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PREFACE

In the best books on the theory of elasticity the investigation of
three-dimensional boundary value problems has been so far limited to
bodies of special shape (a half-space, a sphere, some cases of axially
symmetrical bodies and so on). The greatest attention has been given to
static problems, less attention to oscillation problems and still less to
problems of general dynamics. Such a situation might be well expected -
it reflects the historical background of the theory of elasticity which
during the entire preceding period was concentrated on bodies of parti-
cular profiles and was above all interested in problems of static equili-
brium.

It would be wrong to attribute this situation only to the importance of
the above-mentioned problems for technology and engineering. The true
reason is that the methods of classical elasticity were inadequate for
developing a rigorous and sufficiently complete theory of three-dimen-
sional boundary value problems.

Unlike the three-dimensional problems, the theory of the plane prob-
lem worked out mainly by the classical methods (the theory of analytic
functions, Fredholm’s theory of integral equations and, later, the theory
of one-dimensional singular integral equations) has been extensively
developed and found its perfect expression in [.N. Muskhelishvili’'s book
“Some Basic Problems of the Mathematical Theory of Elasticity” the
first edition of which appeared in 1933.

The situation is currently changing. The theory of three-dimensional
problems may now be worked out by a variety of means. We shall just
mention two of the possibilities: on the one hand, it is the modern theory
of generalized solutions of differential equations (the method of Hilbert
spaces, variational methods), on the other hand —-the theory of multi-
dimensional singular potentials and singular integral equations.

The first trend — based on the ideas of the modern functional analysis
which are novel to the classical mechanics —is characterized by great

XVvil



Xviii PREFACE

generality involving the case of variable coefficients and boundary
manifolds of the general type. Owing to such generality, it may be
employed in the first place for proving theorems on the existence of
non-classical solutions, requiring additional, sometimes essential,
restrictions when used for classical solutions.

A fine, though concise, treatment of these topics may be found in G.
Fichera’s papers ‘“‘Existence Theorems in Elasticity” and ‘“Boundary
Value Problems of Elasticity with Unilateral Constraints”, Handbuch
der Physik, VIa/2, Springer Verlag, 1972, and in C. Dafermos’ paper *“On
the Existence of Asymptotic Stability of Solutions to the Equations of
Thermoelasticity”, Arch. Rat. Mech. Anal. 29, 4, 1968.

The second trend based on the rapidly developing theory of singular
integrals and integral equations is a direct extension of the concepts of
the theory of potentials and Fredholm equations which are, as known,
the prevailing concepts of the classical mechanics. This approach, being
not so general as the first one, allows to investigate in detail cases most
important for the theory and application, retaining the efficiency of the
methods of the classical mechanics of continua.

The present book has adopted the second trend. It is an attempt to
develop — apparently for the first time with adequate completeness and
at the modern level of mathematical rigour —the general theory of
three-dimensional problems of statics, oscillation and dynamics for
linear equations with constant and piecewise-constant coefficients of
classical elasticity, thermoelasticity and couple-stress elasticity.

Much space in the book is assigned to general problems (existence and
uniqueness theorems, an analysis of differential properties of solutions,
the continuous dependence on the data of a problem etc.). A great deal
of attention is also given to questions of the actual construction of
solutions in a form allowing to express them numerically under very
general conditions.

With this end in view the solutions are represented as generalized
Fourier series to construct which there is no need to know the eigen-
functions and the eigenvalues of any auxiliary boundary value problems.
New representations of solutions by quadratures have been found for
some particular cases.

We think that the simple construction of solutions and the represen-
tation of elementary structures by explicit invertible operators, together
with a detailed analysis of the smoothness of solutions, may serve in the
conditions of modern computing facilities as the basis for obtaining
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convenient algorithms of numerical computations and for estimating
approximations.

The book reproduces the monograph of the same authors published by
the Tbilisi University Press in 1968. It was favourably received by
readers and sold out within a short time. In 1971 the first edition was
awarded the State Prize of the Georgian SSR.

When a second edition was called for, the book was extensively
revised and enlarged. To make the book accessible to a wider circle of
people the authors rewrote nearly all the chapters, simplified a number
of proofs, corrected the noted errata.

The chapters of the book are divided into sections, the sections into
articles; each section has its own numeration of formulas; the formula
number is denoted by two figures enclosed in brackets; for example,
(5.9) means the ninth formula in the fifth section. When reference is
made to a formula, the number of a chapter is added to the number of
the formula; thus, (VIII, 3.6) means the sixth formula in the third section
of the eighth chapter. However, if reference is made to a formula within
a given chapter, the chapter number is omitted.

Theorems, lemmas, definitions and notes are numerated in the same
manner but without brackets. Theorem V, 2.10 therefore means the
tenth theorem in the second section of the fifth chapter. Again, if
reference is made within a given chapter, the chapter number is left out.
All the chapters, except the first one, are supplemented with problems
some of which may be used as a subject of independent research.

The bibliography consists of those titles which were available to the
authors at the time of writing the book. It does not claim to bibliographic
irreproachability and does not include the books published after 1972.

Thilisi The Authors
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CHAPTER 1

BASIC CONCEPTS AND AXIOMATIZATION

The first chapter is an introductory one. It deals with the basic
concepts of the classical theory of elasticity, thermoelasticity and the
couple-stress theory of elasticity. Recapitulating briefly the physical
principles of these theories in §§1 to 10, we did not mean to substantiate
the foundations of the theory of elasticity from the viewpoint of physics.
Our intention was to throw a bridge between the theory of elasticity as a
part of mechanics and the mathematical theory of elasticity and thus to
facilitate the reading of the book for mechanicians who have not yet got
accustomed to the axiomatic approach to the theory of elasticity and
also to help mathematicians who studied the mathematical theory of
elasticity to attach the definite physical meaning to some terms (stresses,
displacements, isotropy, etc.) formally used in the axiomatic theory.
Readers who have some knowledge of the physical foundations of the
theory of elasticity may omit §§1 to 10, while those interested in them
may refer to the bibliography listed in §15.

In the first chapter the basic assumptions of the classical theory of
elasticity, thermoelasticity and the couple-stress theory are formulated
first in the terms of mechanics and after that the axiomatization of these
theories is carried out.

Throughout the book the classical theory of elasticity, the theory of
thermoelasticity and the couple-stress theory of elasticity will be united
under the common name of the theory of elasticity or simply elasticity.

The physical foundationis of elasticity are worked out on the assump-
tion that the stress-strain theory and Hooke's law are applicable to some
media called elastic. Different interpretations of the stress-strain theory
and Hooke's law have given rise to various theories, say, to the theory
of elasticity for isotropic and anisotropic media, the theory of ther-
moelasticity, the couple-stress theory of elasticity, to mention just
a few.
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§1. Stresses

1. Internal and external forces

If no external force is applied to the body under consideration and
the body is not deformed, then all its parts are in mechanical equili-
brium. If the body is disturbed by some force, i.e., if it is deformed, then
the initial equilibrium of molecules is changed; the parts of the body are
no longer in mechanical equilibrium. In the deformed body internal
forces are produced which struggle to return the body to its original
state.

The internal forces are of the molecular nature and their radii of
action are very small in comparison with distances considered in the
theory of elasticity. It is therefore generally assumed that the internal
forces acting on some part of the body from the side of the remainder of
the body act only through the boundary of this part.

Forces acting from the environment are called external forces and are
divided into mass and surface forces.

2. Mass and surface forces

If the body under consideration comes into contact with some external
medium, then on the surface of the contact ‘‘short-range forces” arise.
Such forces are called surface forces and are of the same nature as
those described in Art. 1.

It is obvious that not every external action on the medium can be
represented by surface forces. Gravity forces, magnetic forces and
others may serve as an example of such action. In the theory of
elasticity, in addition to surface forces, mass forces are introduced. It is
assumed that the action of such forces on an elementary particle of the
body is statically equivalent to a force applied to the centre of the
particle mass and to a couple of forces. These forces and moments of
couples are assumed to be proportional to the masses of the particles on
which they act. They are called mass forces and mass moments.

Consider now a particle with the mass Am. Let a point x be the centre
of the particle mass. We have already said that the action of mass-
dependent forces may be represented as a force acting on x and as a
couple of forces. The resultant vector of this force is denoted by #(Am)
and the moment of a couple by 4(Am). Assume there exist the limits
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lim Z@m) i, $@Am)

am-0 Am am-0 Am

’

which depend only on the point x and, in dynamics, on the time t. The
limits are denoted by the vectors #(x, t) and 4(x, t) corresponding to the
concepts of the mass force and the mass moment, respectively.

By our assumption, the action of mass-dependent forces on the
particle AD with the mass Am can be represented as the mass force
F(x,t)Am and the mass moment %(x,t)Am neglecting infinitesimal
quantities relative to Am. These vectors may be also represented in the
form

F(x,t)p(x) mes(AD), 4(x,t)p(x)mes(AD),

where p is the density of the body and mes(AD) the volume occupied by
the particle AD.

The density of the medium is defined as a limit of the ratio
Am/mes(AD), if mes(AD) tends to zero so that the point x always
remains within AD.

In classical elasticity, unlike the couple-stress theory, the influence of
mass moments is neglected since they are assumed to be zero,
(%(x,1)=0).

3. Force- and couple-stresses

The concept of stress is introduced in the theory of elasticity to
characterize the internal forces. Let us choose a point x within the
medium under consideration and speculatively draw through it a small
surface AS. The internal forces produced by the interaction of the parts
on the opposite sides of AS can be represented as forces applied to the
points of AS.

The directions of these forces depend on the chosen part. The forces
acting between the parts on the opposite sides of AS are equal and have
opposite directions. To determine such forces proceed as follows: draw
the normal n at the point x to the surface AS, give it a definite positive
direction and consider the force which the part lying on the positive side
of the normal n exerts on the part lying on the opposite side.

The forces acting on AS are assumed to be statically equivalent to a
force and a couple. Denote the force vector by T and the moment of a
couple by M and consider the ratios

T/mes(AS), M/mes(AS).
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The limits of these ratios exist when the surface area mes(AS) tends
to zero and depend on the point x and the normal n. The sign of the limit
is changed if the opposite direction of n is taken as positive. Choosing
another normal, i.e., taking another surface passing through x, we have a
different situation brought about by the action of other parts of the
medium. Accordingly, T and M are changed and so are the limits of the
above ratios. It is also assumed that the limits do not depend on the
surface shape or, in other words, the limits remain unchanged if they are
calculated for another surface, passing through the same point x, with
the same normal n.

Note that in dynamics the above limits will also depend on time. We
introduce the notations

™ =lim —T—, p™=lim ——-.
mes(AS)

According to the previous statement 7™ and ™ depend, in addition
to the direction of n, on the point x and the time t. 7™(x, t) is called the
force-stress vector and u™(x,t) the couple-stress vector directed along
n at the instant of time t.

To avoid any misunderstanding note that the vectors 7™ and u™ are
not in general directed along n. In classical elasticity u™ is assumed to
be equal to zero, while in the couple-stress theory such an assumption is
not made. In the classical theory there are no couple-stresses and
therefore we shall simply use the term “‘stress’ for ‘“‘couple-stress’’.

We have thus seen two principal distinctions between classical elasti-
city and the couple-stress theory. The latter, in contrast to classical
elasticity, considers mass forces and couple-stresses. It is to this
circumstance that the couple-stress theory owes its name.'

The determination of stresses (force-stresses in classical elasticity and
couple-stresses in the couple-stress theory) at each point in any direction
and at any instant of time in the considered interval is one of the major
problems of the elasticity theory.

'In the literature one may encounter quite a lot of names for the couple-stress theory. It
is called the unsymmetrical elasticity theory, Cosserat’s theory, the theory of elasticity
with rotational interaction of particles, the micropolar theory, the nonlocal elasticity
theory, the elasticity theory for the 2nd class medium etc. These theories, though dealing
with different representations of the continuum model, take couple-stresses into consi-
deration, which justifies the various names of the couple-stress theory (for relevant details
see Ch. IX).
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The foregoing assumption suggests that the surface forces (the force-
and couple-stresses) acting on the small surface AS with the normal n
are statically equivalent to the force 7" mes(AS) and the moment
w" mes(AS) neglecting higher order infinitesimal quantities relative to
mes(AS).

§2. Components of stress

1. Components of force- and couple-stress tensors'

One may have an infinite number of directions at each point of a
medium. To have a complete idea of the stresses at a point it is
necessary to know the stresses (force-stresses in classical elasticity and
couple-stresses in the couple-stress theory) in all these directions.

However, if we know the stresses at the point in three mutually
perpendicular directions, we may calculate with a certain accuracy the
stresses at this point in any direction.

Let us take a Cartesian coordinate system X;X,X; and denote the
stresses 7™ and 1™, when n coincides with the X;-axis, by 7 and u and
the coordinates of these vectors in the system X,X,X; by i, 712, 73 and
Mi1, iz, pi3, Tespectively. Consider the matrix ||7;(x, t)|sx3. Later it will be
shown that the force-stress vector 7"(x, t) is expressed in any direction n
(at the point x at the instant of time t) through the elements of the matrix
|l7i(x, t)||. These elements are called the force-stress components. It may be
easily shown that these nine scalars form a second rank tensor which is
called the force-stress tensor. Thus, the components of the force-stress are
the components of the stress tensor.

The couple-stress components and the couple-stress tensor are defined
similarly.

2. Expression of the force-stress vector in terms of components of the
force-stress tensor

Let x be an arbitrary point in the medium under consideration and
n = (ny, ny, n;) be an arbitrary unit vector whose direction neither coin-

'We do not employ tensor calculus here; throughout the book the word “‘tensor” will be
used as a term (or rather as a constituent element of such phrases as ‘‘force-stress tensor”,
“‘couple-stress tensor”, “‘tensor of strain” etc.) for denoting certain quantitics. These
quantities actually form tensors and this gives us the right to a free use of the term
‘‘tensor’’.
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cides with nor is opposite to the coordinate axes. Draw through x three
planes, parallel to the coordinate planes, and consider a small tetra-
hedron formed by them and by another plane, normal to n, drawn at a
close distance to x. Denote by AS that face of the tetrahedron which is
normal to n (Fig. 1).

It follows from the conditions of equilibrium that the sum of the
resultant vectors of the external and inertial forces is equal to zero.

To calculate the resultant vector of the external forces acting on the
tetrahedron we must take into account the force-stresses acting on its
faces and the resultant vector of the mass forces acting on the tetra-
hedron mass.

We determine the force-stres-
ses acting on the tetrahedron ey
mass. The area of the face
normal to the OX;-axis is equal to
[n;| mes(AS) and hence the force-
stress with which the part of the
medium external to the tetra-
hedron is acting on the latter
through this face is equal to 7
—79(x, t)n; mes(AS) neglecting
higher order infinitesimal quan- A
tities relative to mes(AS) (see §1,

Art. 3). The force-stress acting Figure 1.
through the face AS is equal to
7™(x, t) mes(AS).

The resultant vector of the mass and inertial forces acting on the
tetrahedron is proportional to its mass and hence to its volume, i.e., it is
a higher order infinitesimal quantity relative to mes(AS). The sum of all
these vectors which represents the resultant vector of the external
forces is equated to zero. Dividing the obtained equation by mes(AS)
and passing to the limit as mes(AS)— 0, the vector relation

3
r™(x, )= 2, rx, )n; = 0
i=1
is obtained which in terms of the components becomes

3
P(x, 1) =, Ti(x, O, j=1,2,3. (2.1)

i=1
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If the direction of n coincides with some coordinate axis or is
opposite to it, the validity of (2.1) is obvious. Relations (2.1) give the
required force-stresses at the point in any direction in terms of the
components of the force-stress tensor at the same point. These relations
were first derived by Cauchy. They hold both for the classical and
couple-stress theory of elasticity.

3. Expression of the couple-stress vector in terms of components of the
couple-stress tensor

The resultant moments of the external and inertial forces acting on the
tetrahedron are calculated and their sum is equated to zero. By the same
reasoning as before we obtain the vector relation

3
w™(x, t)— Zl w(x, tyn; =0,

which in terms of the components is written as
3
[LE")(X, t)y= Zl wi(x, ni, j=1,2,3. 2.2)

We have obtained the relations between the couple-stress acting at a
point in any direction and the couple-stresses acting at the same point in
three mutually perpendicular directions.

In classical elasticity w; and (" are assumed to be zero and therefore

relations (2.2) are not considered.

§3. Displacements and rotations

1. Displacement vector

It is supposed that at the initial instant of time ¢, the body is at rest, is
not deformed and no force is applied to it. Subject the body to defor-
mation and for a mathematical description of the deformed state intro-
duce a fixed orthogonal coordinate system OX,;X.X; Let the body
occupy the domain D bounded by S at the fime t, and the domain D'
bounded by S* at the time ¢.

Consider some point x = (xj, x5, x3) of the body at rest (x €D =
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D US). During the deformation the point x changes its position, i.e., it is
displaced. Its position at the time ¢ is denoted by x' = (x{, x3, x3).

The difference' x' — x is called the displacement vector or simply the
displacement or, more precisely, the value of the displacement vector at
the point x at the time t. It is denoted by u(x, t) and its components by
ui(x,t), usx,t), us(x,t).

Thus, to each point x of the undeformed state of the body (x € D) at
any time t in the considered interval [t, t], i.e., to each pair (x, t) from
the set D X [to, t,], there corresponds the displacement vector u(x,t)=
xt—x.

2. Rotation vector

The displacement vector u(x,t) of each point x of the continuous
medium under consideration completely determines the deformation at
any time t. However, it is natural to conceive the material medium not as
a continuous set of mathematical points of the three-dimensional Eucli-
dean space but as a set of material particles. Such a conception has
already been used in the earlier discussion while introducing stresses
and deriving the basic relations for the stresses at a point. The elemen-
tary volume of the medium was then considered as a solid (rigid) body
and the laws of statics were used.

If from the very beginning we had considered the medium as a set of
mathematical points filling up some domain, we would have encountered
serious difficulties, for example, in the derivation of the basic relations
on which the theory of elasticity is based. Evidently, when one has to
use the regularities of physics, the medium is to be considered as a set of
material particles. On the other hand, when one wishes to employ the
methods of the mathematical analysis, the medium should be considered
as a continuous set of points.

The two conceptions are usually made compatible as follows: first, the
medium is considered as a set of material particles and the required
relations are derived; after that, the medium is idealized, i.e., it is
represented as a continuous set, and the techniques of the mathematical
analysis are applied.

If from the beginning the medium is treated as a continuous one, the

'"The point and the corresponding radius-vector are denoted by the same symbol.
Therefore, x* — x refers to the vector whose origin coincides with the point x and ends with
the point x*. Hence x' —x = (x| — x;, x5 — x2, x5 — x%).
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picture of deformation will be completely determined by the displace-
ment vector. If, however, it is taken as a set of material particles, the
picture will be somewhat altered.

Let us consider an arbitrary particle with the gravity centre at the
point x at rest. We introduce a new orthogonal system of coordinates
with the origin at x which is rigidly fixed to the particle under consi-
deration and align the axes of the new system with the corresponding
axes of the fixed system.

It is assumed that the particle is a solid (rigid) body. Its motion is
determined by six scalars, for example, by the displacement of the point
x (which is determined by three coordinates of the displacement vector
with respect to the fixed system) and by the rotation of the particle
about its gravity centre (which is also determined by three scalars, i.e.,
by rotation angles of the mobile system with respect to the coordinates
of the fixed system, e.g., by Euler angles).

At the time ¢t the deformed medium will occupy a new position with
respect to the fixed system. The point x will move to the position x'. The
displacement vector of x will be determined by x'—x = u(x,t). The
mobile system will also take a new position with respect to the fixed one.
It will rotate. Its rotation angles are denoted by wi(x,t), wi(x,t) and
wi(x, t). The vector w(x, t) = (wi(x, 1), wix,t), wi(x, t)) will be called the
vector of internal rotation or simply the internal rotation of the point x
at the time ¢.

If now the medium is assumed to be a continuous one, the motion of
each point will be specified not by three scalars (i.e., not by the
components of the displacement vector) but by six scalars (i.e., by the
components of the displacement and rotation vectors).

Such an approach is adopted in the couple-stress theory of elasticity.
In classical elasticity the vector of internal rotation is considered not as
independent of the displacement but as related to the latter by the
formula' (see LovE [1], MUSKHELISHVILI [1], LANDAU, LiFsHITZ [1],
FILONENKO-BORODICH [1] et al.)

_ 1 _ 1 3 uy
w; = ) (Clll'l u),- = 2’2 Eijk axi .

'Though tensor calculus is not employed here, the unit vector (Kronecker’s symbol §;;)
and the so-called e-tensor (Levi-Civita’'s symbol ¢;;) are frequently used. §; =0 if
i#j and 8; =1, gi =1 or & =—1 depending on whether i,j, k have an even or odd
number of transpositions of the numbers 1, 2, 3; & = 0 if at least two of the three indices
i, ], k are equal.
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Thus, each point of the medium possesses six degrees of freedom in
the couple-stress theory of elasticity and three degrees in classical
elasticity.

§4. Basic equations in terms of stress components

1. Equations of motion in classical elasticity

Detach some part from the body and denote its domain by () and the
boundary by I'. To write an equilibrium condition for this part sum up
the external forces acting on it and equate the sum to the inertial forces
with the sign reversed. The moments are treated similarly.

When calculating forces in the assumptions of classical elasticity the
following must be taken into account:

1) Stresses. At the time t at every point y of the surface I" the stress
™(y, t) is acting, where n is the outward normal to I at the point y. The
sum of these forces is expressed by the integral

[ w60,

r

where dI' is an element of the area of T'.

2) Mass forces. At the time ¢t at each point x of the domain () the
mass force F(x, t) is acting. The sum of these forces is expressed by the
integral

J' pF(x, 1) dx,
0

where dx is an element of the volume, p is the body density which,
unless stated otherwise, will always be assumed independent of a
position of the point x and the time ¢.

3) Inertial forces. If u(x, t) is the displacement of the point x, then the
acceleration of this point at the time t is d2u(x,t)/dt* and the inertial
forces applied to an element of the volume are

3%u(x, t)
P dx.
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The sum of these forces is given by the integral

2
_fp : ua(tx”t)dx

It follows from the equilibrium condition (the vanishing sum of the
resultant vector of active forces and the resultant vector of inertial
forces) that

f <n>(y,t)dr+fp97(x t)dx _fpé_mz_t_)d

r

4.1

Similar calculations of moments and the equilibrium condition (the
vanishing sum of the resultant moment of active forces and the resultant
moment of inertial forces) give the formula

2
fy XT("’(y,t)dF+fpx X F(x,t)dx =fpx xa—ua(:czﬁdx.
r Q Q

4.2)

The sign “x” between the vectors denotes their vector multiplication.
In view of formulas (2.1) the vector equation (4.1) assumes the form

3 8%uj(x, t)
IE 7;i(y, )n; dT’ +J’ pFi(x,t)dx = f p _(;2’_dx
=
r 1)

0

which due to the Gauss-Ostrogradski formula is rewritten as

f (2 —J——a"‘ 00 4 o x, 1) - p L4 1) ‘)) dx = 0.

at
4}
Hence, since () is arbitrary, we have
3 2D 1 pgix )= U 1,23, 43)

which is valid at any point of the body under consideration and at any
time.
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Taking (2.1) into account, the same manipulation with (4.2) results in

J’g (Sﬂk)’l 2 Ty, t)"i) dr + f p 12:, emxiFi(x, t) dx
r o 1 Q v

3%ue(x, t
=J.p§ SjlkX1—ka§2—).

(1)

Using the Gauss—Ostrogradski formula, we obtain

2
f}; e,mx.( _ aT"‘(x t)+p9'*k(x t)- pa—u;g—’—t—)) dx

+ f E e,-,k'r,k(x, t) dx=0

Lk

The first term on the left-hand side vanishes by virtue of (4.3) and
therefore

> gt (x, ) =0
%

Hence we finally have

Ti(x, t) = Ti(x, t). 4.4

Equation (4.4) shows that (in classical elasticity) the components of
stress form a symmetrical matrix (i.e., the tensor of stress is symmetri-
cal) and consequently only six out of nine scalars ;(x, t) remain in-
dependent. These six scalars are related by three relations (4.3).

Relations (4.3) are called the basic equations of motion (in dynamics)
of classical elasticity in terms of stress components.

If the stress components 7; and the displacement components u; are
known at each point and at any time, then the state of stress and strain
of the body will be completely determined in classical elasticity. The
determination of these nine scalars is the basic problem of the classical
theory. It is recalled that they have so far been related only by three
relations (4.3).

Assume now that the external forces do not depend on time. Then,
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naturally, the displacements and stresses are also independent of time
and relations (4.3) assume the form

> %— +pFi(x) = (4.5)

Equations (4.5) are called the equilibrium equations.

2. Equations of motion in the couple-stress theory

An arbitrary part of the body will be considered and the condition of
equilibrium will be written for it.

Calculation of forces in the assumptions of the couple-stress theory is
accomplished in the same way as in classical elasticity and leads to
relation (4.3).

In calculating moments, in addition to force moments, it is necessary
to take into account independent moments of couples. Let us discuss
this point in detail.

Denote the isolated part by Q and its boundary by I'. To calculate the
moments acting on () the following must be taken into account:

1) a moment of force-stresses

j y X 7™(y, t)drl;

2) couple-stresses

fu‘"’(y,t)dl“;

r

3) a moment of mass forces

fpx X F(x,t)dx;

Q

4) mass moments

jp@(x, t)dx;
Q
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5) a moment of inertial forces

2
_fpxxa HOLD) gy
Q

6) a ‘“‘spin”’ moment corresponding to internal rotations

2
_fj ] a;(tx,t)dx,
a

where $ is a specific dynamic characteristic' (see PaLmov [1],
Nowacki [8] et al.).
From the equilibrium condition follows

I[y + 7Py, t) + u™(y, t)] dl‘+f [px X F(x,t)+ p%(x, t)] dx
0

=J'[p 6 ua(x t)+o¢a w(x t)]dx.

Q

Let us transform this formula. In view of (2.1) and (2.2) and the
Gauss-Ostrogradski formula, the j-th component of the first term on the
left-hand side takes the form

f [Zk giymi(y, 1) + ui(y, t)] dr
rot
= f 2 _aa [2 €iiXiTik (X, t) + i (x, t)] dx
a T 0xX L5k

fZ [ ( EjikXi 67"29(:’ I, t) | Sugjutu(x, t ))

+ a"“li(x9 t)] dx,
90X

'Here, for convenience, a sphere with uniformly distributed masses (a symmetrical
gyroscope) is taken as an elementary volume. If the gyroscope is not symmetrical, ¢ is
replaced by the tensor of inertia moment.
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which allows to rewrite the previous formula as

2
fz Enkx‘[ 37”:9(; t)+pg: (x,t)— Mg_g);’—t)] dx

+f [2 _’—aug(:’ D 2 €iwti(x, 1)+ pGi(x, 1)
[} ! ik
Q

2 .
- _2_3 wégx, t)] dx =0.

Using (4.3), which, as noted above, also holds for the couple-stress
theory, we obtain from this relation in view of the arbitrariness of ()

s a—“(%mr S eua(x, 0+ 0% (x, 1) = "—“’3(:‘—’) 4.6)

Equations (4.3) and (4.6) are the basic equations of motion of the
couple-stress theory in terms of the stress components.
(4.5) and

Z ‘_;ax(,x + 2 &tk (X) + pGi(x) = (4.7)
are the basic equilibrium equations of the couple-stress theory in terms
of the stress components.

Note that in classical elasticity (4.6) is replaced by (4.4) which
expresses the symmetry of the stress tensor. In the couple-stress theory
the stress tensor is always assumed unsymmetrical, which accounts for
the term ‘“‘unsymmetrical theory” frequently encountered in the lit-
erature.

§5. Hooke’s law in classical elasticity

1. Components of the strain tensor

What has been said above refers to any continuous medium for which
the fundamental laws of mechanics are applicable and the concept of
stress is meaningful. The theory of elasticity is concerned with elastic
media. The elastic properties of the medium are described by a specific
dependence (which is called Hooke’s law) existing between stresses and
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strains or, more precisely, between the quantities characterizing the
stressed and deformed states of the medium.

The state of stress, as mentioned above, is characterized by the stress
components 7; (see §2).

The quantities describing the state of strain will now be introduced.
The term ‘‘strain’’ refers to such a change in the positions of points of the
medium that their relative distances are altered. It is obvious that not
every change in the positions of the points is caused by strain. In the
case of rigid displacement of the medium (rigid translational displace-
ment and rigid rotation) the positions of the points are changed - the points
are displaced - but the relative distances between them are not altered and,
therefore, the medium remains undeformed.

Choose an arbitrary point x = (x|, X2, X3) in an undeformed medium (at
the time o) and consider a point x + £ in a small neighbourhood of the
chosen one. Calculate a change of the small vector ¢ = (¢, &, &;) caused
by strain. Here x coincides with the origin of the vector and x + ¢ with
its end. At the time t the point x will occupy the position x + u(x, t) and
the point x + ¢ the position x + ¢ + u(x + £, t). Therefore, the change of
the vector ¢ which is denoted by Aé(x,t) or simply by A¢ may be
calculated by the formula

Aé(x, t)=u(x+&t)—u(x,t).

Applying Taylor’s expansion and neglecting, due to the smallness of the
vector £, the terms of the order higher than |£|, we obtain

A&(x, )=, ———"“f;;j’ )

& (5.1

where A€ = (A€, A&y, AES).
Consider the representation

%_1(%+%)+1<%_%).
aX,‘ 2 3X,' 0Xi 2 3X,‘ X

The quantities du;/dx; — du;/ dx; form an antisymmetrical matrix. They are
the components of the curl ¥ and describe a small rotation of the
considered part of the medium taken as a whole. By introducing the
notation

Sux, =1 curl u(x, ) =2 3, PeX D) (5.2)
2 269 0xq
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we have
13w _ %) - )
5 ( ax " ax §kj £ Ok (5.3)

3 = (9, 3,, 3) is called the vector of rigid rotation and %,, &, 3; are
its components. The vector of rigid rotation must not be confused with
the vector of internal rotation discussed in §3.

The quantities

1 (aui(x, t) + duj(x, t)

form a symmetrical matrix. They are called the components of the strain
tensor or the components of strain (at the point x at the time t).
With this notation (5.1) takes the form

263 ot~ S eudity ¢

whence it follows that the deformation in a small neighbourhood of
every point may be considered as a linear and homogeneous function of
the coordinates.

The deformed state is characterized by changes in the distances
between the points. The deformed state at any point x may be therefore
characterized by changes in length (or in the square of length) of every
vector of the type &

Now small displacements will be considered. The displacement vector
and its derivatives with respect to the Cartesian coordinates are assumed
so small that their product may be neglected. Calculate |¢ + A¢[ - |¢[~
By (5.1) we have

242 du;\’ 2
E+apr-¢=3 (6+363%) -S ¢

u;
=2 Z ‘L §i§j =2 Z e,-,~§i§,~. (56)
7 0X; i
The square of length of the vector increment |A¢[* is expressed similarly,
|AE(x, D] = 2, ei(x, DEE: (5.7
L]
Formulas (5.6) and (5.7) show that changes in the distances between

the points and hence the deformed state are characterized exclusively by
the strain components.
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If the strain components are zero, e;j(x,t)=0, then a small neigh-
bourhood of x will be in the same state as at the time ¢, (i.e., it will
remain undeformed). The state at the time t may differ from that at the
time t, only by rigid displacement. If, however, e;(x, t) = 0 for any point
x, then the foregoing statement holds for the whole medium.

Obviously, the converse statement is also true: if in some neighbour-
hood of x the distance between two points is not altered (in other words,
the distances at the time ¢y, and t coincide), then the strain components
will be zero, e;(x,t)=0.

2. Formulation of Hooke’s law

It is clear from the preceding article that there must exist some
dependence between the stress components and the corresponding strain
components. Hooke’s law suggests the following simplest linear depen-
dence between them:

Ti(x, 1) = ; cii (X, t)ew(x, t), (5.8)

where c;k(x,t) are certain quantities called elastic constants. They are
constant in the sense of not being dependent on the strain components
and hence on the stress components.

It will always be assumed in the sequel that the elastic constants are
independent of time. Besides, the case of a specific and important
dependence of the elastic constants on the position of x will be consi-
dered.

If the elastic constants do not depend on the position of a point in the
medium, the medium is called homogeneous (in the sense of elastic
properties but not in that of the mass distribution). If the elastic
constants vary from one point to another, the medium is called in-
homogeneous.

The symmetry of the matrices ||| and ||e;|| implies

Cijik = Cijit = Cjitk = Cijki- 5.9

The number of different elastic constants is now reduced from 81 to 36.
It will be shown later that these constants, besides (5.9), also satisfy the
condition

Cijik = Clkijs (5.10)

by virtue of which the above number is reduced to 21.
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Hooke’s law also assumes that the strain components are expressed
(linearly and uniquely) through the stress components, i.e., system (5.8)
admits a unique solution for the strain components,

eij = IEk: C;}‘lkflk- (58’)

Formulas (5.8) and (5.8’) imply elasticity of the medium. By elasticity
is meant an ability of the medium to restore its original shape after the
forces that have caused deformation are removed. More precisely,
elasticity is such a state of the continuous medium which is charac-
terized by the one-to-one relation between stresses and strains; to zero
stresses correspond zero strains.

The elastic constants are determined for each medium experimentally.
A detailed account of the experimental methods used as well as tables
with the numerical values of the elastic constants for many materials
may be found in the references given in §15.

3. Isotropic medium

The stress and strain components and the elastic constants, related
through Hooke’s law, depend on the orientation of the coordinate axes.
The medium is said to be isotropic, if its elastic constants c;x do not
depend on the orientation of the coordinate axes or, in other words, if
the elastic properties of the medium are the same in all directions. If the
medium is not isotropic, it is called anisotropic.

In an isotropic medium the number of different elastic constants is
reduced to two. This can readily be shown by applying formula (5.8) and
the properties of the stress and strain components (see, for example,
LovVvE [1], SNEDDON, BERRY [1], FILONENKO-BORODICH [1], LEKHNIT-
skiI [1]). The following relations are obtained

Cijik = A8 + p (8udj + 6ikbijr). (5.11)
Substitution of (5.11) in (5.8) gives
Ti(X, 1) = A8; X, ew(x, 1)+ 2uei(x, t). (5.12)
k

The constants A and u are called the Lamé constants. They do not in
general depend on the position of a point in the medium. We shall be
concerned mostly with homogeneous media and always assume, unless
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stated otherwise, that the constants A and p do not depend on the
position of the point x.

Formula (5.12) expresses Hooke’s law for an isotropic medium. The
notation

O(x,t) = ; e (x, 1) (5.13)

is sometimes used (see, for example, MUSKHELISHVILI [1]) and Hooke’s
law is then written in the form
1-,~,~(x, t)= AS;;@(x, t)+ 2}1.8,','()(, t), (5.14)

or, using formulas (5.4), in the form

(5.15)

i, 1) = A8 div u(x, t) + p (‘3""("’ £) | du(x, t)),

6x,- ax,-

where u = (u,, uy, us) is the displacement vector.

We have also included in Hooke’s law an assumption that system
(5.14) is solvable with respect to the strain components for any values of
the stress components. This condition, as is easily verified, is reduced to
the conditions

p#0,  3A+2u#0, (5.16)

If these conditions are fulfilled, we obtain from (5.14)

SO0 1) = A (x, 1) - DA :
i 1) =5 o my(x, 1) = gy 2 (X, 1), (5.14)

Other elastic constants are sometimes introduced into consideration:
the modulus of elasticity E (which is also referred to as Young’s
modulus), Poisson’s ratio o, the modulus of compressibility k, the
Poisson number m. These quantities are related to the Lamé constants
by

_prQ@u+3)r) _ A _3A+2u 1
E A+ 0 T+ k 3 0 MTs

(5.17)

4. Transversally isotropic medium

An elastic medium is called transversally isotropic (see Love [1]) if
there exists such an axis that in any plane perpendicular to it the elastic
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properties of the medium are the same in all directions or, in other
words, all planes perpendicular to this axis are planes of isotropy.

Assume that the Cartesian coordinate system is chosen in such a way
that the X;-axis is directed perpendicular to the plane of isotropy. Then
the elastic constants are not changed when the system rotates about the
X;-axis. Thus, the medium possesses transversal isotropy if and only if
there exists such a Cartesian coordinate system X,X,X; at the rotation
of which about Xj, i.e., at the transformation of the kind

X} =x;c0s ¢ + X, sin ¢, X5=X,C0S ¢ — X, sin ¢, Xi=Xx3,
(5.18)

the elastic constants remain unchanged. ¢ here is an arbitrary angle.

In this case the number of different elastic constants is reduced to five
(see LovE [1], LEKHNITSKI [1], SNEDDON, BERRY [1]) and Hooke’s law
assumes the form

Tn=Cie+ e+ Cieas,
T = C2e11 + Cien+ Ciess,

T33 = C3€)1 t C3en + Cq€33,
(5.19)

T23 = Cs5€23,
T3 = Cs€13,

1
Ti=12(C1— C)en.

We shall not go into a detailed study of transversally isotropic media.
Some related topics will be discussed at the end of the book. Note only
that relations (5.19), being a system of algebraic equations for the strain
components, are solvable with respect to the latter for any ;. This
condition imposes certain restrictions on the constants

Cy, Ca, C3, Ca4, Cs.

The numerical values of the constants for many media have been
calculated experimentally (see HUNTINGTON [1], LEKHNITSKI [1]).

Instead of the term ‘‘transversally isotropic medium’ the term
“hexagonal system” is also used because in this case the medium
possesses hexagonal elastic symmetry.
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§6. Strain energy in classical elasticity

1. Law of energy conservation

Let at the time t, an elastic medium be in its natural state and occupy
a domain D bounded by S in the system X,X,X3;. We consider the state
of the medium at the time ¢t when by some external action it is brought
from the state of rest into the state of strain.

Calculate the work done by the forces that have caused deformation
in the interval from t, to t. In classical elasticity such forces are external
stresses and mass forces. The effect of heat sources is ignored. Defor-
mation is assumed to be a slow isothermic process such that at any
instant of time the body is in thermodynamic equilibrium.

The work done by external stresses and mass forces in the time
interval (2o, t) is denoted by R (t) and the same work done in the interval
(t,t +dt) by dR(¢). First, we calculate dR (t).

The point occupying the position x in the medium at rest will move to
the position x + u(x, t) at the time ¢t and to the position x + u(x, t + dt) at
the time t + dt. The displacement of the point x in the interval dt will
therefore be u(x,t +dt)— u(x, t) which may be represented by

du(x,t)
ot dt,

neglecting higher order infinitesimal quantities relative to dt.

A small area is isolated on the surface S in the neighbourhood of the
point y € S and denoted by dS. The external stresses acting on dS may
be represented (see Art. 3, 1) in the form 7(y,t)dS, where n =
(ny, ny, n3) is the unit outward normal to S at y. Thus, the work of the
external stresses acting on dS in the interval (t, t +dt) is equal to

O grrgy, 1) ds,

and the total amount of work performed by the external stresses is
expressed by the integral

J’dt 2 (n)(y, t) au (y9 t)dS

The work done by the mass forces % in the interval (¢, ¢t +dt) is
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calculated in a likewise manner:

[ a3 o, 0 22t g

Therefore (see (2.1)),

O[3 50,0m 20 Das + [ 5 3 Fix,n 20D g
D

Hence, applying the Gauss—Ostrogradski formula, we obtain

d972(t) fz (2 67!,(x t) + o Fi(x, t)) au,(x,t)dx

: at
Z i (x, t)" W) 6.1)
ax.0t
D
Using formula (4.3) and the notation
E¥() =3 f s ("“ i(x, ”) dx, 6.2)

the first integral on the right-hand side of formula (6.1) assumes the form
dE®(t)/dt. E®(t) is the kinetic energy of the medium at the time t. The
kinetic energy of a particle with the mass dm = p dx at the time ¢ is
equal to 3pv’(x, t)dx, where v(x,t) is the velocity of the particle at the
time t, i.e., v(x,t)=0u(x,t)/dt. The sum of all these quantities is the
kinetic energy of the medium.

It follows from (6.2) that the kinetic energy does not depend on the
state of strain at a given time.

The second term on the right-hand side of (6.1) will now be examined.
Transforming the expression d%u;(x, t)/dx;dt dt, we may obviously write it
in the form

azu,-(x,t)d _ dui(x, t +dt) au.-(x,t)Edau,(x,t)

6.3
ax;ot ax; ax; ax; (6.3)

neglecting higher order infinitesimal quantities relative to dt.
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Therefore,

a%u; ou;
Z T ax‘;t dt = 2 - az = 2 7 dey, (6.4)

where e¢; are the strain components (see (5.4)).
(6.1), (6.2), (6.4) imply

d® =dE®+ | X 7 de; dx. (6.5)
L)

D

It is now assumed that the medium under consideration is isotropic
with the Lamé constants A and w. Introducing the function

A 2 )
E(x,1)=% (Z ei(x, z)) +u 2} el(x, t) (6.6)

which is the quadratic form with respect to the strain components, we
have by virtue of Hooke’s law (see 5.12))

dE 3E_2 n%

59—:’1‘ = Tji, 6.7)
From (6.5) and (6.7) it follows that
d®R = dE® +dEW, (6.8)
where
E®P(t)= J' E(x,t) dx. (6.9)
D

Integrating (6.8) from t, to t and taking into account that E®(t,) =
E®(ty) = 0, we obtain

R(t)=E®@t)+ EP(1). (6.10)

E™(t) is the potential energy of the body strain at the time ¢. In contrast
to the kinetic energy E®(t), it depends essentially on the deformed state
and represents the work to be done by external stresses and mass forces
to produce a given deformed state.

Formula (6.10) expresses the law of energy conservation: the work of
all the forces that have produced a deformed state is numerically equal
to the sum of the kinetic energy of the medium and the potential energy
of strain.
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Formula (6.10) is also valid for an anisotropic medium. Consider some
(not necessarily isotropic) elastic medium and introduce the function

1
E(x,t)= 3 __Ekl Ciji€ij (x, t)en(x, t), (6.6)
LK,

where c;y are elastic constants defined by Hooke’s law (see (5.8)).
Due to (5.10), (5.8) and the assumption that c; are time-independent
we have

dE oE aej
— = . = . — = i} ’
ae” ; Cijkl€ki Tjis at ‘2} Tji ot (67)

Hence, upon introducing function (6.9) in which E(x, t) is determined by
(6.6'), we obtain relation (6.10).

2. Specific energy of strain

As is seen from (6.9), E(x,t) represents the potential energy cal-
culated per unit volume (at the point x at the time t). In classical
elasticity such energy is called the specific energy of strain.

For an arbitrary anisotropic medium the specific energy of strain is
expressed by (6.6") and for an isotropic medium by (6.6). Applying
formulas (5.19), the specific energy of strain may be calculated from
(6.6") for transversally isotropic media and for other particular cases of
anisotropy.

The expression for the specific energy of strain was obtained by using
Hooke’s law and assumption (5.10), the latter still remaining unsubstan-
tiated.

Let us forget for a while what we know about the specific energy of
strain and denote by E(x,t) the work of strain or, what is the same
thing, the potential energy of strain calculated per unit volume at the
point x at the time t. This implies that the medium which is at rest at the
time to is considered and only a small part of it dD with the gravity
centre at x is taken. The potential energy of strain of this part at the time
t is calculated. The limit of the ratio of the energy to mes(dD) when
mes(dD) tends to zero will be E(x, t).

It is recalled that the kinetic energy is not taken into consideration in
calculating the work of strain.

E will be called the specific energy of strain and the change of E in
the interval (¢, t + dt) will be denoted by dE. From (6.5) it follows that

dE(x,t) = 2, 7;(x, 1) dej(x, 1). (6.11)

[
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The quantities e; characterize completely the deformed state of the
medium. The potential energy, being dependent exclusively on the
deformed state, will be a function of these quantities. Therefore, we
shall sometimes write E(e;)(x,t) and E(e;) for E(x,t) and E, respec-
tively.

Expanding E(e;) in powers of e; near the state of rest (e¢; = 0) and
neglecting the terms of order higher than two (small deformations are
considered), we have

1
E(e;) = co+ 2 cijeij + 2 2 Cijki€ijext, (6.12)
Fxi ST

where ¢y, ¢, Ciju are constants or rather quantities not depending on the
strain components and hence on the stress components but depending,
in general, on the position of a point in the medium.

Since the strain tensor is symmetrical, e; = ¢;;, the product e;e; is not
changed when the indices in either of the pairs (i,j) and (k, 1) are
rearranged. Moreover, this product is not changed either if the pairs
themselves are rearranged. Therefore, one may assume without loss in
generality that the coefficients ¢; and c; satisfy the same symmetry
conditions, i.e.,

Cij = Cji, Cijit = Cjiki = Cijik = Cklij- (6.13)
It follows from relation (6.11) that

dE

e (6.14)

Thus, the partial derivative of the function E with respect to any one
of the strain components is the corresponding stress component.
The derivative of E with respect to the strain components may be
calculated by (6.12). We then have
9E _ ci+ D, Cime
ae‘_j ij E ijklCkl-
Therefore,
T = Cij + % Cijki€ul-

Note that in expansion (6.12) c,=0 because the condition € =0
implies E =0 (at the initial time ¢ =t, the medium is not deformed).
Further, the absence of strains implies the absence of stresses; in other
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words, if all e; =0, then all r; =0. Therefore, from the above formula
we conclude that ¢; = 0.
Now,

1
E(e;) = 3 2:,[ Cijki€ijex, (6.15)

ik,

and we obtain for the stress components

Tij = % Cijki€ki- (616)

Relations (6.16), establishing the relation between the components of
stress and strain, express Hooke’s law for any elastic medium within the
framework of the classical theory: the deformations of the medium are
proportional to the stresses applied to it or, more precisely, the defor-
mations are linear combinations of the stresses. It should be noted that
the elastic constants c;, satisfy conditions (5.10) (see (6.13)) which in the
earlier discussion were taken as assumptions.

The above arguments substantiate Hooke’s law from the standpoint
of physics.

From (6.15) and (6.16) one may derive other representations of the
specific energy of strain, for example,

E = % 2 Tij€ijs (6.17)
LJ
whence
dE _
E = ¢;. (6.18)

It may be shown that the constants c; form a fourth order tensor.

It follows from the physical meaning that the specific energy of strain
is the positive definite quadratic form of six independent quantities e;.
This condition imposes certain restrictions on the elastic constants. In
the case of an isotropic medium these restrictions are reduced to

w>0, 3A+2u>0. (6.19)

Though it has been shown experimentally that A >0, u >0, (see
MuskKHELISHVILI [1], LANDAU, LiFsHITZ [1], GRAMMEL [1], HUNTING-
TON [1] et al.), we nevertheless subject these constants to weaker
restrictions (6.19).



