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PREFACE 

The demands of modern science inexorably force the mathematician to 
explore the nonlinear world. That it is a difficult and often humbling journey 
with painfully crude maps and rather primitive direction-finders cannot be 
gainsaid, but in return it can be asserted that it is richly rewarding. The few 
areas that have been so far examined with any care have been full of surprises 
and vastly stimulating to the imagination. There is every reason to believe 
from what so far has been glimpsed that many more surprises lay in store, novel 
phenomena which will open up undreamt of vistas for mathematics. I t  is an 
exciting prospect in an exciting field in an exciting time. 

Explicit analytic solutions of nonlinear equations in terms of the familiar, 
well-tamed functions of analysis are not to be expected, although fortuitous and 
treasured examples occur here and there. Consequently, if either analytic or 
computational results are desired, various approximate methods must be applied. 
By and large, the effective solution of particular problems is an art. However, 
there d o  exist a number of powerful procedures for solving nonlinear problems 
which have been slowly forged and polished over the last one hundred years. 
As in all intellectual areas, art combined with method is more effective than 
untutored art. This book is intended as an introduction to the study of certain 
systematic and sophisticated techniques. 

The  power and versatility of these methods has been tremendously amplified 
by the digital computer. Even more, this new tool has motivated a careful 
reexamination of older methods and thus a creation of new techniques specifi- 
cally designed to exploit the peculiar properties of the electronic calculator. 
That a good deal of mathematical ingenuity and experience is required to study 
significant problems with the aid of a computer hardly needs emphasizing. 

This volunie may also be regarded as a contribution to a new mathematical 
theory that is slowly emerging, a theory of closure of operations. Abstractly, 
the general problem may be described in the following terms. We are given the 
privilege of using a certain limited number of mathematical operations, such as, 
for example, the solution of finite systems of linear or nonlinear differential 
equations subject to initial conditions, or the solution of a finite system of linear 
algebraic equations. The task is then that of solving a particular equation, such 
as a partial differential equation, a two-point boundary value problem for 
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ordinary differential equations, or an integral equation, to a specified degree 
of accuracy using only these algorithms. The  study becomes still more interesting 
and significant if we impose a constraint on the number of operations of particular 
types that can be employed, or on the time that may be consumed in the overall 
calculation. Usually, the computational facilities available automatically impose 
these constraints. 

‘I’he two types of operations mentioned above have been carefully singled out 
for explicit mention since they correspond to the two major capabilities of the 
digital computer in the field of analysis. That they are not guaranteed capabilities 
merely adds to the interest of the zest of using computers to obtain numerical 
rcsu I ts. 

We nil1 present a spectrum of methods which can be used for a variety of 
purposes, ranging from the derivation of a simple exponential or algebraic 
approximation to a sequence of algorithms of increasing complexity which 
require a digital computer. At the moment, our orientation, as far as large-scale 
computing is concerned, is toward a digital computer, which is to say a leaning 
toward initial value problems. As hybrid computers become more powerful 
and prevalent, a certain mix of methods involving two-point boundary value 
problems and initial value problems will occur. 

In general, the word “solution” must be defined operationally in terms of 
various technological tools available for obtaining numerical results. The  
arrival of the digital computer has already drastically changed the significance 
of this term “solution,” and there will be further radical changes over the next 
twenty-five years. 

The  majority of the methods we present here can be applied to the study of 
partial differential equations and to the still more complex functional equations 
that the determined engineer and intrepid physicist are forced to face. The  
applications w ithin this broader context are naturally of greater significance 
than those that can be made using ordinary differential equations. Despite this, 
we have deliberately refrained from any excursion in force into the area of partial 
differential equations. In this volume, the first of two, we have discussed only 
ordinary differential cquations, However, since any complete separation between 
ordinary and partial differential equations is unnatural, we have broken this 
self-imposed vow in the second volume. This is particularly the case in the 
treatment of dynamic programming and invariant imbedding. 

Since w e  are primarily concerned with introducing the reader to a variety 
of fundamental methods, we feel that there is considerable pedagogical force 
to keeping the setting as familiar as possible while new ideas are being introduced. 
Once acquainted with the concepts, the reader can readily apply them to all 
types of functional equations with a small amount of additional background. 
References will be found throughout to their utilization in the theory of partial 
differential equations. 
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Another strong argument for using ordinary differential equations as a proving 
ground is that it is relatively easy to provide a number of numerical examples 
in this area to illustrate different methods. In addition, a large number of in- 
teresting analytic results are available as exercises. These have principally been 
taken from research papers. 

Having briefly described our overall aims, let us examine the structure of 
the book. The first three chapters contain some of the fundamental results and 
methods that will serve throughout both as foundation and ancillary tools. 
Chapter 1 discusses first- and second-order linear differential equations, 
subject to initial and boundary value problems, with some attention to the 
Riccati differential equation and a detailed study of the behavior of the physical 
solutions of nonlinear equations of the form 

where p and q are polynomials in their arguments. This last represents a brief 
account of extensive work by Bore1 and Hardy, very important and useful 
results which are still not as well known as they should be. Some related results 
for the Emden-Fowler (or Fermi-Thomas) equation will be presented at the 
end of Chapter 4 as applications of stability theory. 

Throughout we have tried to preserve some sort of a careful balance between 
general methods and particular problems. We have constantly kept in mind the 
famous dictum of Hurwitz, “It is easier to generalize than particularize.” 

In Chapter 2, we present a brief account of basic results in algebraic aspects 
of matrix analysis that will be employed throughout the remainder of the book. 
The principal contents are the reduction of quadratic forms to canonical forms 
and associated variational problems and the Perron theorem for positive matrices. 
Chapter 3 discusses the use of matrices in the study of systems of linear differen- 
tial equations with both constant and variable coefficients. It is impossible to 
study multidimensional problems in any meaningful fashion without matrix 
theory. 

Chapter 4 contains some basic results concerning stability theory which we 
will employ in subsequent chapters to validate certain methods of approximation. 
Following the lines initiated by PoincarC and Lyapunov, we wish to compare 
the solutions of 

T(u) = 0 (2) 

with those of 

T(u) = N ( 4 ,  (3) 

where N(u} is “small” in some sense. The most important case is that. where T 
is a linear operator with the property that T(u) = 0 possesses a convenient 
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solution. Closely connected with this question is the problem of estimating the 
difference between the solution of (2) and a function w satisfying the inequality 

where I/ ... / /  denotes some appropriate norm. 
With these “back-up” results available, we can turn to our principal goal, 

the study of certain powerful methods of analytic and computational approxima- 
tion. In  Chapter 5 ,  we present the Bubnov-Galerkin method, and in Chapters 7 
and 8 that of Rayleigh-Ritz. Although in certain special, but important, cases 
the methods overlap, they are quite different conceptually and extend in 
different ways. 

The  guiding ideas are simple, as are all fundamental mathematical ideas. 
As always, effort and ingenuity enter in making these procedures work in 
particular cases. 

Let us begin with a description of the Bubnov-Galerkin method. Let T(u) = 0 
be the equation whose solution is desired. This is equivalent to minimizing the 
scalar quantity 1 1  T(u)ll, for any norm, over the class of admissible functions. We 
now introduce a closure technique by restricting u to some smaller class of 
functions, for example, one defined by a finite set of parameters. The  most 
important example of this is that where the restricted class is defined by 

N 

I Z  = akUk 9 

k = l  
( 5 )  

where the uk are fixed functions and the ak are parameters. The  infinite- 
dimensional problem of minimizing I /  T(u)lI is then replaced by the approximating 
finite-dimensional problem of minimizing the function 

with respect to the ak . 
This problem may be attacked by any of a number of techniques developed 

in optimization theory over the last twenty years: search techniques, gradient 
methods, Newton-Raphson, nonlinear programming, expansion methods, and 
so on. Let us note that with such methods in mind, we have deliberately refrained 
from any automatic use of the usual quadratic norm in the foregoing description. 
In the text, however, succumbing to the lure of analytic simplicity, we have 
considered principally quadratic functionals. More general nonlinear functionals 
give us an opportunity to discuss the Newton-Raphson-Kantorovich method 
and the use of the Lagrange expansion. 

Closely associated with the Galerkin method are the methods of mean-square 



PREFACE xi 

approximation and differential approximation. The first is discussed at the end 
of Chapter 5, the second in Chapter 6.  

The technique of mean-square approximation may be described in the 
following terms. Let T(u)  = 0, as usual, be the original equation, and let 

S(v, u) = 0 (7) 

be another equation, depending on the vector parameter a, which is analytically 
or computationally more tractable than the original equation. Thus, for example, 
the equation in (7) may be linear with the original equation nonlinear, or it 
may be a nonlinear differential equation subject to an initial value condition 
with the original condition linear and subject to multipoint boundary conditions. 
Alternatively, the original equation may contain stochastic elements, while (7) 
is deterministic, or conversely. The existence of analog, digital, and hybrid 
computers, as well as the availability of many powerful analytic theories has 
considerably altered the concept of “tractable.” A great deal of flexibility now 
exists. Many different types of mathematical models are available to treat various 
kinds of physical processes. We have avoided stochastic processes in this volume 
since a good deal of effort is required to make various useful methods rigorous. 

We wish to determine the parameter a so that 

is small, where u is the solution of T(u) = 0 and some convenient norm is 
employed. Presumably, this ensures that v, the solution of (7), is close to u. 
This is a stability question. 

Interesting complications arise from the fact that u itself is unknown. There 
are various “bootstrap” methods that can be employed to circumvent this 
annoying “little detail.” Here we make brief contact with “self-consistent” 
methods, of such importance in modern physics. A major analytic problem is 
that of choosing the operator S(v, u) in such a way that the function v preserves 
certain desirable properties of u. Very little is known in this area. 

The method of differential approximation is the following. Let R(u, b )  be 
a family of operators depending on a finite-dimensional vector b, and let b be 
chosen so that 

is minimized where u is now given implicitly as the solution of T(u) = 0. We 
then use the solution of 

R(v, 6) = 0 (10) 

as an approximation to u. Once again, any discussion of the validity of this 
approach requires stability considerations. 
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A case of particular importance is that where 

with the Rk(u) differential operators. Observe that the aim of this procedure is 
once again closure. We want to solve complex functional equations using only 
the algorithms required to solve the more familiar and placid differential equa- 
tions. 

We now turn to an entirely different type of artifice. The Rayleigh-Ritz 
method hinges upon the observation that many equations of the form T(u)  = 0 
may be viewed as the Euler equation of an associated functional J(u), By this 
we mean that a solution of T(u) = 0 is a stationary point for J(u) as u varies 
over an appropriate space. Let us suppose that we are looking for a minimum 
value. The question of determining the minimum of J(u) over the original 
infinite-dimensional space is then replaced by the finite-dimensional problem 
of minimizing J(u) over a finite-dimensional subspace, each element of which 
is characterized by a finite number of parameters, say 

U = 1 b k U k .  

k=l  

Here the uk are carefully chosen functions. 
The new problem, that of minimizing the expression 

can now be approached in a number of ways. In many cases of significance, 
J(u) is a quadratic functional, the minimization of which leads to linear equations 
for the b, . There are, however, numerous difficulties associated with the solution 
of large systems of linear algebraic equations, which means that the real difficul- 
ties often begin at this point. 

Observe that in both of the principal methods described above, monotone 
approximation is obtained immediately upon increasing the dimension of the 
finite space of functions over which the variation is allowed. Thus, if we set 

A N  = min T c , 
{a;} I! (k:l )II 

i t  is clear that 
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Similarly, if we set 

we have 

Several fundamental questions immediately present themselves. The first 
is that of determining when 

lim A ,  = m$ 11 T(u)ll, 

lim dN = min J(u). 

N-CC 

N + m  U 

The second is that of determining when the function u ( N )  which yields 4, 
converges to the function u which yields min, 11 T(u)ll, with the corresponding 
problem for the Rayleigh-Ritz functional. 

Under reasonable conditions on T(u), J(u), and the spaces over which u 
varies, these are not difficult to answer. Far more difficult and important are 
the associated stability problems of estimating 11 u - u") ( 1  in terms of A ,  - A ,  , 
or d ,  - d, , and in determining 11 u - d N )  I/ as a function of N .  

These are essential matters when the effective determination of u ( ~ )  is of 
importance. A few numerical examples, together with references to extensive 
work in this area will be given. 

In view of the considerable effort required to treat the finite-dimensional 
variational problems when N is large, there is considerable motivation for 
finding ways of obtaining useful estimates for small N .  In a sense, the major 
problem is the converse. It is one of determining the smallest value of N which 
yields an acceptable approximation. Questions of acceleration of convergence 
and extrapolation arise in this connection, with techniques that go back to Euler 
and Kronecker. We shall touch briefly on these matters. 

In Chapter 8, we show how a linear equation containing a parameter can be 
considered to be the Euler equations associated with the minimization of a 
functional subject to a global constraint. Once again, Rayleigh-Ritz methods 
can be employed to obtain approximate results. 

Many of the problem areas discussed in this volume can be further illuminated, 
or considered by alternative techniques, using the methods of the second volume. 
There we consider duality as a technique for providing upper and lower bounds, 
Caplygin's method, and differential inequalities, quasilinearization, dynamic 
programming, invariant imbedding, the theory of iteration, and truncation 
techniques. The work was divided into two volumes to prevent the single, 
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massive volume that is so forbidding and discouraging to the newcomer into 
a field. 

Let us encourage the reader with the flat statement that very little is known 
about nonlinear analysis and that it is not obvious that major breakthroughs will 
be made in the near future, or ever. Hundreds and thousands of fascinating 
and significant problems abound, each of which may require a new theory for 
its elucidation. 

I have been fortunate in having three friends read through the book and help 
considerably with all aspects of preparation of the manuscript: David Collins, 
Thomas J. Higgins, and Art Lew. I wish to express my appreciation for their 
help, and to Jeanette Blood and Rebecca Karush for typing the manuscript. 

RICHARD BELLMAN 
Los Angeles, 1969 
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