
The Analysis of Response in Crop and Livestock Production

Third Edition John L. Dillon and Jock R. Anderson

Pergamon Press

The Analysis of Response in Crop and Livestock Production

Some other titles of interest

BUCKETT An Introduction to Farm Organisation and Management, 2nd edition

BUCKETT An Introduction to Animal Husbandry, 2nd edition

DODSWORTH Beef Production

HILL Introduction to Economics for Students of Agriculture, 2nd edition

LAWRIE Meat Science, 4th edition

LOCKHART & WISEMAN Introduction to Crop Husbandry, 6th edition

NELSON An Introduction to Feeding Farm Livestock, 2nd edition

PARKER Health and Disease in Farm Animals, 3rd edition

PRESTON & WILLIS Intensive Beef Production, 2nd edition

RAY Agricultural Insurance, 2nd edition

SHIPPEN, ELLIN & CLOVER Basic Farm Machinery, 3rd edition

WIDDOWSON Towards Holistic Agriculture

The Analysis of Response in Crop and Livestock Production

THIRD EDITION

by

JOHN L. DILLON Professor of Farm Management

and

JOCK R. ANDERSON

Professor of Agricultural Economics both at the University of New England, Armidale, Australia

PERGAMON PRESS

Member of Maxwell Macmillan Pergamon Publishing Corporation OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan,
CANADA	Pergamon Press Canada Ltd., Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5

Copyright © 1990 John L. Dillon and Jock R. Anderson

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First edition 1968 Second edition 1977 Third edition 1990

Library of Congress Cataloging-in-Publication Data

Dillon, John L. The analysis of response in crop and livestock production/by John L. Dillon and Jock R. Anderson.—3rd ed. p. cm.— Includes bibliographical references. 1. Farm management—Mathematical models. 2. Agricultural productivity—Mathematical models. 3. Farm management—Statistical methods. 4. Agricultural productivity—Statistical methods.

I. Anderson, Jock R., 1941– II. Title. III. Series. S566.5.D55 1990 630'.68—dc20 89-48180

British Library Cataloguing in Publication Data

Dillon, John L. (John Louis)
The analysis of response in crop and livestock production.
(3rd ed., John L. Dillon and Jock R. Anderson)
1. Feedingstuffs. Responses of livestock. Economic aspects
I. Title II. Anderson, Jock, 1941–
338.1'6

ISBN 0-08-037493-X Hardcover ISBN 0-08-037494-8 Flexicover

Printed in Great Britain by B.P.C.C. Wheatons Ltd., Exeter

RITA, MIKE, CAS, MATT, SUE, ROSIE, MARTIN, JOHN, TIM AND DOM

AS WELL AS LIBBY, JULIE AND DIANNE "No aphorism is more frequently repeated in connection with field trials, than that we must ask Nature few questions, or, ideally one question at a time. The writer is convinced that this view is wholly mistaken. Nature, he suggests, will best respond to a logical and carefully thought out questionnaire, indeed, if we ask her a single question, she will often refuse to answer until some other topic has been discussed."

R. A. Fisher (1926)

Contents

1.

2.

3.

Pref	ace to Third Edition	xi	
Modelling Response Processes			
1.1	Philosophy	1	
1.2	Types of Models	1	
1.3	Persistent Problems in Modelling	2	
1.4	Further Reading	4	
Resp	onse Curves and Surfaces		
2.1	Notation	5	
2.2	Theory of Response	6	
2.3	Variable, Fixed and Unimportant Input Factors	7	
2.4	Single Variable Input	8	
2.5	Two Variable Inputs	11	
2.6	Numerical Example with Two Variable Inputs	19	
2.7	n Variable Inputs	23	
2.8	Further Reading	25	
2.9	Exercises	26	
	ency in Response		
3.1	Purposes of Response Analysis	29	
3.2	Best Operating Conditions	29	
3.3	Output Gains and Input Losses	30	
3.4	Single Variable Input	32	
3.5 3.6	Two Variable Inputs	34	
3.0 3.7	n Variable Inputs	37	
3.7 3.8	Multiple Response without Input Control	38	
3.0 3.9	Multiple Response with Input Control	39	
5.9	Constraints on the Objective Function 3.9.1 Fixed-output Constraints	40	
		41	
3.10	3.9.2 Fixed-outlay Constraints Further Reading	48	
3.11	Exercises	53	
0.11	LACICI3C3	55	

vii

Contents

4.	Dual	Duality of Response Relationships		
	4.1	Introduction	57	
	4.2	Duality	58	
	4.3	Using Concepts of Duality	59	
	4.4	Flexible Functional Forms	60	
	4.5	Further Reading	63	
	4.6	Exercises	64	

5. Estimation of Response in a World where Risk is Unimportant

5.1	Introduction		66
5.2	Experimental Design		66
	5.2.1	Designs for Response Surface Estimation	68
	5.2.2	Choice of Design	71
	5.2.3	Pen-feeding Trials	74
5.3	Statis	tical Estimation	75
	5.3.1	Least-squares Regression	75
	5.3.2	Combining Cross-section and Time-series Data	76
	5.3.3	Frontier Functions	76
	5.3.4	Multi-equation and Other Models	77
		Series of Experiments	78
	5.3.6	Economic versus Statistical Significance	78
5.4	Choic	e of Response Model	80
	5.4.1	Linear Response and Plateau Model	81

6. Response Efficiency over Time

6.1	Introduction	84	
6.2	Time Influences on Response	84	
6.3	Time-Price Effects	86	
6.4	Time and the Objective Function	87	
6.5	Planning over Time	87	
6.6	Unconstrained Profit Maximization over Time	88	
	6.6.1 Without Time Preference	89	
	6.6.2 With Time Preference	91	
	6.6.3 Numerical Example	94	
6.7	Constrained Profit Maximization over Time	94	
6.8	Time Classification of Response Processes	96	
6.9	Examples of Time-dependent Response Analysis	97	
	6.9.1 Fertilizer for Multi-harvest Crops	98	
	6.9.2 Feeding Period and Rations for Broilers	100	
	6.9.3 Livestock Production from Pasture Grazing	102	
	6.9.4 Crop Production with Fertilizer Carry-over	108	
6.10	Further Reading	111	
6.11	Exercises		

viii

-	onse Efficiency Under Risk Introduction	
7.1		116
7.2	Sources of Risk	117
	7.2.1 Yield Uncertainty	117
	7.2.2 Price Uncertainty	119
7.3	Risk and the Objective Function	119
	7.3.1 Profit Uncertainty	120
	7.3.2 Expected Utility and Subjective Probability	120
	7.3.3 Utility Objective Function	122
7.4	Best Operating Conditions under Risk	124
	7.4.1 Single Decision Variable	125
	7.4.2 Multiple Decision Variables	131
	7.4.3 Constrained Multiple Response	132
	7.4.4 Time and Risk Together	134
	7.4.5 Interrelated Yield and Price Risks	136
	7.4.6 Effect of Skewness	137
7.5	Empirical Appraisal under Risk	138
	7.5.1 Specification of the Utility Function	138
	7.5.2 Evaluation of Best Operating Conditions	140
	7.5.3 Specification of the Probability Distributions	142
	7.5.4 Estimation of Risky Response Relationships	143
7.6	Stochastic Efficiency Analysis	146
7.7	Further Reading	153
7.8	Exercises	156

8. Difficulties in Field Research

9.

•

8.1	Introduction		158	
8.2	Respo	Response Variability over Space and Time		
8.3	Farm	Farm versus Experimental Response		
8.4	Makin	Making Farm Recommendations		
8.5	Farm	ing Systems Research	164	
	8.5.1	Philosophy of Farming Systems Research	164	
	8.5.2	Need for Farming Systems Research	167	
	8.5.3	Methodology of Farming Systems Research	168	
	8.5.4	Farming Systems Research and Response		
		Analysis	174	
Aggr	egate	Response Analysis		
9.1	Intro	duction	175	
92	Produ	uction Cost and Supply Functions	175	

9.2	Production, Cost and Supply Functions	175
9.3	Normative Estimation of Supply Response	
9.4	Positive Estimation of Supply Response	178
	9.4.1 Riskless Distributed Lag Models	179
	9.4.2 Risk Response Models	181
9.5	Further Reading	183
9.6	Exercises	185

ix

x		Contents	
10.	Ecor	nomics of Response Research	
	10.1	Introduction	186
	10.2	Aggregate Benefits of Research	186
	10.3	Distribution of Benefits	190
	10.4	Economics of Research on Response Processes	191
	10.5	Issues in Measurement	192
	Refe	RENCES	195
	Auth	or Index	233
	Subje	ct Index	243

Preface to Third Edition

DESPITE a variety of revisions and the addition of much new material, the purpose of this little text remains unchanged. As with the first and second editions, its aim is to provide an introductory outline of the analytical principles involved in appraising the efficiency of crop-fertilizer and livestock-feed response.

As well as a variety of minor revisions, a number of major additions have been included in this third edition. These relate to the principles of modelling (Chapter 1), the concept of economic duality as pertinent to response processes (Chapter 4), the appraisal of aggregate response (Chapter 9) and the economics of response research (Chapter 10). As in previous editions, the temptation of attempting to cover all the refinements to response analysis discussed in the journal literature has been avoided so as to maintain the text's introductory nature. The relevant literature, however, has been extensively surveyed and referenced. Of these references, three monographs stand out as being of particular relevance—Frisch's *Theory of Production* for its thoroughgoing theoretical development of both the technical and economic aspects of production, Heady and Dillon's *Agricultural Production Functions* for its empirical orientation to crop and livestock response analysis and Chambers's *Applied Production Analysis: A Dual Approach* for its sympathetic treatment of duality theory.

As a primer on response analysis, it is hoped the present text will help fill the gap in providing students of both agricultural science and economics with a simple but formal exposition of the why, how and wherefore of the principles of crop and livestock response analysis, thereby helping to further co-operative effort among biological and economic researchers. This is not to say that the principles enunciated here are thought of as all-important in the real world. To some extent they are no more than ideals unlikely of achievement. This must be so, given the uncertainties that exist in the real world and the fact that crop and livestock response processes are generally embedded in larger response systems—both biological and economic whose ramifications are not irrelevant. None the less, it is hoped this introduction will provide some of the know-how needed in establishing the massive programme of crop and livestock response analysis required if countries are to obtain full benefit from their agricultural resources.

Preface

Worldwide, the "easy" gains of the Green Revolution associated with modern cultivars, increased fertilizer use and enhanced irrigation have already been achieved. "Second-generation" gains will depend on better (i.e. more efficient) crop and livestock management. The more efficient a country's agriculture is, the better fed its people can be; and the more resources there can be available to satisfy people's needs and aspirations beyond the essentials of food and fibre. Therein lies the crucial importance of agricultural science. By manipulating crop and livestock response phenomena so that they better serve society's needs, the scientist can ensure both the more efficient production of food and the release of resources needed for non-agricultural development.

For stimulus in preparing this third edition, as well as to our students and as evidenced by the references cited, we are grateful to our colleagues worldwide. Our thanks are also due to George Battese for some critical assistance and to Elizabeth Freyman and Diane Mitchell for manuscript preparation.

Armidale, Australia

JOHN L. DILLON JOCK R. ANDERSON

CHAPTER 1

Modelling Response Processes

1.1 Philosophy

Any THEORY[†] is just a set of simplified assumptions about how reality behaves. The usefulness and test of a theory lies in its ability to predict. So long as it predicts adequately, a simple theory is to be preferred to a complex one. Since theories can be disproved but never proved, they should be continuously tested and replaced by better ones as they become available.

This thought pervades this book. To describe it as a philosophy may be a little pretentious, but certainly the essence of our approach to modelling response processes is simplification of representation, simplicity in manipulating the relationships invoked, and simple interpretation of response analysis. Such essence is, of course, in no way unique to response analysis, as it is properly involved in all modelling.

Different modellers naturally differ in what they regard as an appropriate degree of simplification or of its complement, refinement. Our own preferences, for example with regard to simple algebraic forms and use of the differential calculus, will soon become evident. Other authors, just as defensibly and sometimes more workably, will opt for linear algebra and mathematical progamming methods as their primary tools in response work. Clearly, elements of subjectivity, not to mention considerable artistic judgement, can and indeed must be involved in response analysis.

1.2 Types of Models

There seem to be almost as many schemes for classifying models as there are modellers themselves. Some highlight primarily the purpose, such as normative versus descriptive, where the main emphasis is deductive and inductive, respectively (Headley and Carlson, 1963; Anderson, 1979)[‡].

l

[†] Throughout, when an important technical term is introduced for the first time, it is printed in SMALL CAPITALS with, where necessary, an immediate definition or explanation of the term.

[‡] References are listed alphabetically by author at the end of the volume.