn 281
Commands With ATZUMENEScovveevierienieeieenie et 282
UNAO..iiiiiiiii e 282
IMISCIIPLULIL ettt 282
Concluding Remarks.........coocueriiiiiiiiiiiieieceeeeceee e 283
Programming a Command 285
Loading Scripted PIUZ-INScccoiiiiiiiiiiiiicieniceeccece e 287
Anatomy of a Scripted Command............c..coceiiiiiiiniiiiniieieceeee 289
OpenMayaMPx Modulecccooiiiiiniiiiniiicicceeeee e 290

Command Class Definitioncccceeeieiieiieiieiiiiieeeeeeeeeeee e 290

Contents ix

x Contents

AOTE() ettt ettt s 291
Command Creatorccuirueeriirieienieeienieetesit ettt einens 291
Initialization and Uninitializationc..cccceeeecvininniencnncneniencnnens 292
Adding CUStOM SYNTAX ceuvveviviriieriieniieiieniie et enieesteesieesaeeneesieesbeeneeneee 293
Mapping Rotation Ordersccecveevueerieeniieniesieeniesie e see e 296
Class DEfINItionc..coceecvieeeniirierienietenieese ettt 297
SYNLAX CTEALOT ...vvieutieiieeiierieeeie et ete et ettt e site st e e sieesereebeesaeesaneen 298
Initialization Of SYNaXccccirriiiiiiiiieiie e 301
AOTE() ettt 302
AOTEQUETY()-veeereenteeite ettt sttt et 305
Maya’s Undo/Redo MechaniSmc.ceeevieiiininiiinieninieienceeneeens 308
Supporting Multiple Command Modes and Undo/Redo............cccceuee... 313
Undo and RedO......ccouviieiiieiieeieeee et 313
Command MOAEScouieriieriiiiieiie ettt 314
SYNLAX CIEALOToviiieniiiieeieiieeeeete ettt 317
_Anit__ () Method ..coeeeieiieeee s 318

14 1) L TSP SURUSPRII 320
LT 0] L TSR 323
UNAOIE() et 325
Concluding Remarks...........oocoooiiiiiiiiieeee 326
CHAPTER 11 Data Flow in Maya 327
Dependency Graphc..ceceeieieriiieniiieeneeseeeeee et 328
Dependency NOAESoevvieeiieriieiieeiierie ettt 330
CONNECHIONS ...ttt ettt ettt ettt ettt saesie e eieens 333
Debugging the Dependency Graphccccevveevciienienciienieenieeieenne, 336
The dgTimer Command...........ooovieeieiieiiieeiiiieeeeeeeee e 338
Directed ACYCC GIraphccoevuieiiiiiiienieeiiesiieeieeiee st 339
DAG Paths and InStancingcceeeveeveeenienienieenieeieeieesee e 344
The Underworld........c..cocuivieiiniiniiiiiiiiiecsecrceeeeeeeee e 347
Concluding Remarks..........oocveeiiiiriiriiiiiieriecieceeeecee e 350
CHAPTER 12 Programming a Dependency Node 351
Anatomy of a Scripted NoOde..........cccoiriiiiiiniiniiiiccececeee 352
The ar_averageDoubles NOAEcocceeviiiniiniiiniiiiniiicieeiceeee 352
Node Class Definitionccceeeeevieeriereniieeeiieeeeeeseeeeseeeeeeeeeeneeas 354
INOAE CIEALOTeeveeeuieeiieeeieeiteeieeete et erteeesaeesaeeesbeessaessseenbeesseeenseennes 356
NOde INTHANZETeeeeiiieeiie e 356
COMPULE() +eenveeereenreeeiee ettt ettt et e st eiteesbee e bt esbeesateesbeesatesbeesbeesaeeennee 357

Initialization and UninitialiZationcccveveveeeieeeeeieiiiiieeiciiiiveenes 359

Attributes and Plugs
Attribute Properties
Readable, Writable, and Connectable
Storable Attributes and Default Values
Cached Attributes

Contents xi

Acknowledgments

We would like to thank the many people who made this book possible. Foremost, we want to
thank our wives, Laurel Klein and Brenda Trowbridge, without whose unflagging support we
would have been hopeless in this endeavor. We would also like to thank the various contribu-
tors to this project for their individual efforts, including Seth Gibson of Riot Games for
Chapters 3 and 5, Kristine Middlemiss of Autodesk for Chapter 8, and Dean Edmonds of Auto-
desk for his technical editing, a man whose power to explain is surpassed only by his knowl-
edge of the topics covered herein.

We would also like to thank the team at Focal Press who has helped out on this project, includ-
ing Sara Scott, Laura Lewin, and Anais Wheeler. Your support and patience has been a bles-
sing. Thanks also to Steve Swink for putting us in touch with the wonderful people at Focal
Press.

We want to thank all of the people in the Maya Python and API community who have been
essential not only for our own growth, but also for the wonderful state of knowledge available
to us all. Though we will undoubtedly leave out many important people, we want to especially
thank Chad Dombrova, Chad Vernon, Paul Molodowitch, Ofer Koren, and everyone who
helps maintain the tech-artists.org and PyMEL communities.

Last, but certainly not least, we want to thank our readers for supporting this project. Please get
in touch with us if you have any feedback on the book!

Xiii

Introduction: Welcome to Maya
Python

Imagine you are creating animations for a character in Maya. As you are creating animations
for this character, you find that you are repeating the following steps:

Reference a character.

Import a motion capture animation.
Set the frame range.

Reference the background scene.
Configure the camera.

If you are working on a large production, with 10 to 50 animators, these simple steps can pose
a few problems. If we break down this process, there are many good places for tools:

m First, animators need to look up the correct path to the character. This path may change at
any given time, so having animators handpick this file could result in picking the wrong
file. A simple tool with a list of characters can make this task quick and reliable.

m Next, you would want a tool to organize and manage importing the motion capture data
correctly onto the character’s controls. This tool could also set the frame range for the
animation and move the camera to the correct location in the process.

m The last step, referencing the correct background scene, could easily take a minute each
time an animator manually searches for the correct file. You could create another simple
tool that shows a list of all the backgrounds from which to pick.

Hopefully you can see that such tools would save time, make file selection more accurate, and
let the animators focus on their creative task. The best way to create such tools is by using one
of Maya’s built-in scripting languages—particularly Python.

Python is a scripting language that was originally developed outside of Maya, and so it offers a
powerful set of features and a huge user base. In Maya 8.5, Autodesk added official support for
Python scripting. The inclusion of this language built upon Maya’s existing interfaces for pro-
gramming (the MEL scripting language and the C++ API). Since Maya Embedded Language
(MEL) has been around for years, you might wonder why Python even matters. A broader per-
spective quickly reveals many important advantages:

m Community: MEL has a very small user base compared to Python because only Maya
developers use MEL. Python is used by all kinds of software developers and with many
types of applications.

m Power: Python is a much more advanced scripting language and it allows you to do things
that are not possible in MEL. Python is fully object-oriented, and it has the ability to com-
municate effortlessly with both the Maya Command Engine and the C++ API, allowing

XV

xvi INTRODUCTION Welcome to Maya Python

you to write both scripts and plug-ins with a single language. Even if
you write plug-ins in C++, Python lets you interactively test API code
in the Maya Script Editor!

m Cross-platform: Python can execute on any operating system, which
removes the need to recompile tools for different operating systems,
processor architectures, or software versions. In fact, you do not need
to compile at all!

m Industry Standard: Because of Python’s advantages, it is rapidly being
integrated into many other content-creation applications important for
entertainment professionals. Libraries can be easily shared between
Maya and other applications in your pipeline, such as MotionBuilder.

PYTHON VERSUS MEL

There are many reasons to use Python as opposed to MEL, but that doesn’t
mean you have to give up on MEL completely! If your studio already has
several MEL tools there is no reason to convert them if they are already
doing the job. You can seamlessly integrate Python scripts into your devel-
opment pipeline with your current tools. Python can call MEL scripts and
MEL can call Python scripts. Python is a deep language like C++ but its
syntax is simple and very easy to pick up.

Nonetheless, Python handles complex data more gracefully than MEL. MEL
programmers sometimes try to imitate complex data structures, but doing so
often requires messy code and can be frustrating to extend. Since Python is
object-oriented and it allows nested variables, it can handle these situations
more easily. Moreover, Python can access files and system data much faster
than MEL, making your tools more responsive for artists in production. Pro-
grammers also have many more options in Python than in MEL. Since
Python has been around much longer, you might find another user already
created a module to help Python perform the task you need to do.

If you don’t understand some of the language used yet, don’t worry. This
book is here to help you understand all of these concepts and emerge
production-ready!

COMPANION WEB SITE

This book is intended to be read alongside our companion web site, which
you can access at http.://maya-python.com.

The companion web site contains downloads for the example projects to
which we refer throughout the book, as well as a host of useful links and
supplemental materials.

Notes on Code Examples and Syntax xvii

NOTES ON CODE EXAMPLES AND SYNTAX

You will encounter many code examples throughout this book. Unfortu-
nately, because this book will not only be printed, but is also available in
a variety of e-book formats, we have no guarantees where line breaks will
occur. While this problem is a nonissue for many programming languages,
including MEL, Python is very particular about line breaks and whitespace.
As such, it’s worth briefly noting how Python handles these issues, and
how we have chosen to address them throughout the text. Thereafter, we
can move on to our first example!

Whitespace

Many programming languages are indifferent to leading whitespace, and
instead use mechanisms like curly braces ({ and }) to indicate code blocks,
as in the following hypothetical MEL example, which would print numbers
1 through 5.

for (int $1=0; $i<5; $i++)
{
int $j=9%1i+1;
print($j+"\n");
}
In this example, the indentation inside the block is optional. The example
could be rewritten like the following lines, and would produce the same result.

for (int $i=0; $i<5; $i++)

{

int $j =$i+1;

print($j+"\n");

}
Python, on the other hand, uses leading whitespace to structure blocks. An
example such as this one would look like the following lines in Python.

for i in range(5):
j=i+1
print(j)
While Python does not care exactly how you indent inside your blocks,
they must be indented to be syntactically valid! The standard in the Python
community is to either use one tab or four spaces per indentation level.

Because of how this book is formatted, you may not be able to simply copy
and paste examples from an e-book format. We try to mitigate this problem
by providing as many code examples as possible as downloads on the com-
panion web site, which you can safely copy and paste, and leave only short
examples for you to transcribe.

Xviii

INTRODUCTION Welcome to Maya Python

Line Breaks

Python also has some special rules governing line breaks, which is particu-
larly important for us since we have no way to know exactly how text in
this book will wrap on different e-book hardware.

Most programming languages allow you to insert line breaks however you
like, as they require semicolons to indicate where line breaks occur in code.
For example, the following hypothetical MEL example would construct the
sentence “T am the very model of a modern major general.” and then print it.

string $foo="1I am the very" +
"model of a modern" +

"major general");
print($foo);

If you tried to take the same approach in Python, you would get a syntax
error. The following approach would not work.

foo= "1 am the very' +
'model of a modern' +
'major general'
print(foo)

In most cases in Python, you must add a special escape character (\) at the
end of a line to make it continue onto the following line. You would have
to rewrite the previous example in the following way.

foo= "I amthe very' +\
'model of a modern' +\
'major general'
print(foo)

There are some special scenarios where you can span onto further lines
without an escape sequence, such as when inside of parentheses or brack-
ets. You can read more about how Python handles line breaks online in
Chapter 2 of Python Language Reference. We’ll show you where you
can find this document in Chapter 1.

Our Approach

Because of Python’s lexical requirements, it is difficult to craft code exam-
ples that are guaranteed to be properly displayed for all of our readers. As
such, our general approach is to indicate actual line endings in print with
the optional semicolon character (;) as permitted by Python. We trust you
to recognize them as line endings where there should be a return carriage
and to adjust your indentation if necessary.

For instance, though we can be reasonably certain that the previous exam-
ples are short enough to have appeared properly for all our readers, we

Notes on Code Examples and Syntax xix

would have rewritten them in the following way throughout the remainder
of this book.

for i in range(5):

Jj=1+1;

print(j);
foo= "I amthe very model of a modern major general';
print(foo);

Since Python allows but does not require the semicolon, we avoid using it
in our actual code examples on the companion web site, though we do
show them in the text for readers who do not have the code examples on
their computers in front of them.

Quotation Marks

It is also worth mentioning that some of our code examples throughout the
book make use of double quotation marks ("), some make use of single
quotation marks ('), and some make use of triple sequences of either type
(""" or ''"). While it should be clear which marks we are using when
reading a print copy, double quotation marks may not copy and paste cor-
rectly. In short, make sure you double check any code you try to copy and
paste from the book.

Comments

Finally, it is worth noting here that, like other programming languages,
Python allows you to insert comments in your code. Comments are state-
ments that only exist for the developer’s reference, and they are not evalu-
ated as part of a program. One way to create a comment is to simply write it
in as a string literal. Though we will talk more about strings later, the basic
idea is that you can wrap a standalone statement in quotation marks on its
own line and it becomes a comment. In the following code snippet, the first
line is a comment describing what the second line does.

""'Use the print() function to print the sumof 5and 10"'""'
print(5+10);

Another way to insert comments is to prefix comment statements with a #
symbol. You can use this technique to comment an entire line or to add a
comment to the end of a line. The following two lines accomplish the same
task as the previous code snippet.

Use the print() function to print the sumof 5 and 10
print(5+10); # This statement should output 15

Many of our examples, especially transcriptions of code from example files
on the companion web site, are devoid of comments. We opted to limit

xx INTRODUCTION Welcome to Maya Python

comments to save printing space, but hope that you will not be so flippant
as a developer! Most of our examples on the companion web site contain
fairly thorough comments, and we tend to break up large sections of code
in the text to discuss them one part at a time.

PYTHON HANDS ON

In our introduction to Python, we have told you how useful it will be to you
in Maya. We’ll now run through a brief example project to get a taste of
things to come. Don’t worry if you do not understand anything in the
example scripts yet, as this project is for demonstration purposes only.

In this example, you are going to execute two versions of the same script,
one written in MEL using only Maya commands, and the other written using
the Maya Python API. These scripts highlight one example of the dramati-
cally different results you can achieve when using Python in place of MEL.

The scripts each create a basic polygon sphere with 200 by 200 subdivi-
sions (or 39,802 vertices) and apply noise deformation to the mesh. In
essence, they iterate through all of the sphere’s vertices and offset each
one by a random value. This value is scaled by an amount that we provide
to the script to adjust the amount of noise.

Please also note that the Python script in the following example makes use
of functions that were added to the API in Maya 2009. As such, if you’re
using an earlier version of Maya, you can certainly examine the source
code, but the Python script will not work for you.

1. Open the Maya application on your computer.

2. In Maya’s main menu, open the Script Editor by navigating to Window —
General Editors — Script Editor.

3. You should now see the Script Editor window appear, which is divided
into two halves (Figure 0.1). Above the lower half you should see two
tabs. Click on the Python tab to make Python the currently active
language.

4. Download the polyNoise.py script from the companion web site and
make note of its location.

5. Open the script you just downloaded by navigating to the menu option
File — Load Script in the Script Editor window (rather than the main
application window). After you browse to the script and load it, you
will see the contents of the script appear in the lower half of the Script
Editor window, where they may be highlighted.

6. Click anywhere in the bottom half of the Script Editor to place your
cursor in it, and execute the script by pressing Ctrl + Enter.

Autodesk Maya 2012 x64 — Trial Version: untitied*

Script Editor

B FIGURE 0.1 The polyNoise.py script in the Maya Script Editor.

Once the script has executed, you will see a distorted sphere in your
viewport, as in Figure 0.2. However, you will also see something inter-
esting in the top half of the Script Editor window. In addition to the script
that you just executed, you should see a line that says something like the
following:

Execution time: 0.53 seconds.

This final line shows how long it took your computer to create the sphere,
subdivide it, and apply noise to the mesh. In this particular case, it took our
computer 0.53 seconds, though your result may be slightly different based
on the speed of your computer.

Now, you will execute the MEL version of this script to see how long it
takes to perform the same operation.

1. In Maya’s Script Editor, click the MEL tab that appears above the bot-
tom half of the window.

2. Download the polyNoise.mel script from the companion web site and
make note of its location.

3. Open the script you just downloaded by navigating to the menu option
File — Load Script in the Script Editor window. After loading the

@ Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Deformers Skeleton Skin Constrain Character AMTools Help [+l &g &

Python Hands On xxi

B @ Mon1006 Q

INTRODUCTION Welcome to Maya Python

Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Deformers Skeleton Skin Constrain Character AM Tools Help (il iy &
(o)

O m i = <) B G Mon1005 Q

Autodesk Maya 2012 x64 -~ Trial Version: untitled”

B FIGURE 0.2 A polygon sphere with the noise script applied.

script, you should see its contents appear in the lower half of the Script
Editor window, and they may be highlighted.

4. Click anywhere in the bottom half of the Script Editor to place your
cursor in it, and execute the script by pressing Ctrl + Enter.

You should very quickly notice a problem—or should we say very slowly.
Maya will stop responding after executing the MEL script. Mac users will
see the infamous “beach ball” loading cursor. Don’t worry though! Maya
has not crashed. It will create the sphere ... eventually. You might want
to go get a cup of coffee or two before you come back to check on Maya.
After what seems like an eternity, Maya will finally create the sphere with
the noise and print something like the following line in the top half of the
Script Editor window.

Execution time: 203.87 seconds.

Because the Python script and the MEL script both perform the exact same
task, you could theoretically use either one to get the job done. Obviously,
however, you would want to use the Python version. If we created a MEL
script that did this task it would be useless in production. No artist would want
to use a script that takes a few minutes to execute. It would make the tool very
difficult for artists to experiment with and most likely it would be abandoned.

There is only one catch: The Python script was created using the Maya
Python API. If you compare the two scripts side-by-side, you will see that
the Python script is slightly more complex than the MEL script as a result.
Using the API is more complicated than just using Maya commands, yet
MEL cannot use the API directly. This disadvantage on MEL’s part is
the primary reason the performance difference is so dramatic in this case.

Another issue to point out about the Python example script is that it is not
complete. Because it uses API calls to modify objects, you cannot use undo
like you could with MEL if you didn’t like the result. Although Python can
certainly use Maya commands just like MEL (and automatically benefit
from the same undo support), we used the API in this case because it
was necessary to gain the substantial speed increase. If we used Python
to call Maya commands, however, the Python script would have been just
as slow as the MEL script.

Although we chose not to in this example for the sake of simplicity, we
would need to turn this script into a Python API plug-in to maintain undo
functionality and still use the API to modify objects. There may in fact be
many times you want to do this very same thing to mock up a working ver-
sion before adding the final bits of script to create a plug-in. Don’t worry—
it isn’t hard, but it is another step you will need to take. Fortunately for you,
one of the main topics in this book is to explain how to work with the API
using Python, so you will have no trouble creating lightning-fast tools
yourself. Once you understand more about how Python works in Maya,
you could write other scripts that work with meshes. As you can see,
MEL tends to run very slowly on objects with large vertex counts, so this
opens the door for new tools in your production.

Another convenient advantage to using the Python API is it uses the same
classes as the C++ APL If you really needed additional speed, you could
easily convert the Python script into a C++ plug-in. If you don’t understand
C++, you could pass on the script as a template for a programmer at your
studio, as the API classes are identical in both languages. C++ program-
mers can also find the Python API useful because they can access the
Python API in Maya interactively to test out bits of code. If you are using
C++, on the other hand, you absolutely must compile a plug-in to test even
one line of code. You can even mix the Maya API with Python scripts that
use Maya commands.

With all of these features in mind, we hope you are excited to get started
learning how to use Python in Maya. By the end of this book, you should
be able to create scripts that are more complicated than even the example
from this chapter. So without further delay, let’s get to it!

Python Hands On xxiii

Part

Basics of Python and Maya

Chapter

Maya Command Engine

and User Interface

CHAPTER OUTLINE
Interacting with Maya 4
Maya Embedded Language 5
Python 5
C++ Application Programming Interface 6
Python APl 6
Executing Python in Maya 6
Command Line 6
Script Editor 8
Maya Shelf 10
Maya Commands and the Dependency Graph 11
Introduction to Python Commands 15
Flag Arguments and Python Core Object Types 19
Numbers 20
Strings 20
Lists 20
Tuples 21
Booleans 21
Flag = Object Type 21
Command Modes and Command Arguments 22
Create Mode 22
Edit Mode 23
Query Mode 23
Python Command Reference 24
Synopsis 25
Return Value 25
Related 25
Flags 25
Python Examples 26
Python Version 26
Python Online Documentation 26
Concluding Remarks 27

4 (HAPTER 1 Maya Command Engine and User Interface

BY THE END OF THIS CHAPTER, YOU WILL BE ABLE TO:

m Compare and contrast the four Maya programming interfaces.

m Use the Command Line and Script Editor to execute Python commands.
m Create a button in the Maya GUI to execute custom scripts.

m Describe how Python interacts with Maya commands.

m Define nodes and connections.

m Describe Maya’s command architecture.

m Learn how to convert MEL commands into Python.

m Locate help for Python commands.

m Compare and contrast command arguments and flag arguments.

m Define the set of core Python data types that work with Maya commands.
m Compare and contrast the three modes for using commands.

m Identify the version of Python that Maya is using.

m Locate important Python resources online.

To fully understand what can be done with Python in Maya, we must first
discuss how Maya has been designed. There are several ways that users
can interact with or modify Maya. The standard method is to create content
using Maya’s graphical user interface (GUI). This interaction works like any
other software application: Users press buttons or select menu items that
create or modify their documents or workspaces. Despite how similar Maya
is to other software, however, its underlying design paradigm is unique in
many ways. Maya is an open product, built from the ground up to be capable
of supporting new features designed by users. Any Maya user can modify or
add new features, which can include a drastic redesign of the main interface
or one line of code that prints the name of the selected object.

In this chapter, we will explore these topics as you begin programming in
Python. First, we briefly describe Maya’s different programming options and
how they fit into Maya’s user interface. Next, we jump into Python by exploring
different means of executing Python code in Maya. Finally, we explore some
basic Maya commands, the primary means of modifying the Maya scene.

INTERACTING WITH MAYA

Although the focus of this book is on using Python to interact with Maya,
we should briefly examine all of Maya’s programming interfaces to better
understand why Python is so unique. Autodesk has created four different

Maya user interface ’

Maya Command Engine [«—> Maya API

I I

Maya application core

W FIGURE 1.1 The architecture of Maya's programming interfaces.

programming interfaces to interact with Maya, using three different pro-
gramming languages. Anything done in Maya will use some combination
of these interfaces to create the result seen in the workspace. Figure 1.1
illustrates how these interfaces interact with Maya.

Maya Embedded Language

Maya Embedded Language (MEL) was developed for use with Maya and is
used extensively throughout the program. MEL scripts fundamentally define
and create the Maya GUI. Maya’s GUI executes MEL instructions and Maya
commands. Users can also write their own MEL scripts to perform most
common tasks. MEL is relatively easy to create, edit, and execute, but it is
also only used in Maya and has a variety of technical limitations. Namely,
MEL has no support for object-oriented programming. MEL can only com-
municate with Maya through a defined set of interfaces in the Command
Engine (or by calling Python). We will talk more about the Command
Engine later in this chapter.

Python

Python is a scripting language that was formally introduced to Maya in
version 8.5. Python can execute the same Maya commands as MEL using
Maya’s Command Engine. However, Python is also more robust than MEL
because it is an object-oriented language. Moreover, Python has existed
since 1980 and has an extensive library of built-in features as well as a
large community outside of Maya users.

Interacting with Maya 5

6 CHAPTER 1 Maya Command Engine and User Interface

C++ Application Programming Interface

The Maya C++ application programming interface (API) is the most
flexible way to add features to Maya. Users can add new Maya objects
and features that can execute substantially faster than MEL alternatives.
However, tools developed using the C++ API must be compiled for new
versions of Maya and also for each different target platform. Because of
its compilation requirements, the C++ API cannot be used interactively
with the Maya user interface, so it can be tedious to test even small bits
of code. C++ also has a much steeper learning curve than MEL or Python.

Python API

When Autodesk introduced Python into Maya, they also created wrappers
for many of the classes in the Maya C++ APL As such, developers can use
much of the API functionality from Python. The total scope of classes acces-
sible to the Python API has grown and improved with each new version of
Maya. This powerful feature allows users to manipulate Maya API objects
in ordinary scripts, as well as to create plug-ins that add new features to Maya.

In this book, we focus on the different uses of Python in Maya, including
commands, user interfaces, and the Python APIL Before we begin our
investigation, we will first look at the key tools that Maya Python program-
mers have at their disposal.

EXECUTING PYTHON IN MAYA

Maya has many tools built into its GUI that allow users to execute Python
code. Before you begin programming Python code in Maya, you should
familiarize yourself with these tools so that you know not only what tool
is best for your current task, but also where to look for feedback from your
scripts.

Command Line

The first tool of interest is the Command Line. It is located along the
bottom of the Maya GUIL You can see the Command Line highlighted in
Figure 1.2.

The Command Line should appear in the Maya GUI by default. If you
cannot see the Command Line, you can enable it from the Maya main
menu by selecting Display — UI Elements — Command Line.

The far left side of the Command Line has a toggle button, which says
“MEL” by default. If you press this button it will display “Python.”

Executing Python in Maya 7

@ Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Deformers Skeleton Skin Constrain Character AM Tools Help i &g &
© 0.0, Autodesk Maya 2012 x64 - Trial Version: untitled*

™ : 2 <) B G Mon10:08 Q

History Panel

Input Panel

Command Line

W FIGURE 1.2 Programming interfaces in the Maya GUI.

The language displayed on this toggle button tells Maya which scripting
language to use when executing commands entered in the text field imme-
diately to the right of the button. The right half of the Command Line, a
gray bar, displays the results of the commands that were entered in the text
field. Let’s create a polygon sphere using the Command Line.

1. Switch the Command Line button to “Python.” The button is located on
the left side of the Command Line.

2. Click on the text field in the Command Line and enter the following
line of text.
import maya.cmds;
3. Press Enter.
4. Next enter the following line of code in the text field.
maya.cmds.polySphere();
5. Press Enter. The above command will create a polygon sphere object

in the viewport and will print the following results on the right side
of the Command Line.

Result: [u'pSpherel', u'polySpherel']

8 CHAPTER 1 Maya Command Engine and User Interface

You can use the Command Line any time you need to quickly execute a
command. The Command Line will only let you enter one line of code at
a time though, which will not do you much good if you want to write a
complicated script. To perform more complex operations, you need the
Script Editor.

Script Editor

One of the most important tools for the Maya Python programmer is the Script
Editor. The Script Editor is an interface for creating short scripts to interact
with Maya. The Script Editor (shown on the right side in Figure 1.2) consists
of two panels. The top panel is called the History Panel and the bottom panel
is called the Input Panel. Let’s open the Script Editor and execute a command
to make a sphere.

1. Open a new scene by pressing Ctrl + N.

2. Open the Script Editor using either the button located near the bottom
right corner of Maya’s GUI, on the right side of the Command Line
(highlighted in Figure 1.2), or by navigating to Window — General
Editors — Script Editor in Maya’s main menu. By default the Script
Editor displays two tabs above the Input Panel. One tab says “MEL”
and the other tab says “Python.”

3. Select the Python tab in the Script Editor.

4. Click somewhere inside the Input Panel and type the following lines of
code.

import maya.cmds;
maya.cmds.polySphere();

5. When you are finished press the Enter key on your numeric keypad. If
you do not have a numeric keypad, press Ctrl + Return.

The Enter key on the numeric keypad and the Ctrl + Return shortcut are
used only for executing code when working in the Script Editor. The reg-
ular Return key simply moves the input cursor to the next line in the Input
Panel. This convention allows you to enter scripts that contain more than
one line without executing them prematurely.

Just as in the Command Line example, the code you just executed created a
generic polygon sphere. You can see the code you executed in the History
Panel, but you do not see the same result line that you saw when using the
Command Line. In the Script Editor, you will only see a result line printed
when you execute a single line of code at a time.

6. Enter the same lines from step 4 into the Input Panel, but do not execute
them.

7. Highlight the second line with your cursor by triple-clicking it and then
press Ctrl + Return. The results from the last command entered should
now be shown in the History Panel.

Result: [u'pSphere2', u'polySphere2’]

Apart from printing results, there are two important things worth noting
about the previous step. First, highlighting a portion of code and then press-
ing Ctrl + Return will execute only the highlighted code. Second, high-
lighting code in this way before executing it prevents the contents of the
Input Panel from emptying out.

Another useful feature of the Script Editor is that it has support for marking
menus. Marking menus are powerful, context-sensitive, gesture-based
menus that appear throughout the Maya application. If you are unfamiliar
with marking menus in general, we recommend consulting any basic Maya
user’s guide.

To access the Script Editor’s marking menu, click and hold the right mouse
button (RMB) anywhere in the Script Editor window. If you have nothing
selected inside the Script Editor, the marking menu will allow you to
quickly create new tabs (for either MEL or Python) as well as navigate
between the tabs. As you can see, clicking the RMB, quickly flicking to
the left or right, and releasing the RMB allows you to rapidly switch
between your active tabs, no matter where your cursor is in the Script Edi-
tor window. However, the marking menu can also supply you with context-
sensitive operations, as in the following brief example.

1. Type the following code into the Input Panel of the Script Editor, but
do not execute it.

maya.cmds.polySphere()

2. Use the left mouse button (LMB) to highlight the word polySphere in
the Input Panel.

3. Click and hold the RMB to open the Script Editor’s marking menu. You
should see a new set of options in the bottom part of the marking menu.

4. Move your mouse over the Command Documentation option in the
bottom of the marking menu and release the RMB. Maya should
now open a web browser displaying the help documentation for the
polySphere command.

As you can see, the Script Editor is a very useful tool not only for creating
and executing Python scripts in Maya, but also for quickly pulling up infor-
mation about commands in your script. We will look at the command
documentation later in this chapter.

Executing Python in Maya 9

10 CHAPTER 1 Maya Command Engine and User Interface

At this point, it is worth mentioning that it can be very tedious to continually
type common operations into the Script Editor. While the Script Editor
does allow you to save and load scripts, you may want to make your script
part of the Maya GUIL. As we indicated earlier, clicking GUI controls
in Maya simply calls commands or executes scripts that call commands.
Another tool in the Maya GUIL the Shelf, allows you to quickly make a
button out of any script.

Maya Shelf

Now that you understand how to use the Command Line and the Script
Editor, it is worth examining one final tool in the Maya GUI that will be
valuable to you. Let’s say you write a few lines of code in the Script Editor
and you want to use that series of commands later. Maya has a location for
storing custom buttons at the top of the main interface, called the Shelf,
which you can see in Figure 1.3. If you do not see the Shelf in your GUI
layout, you can enable it from Maya’s main menu using the Display —
UI Elements — Shelf option.

You can highlight lines of code in the Script Editor or Command Line and
drag them onto the Shelf for later use with the middle mouse button

® Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Deformers Skeleton Skin Constrain Character AMTools Help iy f cC oM™ 2 4) B & Mon1037 Q
® 00 Autodesk Maya 2012 x64 - Trial Version: untitled* --- pSpherel

5)
TRGBS[1,0,01, alphasi, colorDisplayoption=rrue)

M FIGURE 1.3 The Shelf.

Maya Commands and the Dependency Graph 11

(MMB). In the following example, you will create a short script and save it
to the Shelf.

1. Type in the following code into the Script Editor, but do not execute
it (when executed, this script will create a polygon sphere and then
change the sphere’s vertex colors to red).

import maya.cmds;

maya.cmds.polySphere(radius=5);

maya.cmds.polyColorPerVertex(
colorRGB=[1,0,01,
colorDisplayOption=True

)3

2. Click the Custom tab in the Shelf. You can add buttons to any shelf, but
the Custom shelf is a convenient place for users to store their own
group of buttons.

3. Click and drag the LMB over the script you typed into the Script Editor
to highlight all of its lines.

4. With your cursor positioned over the highlighted text, click and hold
the MMB to drag the contents of your script onto the Shelf.

5. If you are using Maya 2010 or an earlier version, a dialog box will
appear. If you see this dialog box, select “Python” to tell Maya that
the script you are pasting is written using Python rather than MEL.

6. You will now see a new button appear in your Custom tab. Left-click on
your new button and you should see a red sphere appear in your viewport
as in Figure 1.3. If you are in wireframe mode, make sure you enter shaded
mode by clicking anywhere in your viewport and pressing the number 5 key.

You can edit your Shelf, including tabs and icons, by accessing the
Window — Settings/Preferences — Shelf Editor option from the main
Maya window. For more information on editing your Shelf, consult the
Maya documentation or a basic Maya user’s guide. Now that you have an
understanding of the different tools available in the Maya GUI, we can start
exploring Maya commands in greater detail.

MAYA COMMANDS AND THE DEPENDENCY GRAPH

To create a polygonal sphere with Python, the polySphere command must
be executed in some way or other. The polySphere command is part of the
Maya Command Engine. As we noted previously, the Maya Command
Engine includes a set of commands accessible to both MEL and Python.

As we briefly discussed previously, Maya is fundamentally composed of a core
and a set of interfaces for communicating with that core (see Figure 1.1).
The core contains all the data in a scene and regulates all operations on these

12 CHAPTER 1 Maya Command Engine and User Interface

data—creation, destruction, editing, and so on. All of the data in the core are
represented by a set of objects called nodes and a series of connections that
establish relationships among these nodes. Taken together, this set of relation-
ships among nodes is called the Dependency Graph (DG).

For example, the polygon sphere object you created earlier returned the
names of two nodes when you created it: a node that describes the geome-
try of the sphere and a transform node that determines the configuration of
the sphere shape in space. You can see information on nodes in an object’s
network using the Attribute Editor (Window — Attribute Editor in the
main menu) or as a visual representation in the Hypergraph (Window —
Hypergraph: Connections in the main menu). Because this point is so
important, it is worth looking at a brief example.

1. If you no longer have a polygon sphere in your scene, create one.

2. With your sphere object selected, open the Hypergraph displaying
connections by using the Window — Hypergraph: Connections option
from the main menu.

3. By default, the Hypergraph should display the connections for your
currently selected sphere as in Figure 1.4. If you do not see anything,

@ Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Def Skeleton Skin Constrain _Character AM Tools Help & Hg § s} - = B G Mon10:42 Q
000 u
T

W FIGURE 1.4 The Hypergraph.

Maya Commands and the Dependency Graph 13

then select the option Graph — Input and Output Connections from
the Hypergraph window’s menu.

As you can see, a default polygon sphere consists of four basic nodes
connected by a sequence of arrows that show the flow of information. The
first node in the network is a polySphere node, which contains the para-
meters and functionality for outputting spherical geometry (e.g., the radius,
the number of subdivisions, and so on). In fact, if you highlight the arrow
showing the connection to the next node, a shape node, you can see what
data are being sent. In this case, the polySphere node’s output attribute is
piped into the inMesh attribute of the shape node.

If you were to delete the construction history of this polygonal sphere
(Edit — Delete by Type — History from the main menu), the polySphere
node would disappear and the sphere’s geometry would then be statically
stored in the shape node (pSphereShapel in Figure 1.4). In short, if the
polySphere node were destroyed, its mesh information would be copied into
the pSphereShape node, and you would no longer be able to edit the radius
or number of subdivisions parametrically; you would have to use modeling
tools to do everything by hand.

While you can also see that information is piped from the shape node into a
shadingGroup node (to actually render the shape), there is a node that
appears to be floating on its own (pSpherel in Figure 1.4). This separate
node is a special kind of object, a transform node, which describes the posi-
tion, scale, and orientation of the polygonal sphere’s geometry in space. The
reason why this node is not connected is because it belongs to a special part
of the DG, called the Directed Acyclic Graph (DAG). For right now, it suf-
fices to say that the DAG essentially describes the hierarchical relationship of
objects that have transform nodes, including what nodes are their parents
and what transformations they inherit from their parents.

The Maya DG is discussed in greater detail in Chapter 11 in the context of
the Maya API, yet this principle is critical for understanding how Maya
works. We strongly recommend consulting a Maya user guide if you feel
like you need further information in the meantime.

Although Maya is, as we pointed out, an open product, the data in the core
are closed to users at all times. Autodesk engineers may make changes
to the core from one version to another, but users may only communicate
with the application core through a defined set of interfaces that Autodesk
provides.

One such interface that can communicate with the core is the Command
Engine. In the past, Maya commands have often been conflated with

14 CHAPTER 1 Maya Command Engine and User Interface

Maya user interface ’

MEL <—>‘ Python ’ C++
Maya Command Engine H Maya API

I I

Maya application core

B FIGURE 1.5 Python’s interaction with the Maya Command Engine.

MEL. Indeed, commands in Maya may be issued using MEL in either
scripts or GUI elements like buttons. However, with the inclusion of
Python scripting in Maya, there are now two different ways to issue Maya
commands, which more clearly illustrates the distinction.

Figure 1.5 highlights how Python interacts with the Maya Command
Engine. While Python can use built-in commands to retrieve data from
the core, it can also call custom, user-made commands that use API inter-
faces to manipulate and retrieve data in the core. These data can then be
returned to a scripting interface via the Command Engine. This abstraction
allows users to invoke basic commands (which have complex underlying
interfaces to the core) via a scripting language.

MEL has access to over 1,000 commands that ship with Maya and has been
used to create almost all of Maya’s GUI. While Python has access to nearly
all the same commands (and could certainly also be used to create Maya’s
GUI) there is a subset of commands unavailable to Python. The commands
unavailable to Python include those specifically related to MEL or that deal
with the operating system. Because Python has a large library of utilities
that have grown over the years as the language has matured outside of
Maya, this disparity is not a limitation.

Maya has documentation for all Python commands so it is easy to look up
which commands are available. In addition to absent commands mentioned
previously, there are some MEL scripts that appear in MEL command doc-
umentation as though they were commands. Because these are scripts
rather than commands, they do not appear in the Python command

documentation and are not directly available to Python. Again, this absence
is also not a limitation, as it is possible to execute MEL scripts with Python
when needed. Likewise, MEL can call Python commands and scripts when
required.’

Another important feature of the Maya Command Engine is how easy it is to
create commands that work for MEL and Python. Maya was designed so that
any new command added will be automatically available to both MEL and
Python. New commands can be created with the Maya C++ API or the Python
API. Now that you have a firmer understanding of how Maya commands fit
into the program’s architecture, we can go back to using some commands.

INTRODUCTION TO PYTHON COMMANDS

Let’s return to Maya and open up the Script Editor. As discussed earlier in
this chapter, the top panel of the Script Editor is called the History Panel.
This panel can be very useful for those just learning how to script or even
for advanced users who want to figure out what commands are being
executed. By default, the History Panel will echo (print) most Maya
commands being executed. You can also make the History Panel show
all commands being executed, including commands called by the GUI
when you press a button or open a menu. To see all commands being exe-
cuted, select the History — Echo All Commands option from the Script
Editor’s menu. While this option can be helpful when learning, it is gener-
ally inadvisable to leave it enabled during normal work, as it can degrade
Maya’s performance. Right now, we will go through the process of creating
a cube and look at the results in the History Panel (Figure 1.6).

1. In the menu for the Script Editor window, select Edit — Clear History
to clear the History Panel’s contents.

2. In the main Maya window, navigate to the menu option Create —
Polygon Primitives — Cube.

3. Check the History Panel in the Script Editor and confirm that you see
something like the following results.

polyCube -wl -h1-dl-sx1-syl-sz1-ax010-cuvé4-chl;
// Result: pCubel polyCubel //

The first line shown is the polyCube MEL command, which is very similar
to the polySphere command we used earlier in this chapter. As you can see,

"MEL can call Python code using the python command. Python can call MEL code
using the eval function in the maya.mel module. Note that using the python command
in MEL executes statements in the namespace of the __main__ module. For more infor-
mation on namespaces and modules, see Chapter 4.

Introduction to Python Commands 15

16 CHAPTER 1 Maya Command Engine and User Interface

@ Maya File Edit Modify Create Display Window Assets Animate Geometry Cache Create Deformers Edit Deformers Skeleton Skin Constrain Character AMTools Help > . _. O O @ & 2 <) B G Mon10:44 Q
00 Autodesk Maya 2012 x64 - Trial Version: untitled* ---_pCubel

M FIGURE 1.6 The results of creating a polygon cube.

a MEL command was called when you selected the Cube option in the
Polygon Primitives menu. That MEL command was displayed in the
Script Editor’s History Panel.

Because Maya’s entire interface is written with MEL, the History Panel
always echoes MEL commands when using the default Maya interface.
Custom user interfaces could call the Python version of a command, in
which case the History Panel would display the Python command.

This problem is not terribly troublesome for Python users though. It does
not take much effort to convert a MEL command into Python syntax, so
this feature can still help you learn which commands to use. The following
example shows what the polyCube command looks like with Python.

import maya.cmds;
maya.cmds.polyCube(
w=1, h=1, d=1, sx=1, sy=1, sz=1,
ax=(0, 1, 0), cuv=4, ch=1
)3
If you execute these lines of Python code they will produce the same result as
the MEL version. However, we need to break down the Python version of the
command so we can understand what is happening. Consider the first line:

import maya.cmds;

