Methods in ENZYMOLOGY

Volume 454 Computer Methods, Part A

Edited by Michael L. Johnson Ludwig Brand

METHODS IN ENZYMOLOGY Computer Methods, Part A

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

METHODS IN ENZYMOLOGY Computer Methods, Part A

EDITED BY

MICHAEL L. JOHNSON

Departments of Pharmacology and Internal Medicine University of Virginia Health System Charlottesville, Virginia

LUDWIG BRAND

Department of Biology Johns Hopkins University Baltimore, MD, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32 Jamestown Road, London NW17BY, UK

Copyright © 2009, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2008 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2008 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier. com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at elsevierdirect.com

ISBN-13: 978-0-12-374552-1

 PRINTED IN THE UNITED STATES OF AMERICA

 09
 10
 11
 12
 9
 8
 7
 6
 5
 4
 3
 2
 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

CONTENTS

Preface	xv
Preface	
Volumes in Series	xvii
1. Phase Response Curves: Elucidating the Dynamics of Coupled Oscillators	1
A. Granada, R. M. Hennig, B. Ronacher, A. Kramer, and H. Herzel	
1. Introduction	2
2. Estimation of Phase Response Curves	11
3. Specific Applications	17
4. Discussion	20
Appendix I	21
Appendix II	23
Acknowledgments	24
References	24
2 Multiple Ion Rinding Equilibria, Reaction Kinetics, and	
Thermodynamics in Dynamic Models of Biochemical Pathways	29
Kalyan C. Vinnakota, Fan Wu, Martin J. Kushmerick, and Daniel A. Beard	
1. Introduction	30
2. Biochemical Conventions and Calculations	34
3. Application to Physiological Systems	57
4. Discussion	64
Acknowledgment	66
References	66
2 Analytical Matheda for the Datriaval and Interpretation of	
5. Analytical Methods for the Retheval and Interpretation of	60
Boris Kovatchev. Marc Breton, and William Clarke	09
1 Introduction	70
2 Decomposition of Sensor Errors	73
3. Measures of Average Glycemia and Deviation from Target	74
4. Risk and Variability Assessment	76
5. Measures and Plots of System Stability	80

	6. Time-Series-Based Prediction of Future BG Values	81
	7. Conclusions	84
	Acknowledgments	84
	References	84
4.	Analysis of Heterogeneity in Molecular Weight and Shape by Analytical Ultracentrifugation Using Parallel Distributed Computing	87
	Borries Demeler, Emre Brookes, and Luitgard Nagel-Steger	
	1. Introduction	88
	2. Methodology	89
	3. Job Submission	97
	4. Results	100
	5. Conclusions	109
	Acknowledgments	111
	References	111
5.	Discrete Stochastic Simulation Methods for Chemically	
	Reacting Systems	115
	Yang Cao and David C. Samuels	
	1. Introduction	116
	2. The Chemical Master Equation	117
	3. The Stochastic Simulation Algorithm	119
	4. The Tau-Leaping Method	122
	5. Measurement of Simulation Error	132
	6. Software and Two Numerical Experiments	134
	7. Conclusion	137
	Acknowledgments	139
	References	139
6.	Analyses for Physiological and Behavioral Rhythmicity	141
	Harold B. Dowse	
	1. Introduction	142
	2. Types of Biological Data and Their Acquisition	143
	3. Analysis in the Time Domain	145
	4. Analysis in the Frequency Domain	151
	5. Time/Frequency Analysis and the Wavelet Transform	161
	6. Signal Conditioning	164
	7. Strength and Regularity of a Signal	169
	8. Conclusions	171
	References	171

7.	A Computational Approach for the Rational Design of Stable Proteins and Enzymes: Optimization of Surface Charge–Charge Interactions	175
	Katrina L. Schweiker and George I. Makhatadze	
	 Introduction Computational Design of Surface Charge–Charge Interactions Experimental Verification of Computational Predictions Closing Remarks Acknowledgments References 	176 183 190 202 204 204
8.	Efficient Computation of Confidence Intervals for Bayesian Model Predictions Based on Multidimensional Parameter Space Amber D. Smith, Alan Genz, David M. Freiberger, Gregory Belenky, and Hans P. A. Van Dongen	213
	 Introduction Height of the Probability Density Function at the Boundary of the 	214
	Smallest Multidimensional Confidence Region	215
	Function by Means of Normal Curve Spline Pieces	217
	 Confidence Region Finding the Minimum and Maximum of the Prediction Model over the 	219
	Confidence Region	220
	Impairment during Sleep Deprivation 7 95% Confidence Intervals for Bayesian Predictions of Cognitive	221
	Performance Impairment during Sleep Deprivation	223
	Acknowledgments	227
	Appendix References	229 230
9.	Analyzing Enzymatic pH Activity Profiles and Protein Titration Curves Using Structure-Based pK_a Calculations and Titration Curve Fitting	233
	Jens Erik Nielsen	
	1. Introduction	234
	2. Calculating the pH Dependence of Protein Characteristics 3. Setting up and Running a pK_a Calculation	235 243

	4. Analyzing the Results of a p K_a Calculation	244
	5. How Reliable Are Calculated p K_a Values?	246
	6. Predicting pH Activity Profiles	248
	7. Decomposition Analysis	249
	8. Predicting Protein Stability Profiles	251
	9. Fitting pH Titration Curves, pH Activity Profiles, and	
	pH Stability Profiles	252
	10. Conclusion	255
	References	256
10.	Least Squares in Calibration: Weights, Nonlinearity, and	
	Other Nuisances	259
	Joel Tellinghuisen	
	1. Introduction	260
	2. Review of Least Squares	263
	3. Experiment Design Using V _{prior} —Numerical Illustrations	269
	4. Conclusion	282
	References	283
11.	Evaluation and Comparison of Computational Models	287
	Jay I. Myung, Yun Tang, and Mark A. Pitt	
	1. Introduction	288
	2. Conceptual Overview of Model Evaluation and Comparison	288
	3. Model Comparison Methods	292
	4. Model Comparison at Work: Choosing between Protein Folding Models	297
	5. Conclusions	301
	Acknowledgments	303
	References	303
12.	Desegregating Undergraduate Mathematics and	
	Biology-Interdisciplinary Instruction with Emphasis on	
	Ongoing Biomedical Research	305
	Raina Robeva	
	1. Introduction	306
	2. Course Description	309
	3. Discussion	317
	Acknowledgments	320
	References	320

13.	Ma Mo	thematical Algorithms for High-Resolution DNA	373
	Roh	ert Palais and Carl T. Wittwer	رعر
	Ros		
	1.	Introduction	324
	2.	Extracting Melting Curves from Raw Fluorescence	325
	3.	Methods Used for Clustering and Classifying Melting Curves	
	,	by Genotype Mathada Usad far Madalian Malting Curres	332
	4.	Methods Used for Modeling Melting Curves	335
	Reli	erences	342
14.	Bio	mathematical Modeling of Pulsatile Hormone	
	Sec	cretion: A Historical Perspective	345
	Will	iam S. Evans, Leon S. Farhy, and Michael L. Johnson	
	1.	Introduction	346
	2.	Early Attempts to Identify and Characterize Pulsatile Hormone Release	348
	3.	Impact of Sampling Protocol and Pulse Detection Algorithm on	
		Hormone Pulse Detection	349
	4.	Application of Deconvolution Procedures for the Identification and	
		Characterization of Hormone Secretory Bursts	351
	5.	Limitations and Subsequent Improvements in	
		Deconvolution Procedures	352
	6.	Evaluation of Pulsatile and Basal Hormone Secretion Using a	
		Stochastic Differential Equations Model	353
	7.	Characterization of Regulation of Signal and Response Elements:	
		Estimation of Approximate Entropy	355
	8.	Evaluation of Coupled Systems	356
	9. 10	Evaluation of Hormonal Networks with Feedback Interactions	360
	10.		362
	ACK Dof		202
	Ken	elences	202
15.	Aut	oDecon: A Robust Numerical Method for the Quantification	
	of I	Pulsatile Events	367
	Mic Ralf	hael L. Johnson, Lenore Pipes, Paula P. Veldhuis, Leon S. Farhy, ^F Nass, Michael O. Thorner, and William S. Evans	
	1.	Introduction	368
	2.	Methods	370
	3.	Results	384
	4.	Discussion	399
	Ack	nowledgments	403
	Ref	erences	403

16. Modeling Fatigue over Sleep Deprivation, Circadian Rhythm, and Caffeine with a Minimal Performance Inhibitor Model		
Patrick L. Benitez, Gary H. Kamimori, Thomas J. Balkin, Alexander Greene, and Michael L. Johnson		
1. Introduction	406	
2. Methods	407	
3. Results	412	
4. Discussion	414	
Acknowledgments	419	
References	419	
Author Index	423	
Subject Index		

CONTRIBUTORS

Thomas J. Balkin

Department of Behavioral Biology, Walter Reed Army Institute of Research, Division of Neuroscience, Silver Spring, Maryland

Daniel A. Beard

Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Gregory Belenky

Sleep and Performance Research Center, Washington State University, Spokane, Washington

Patrick L. Benitez

Departments of Pharmacology and Medicine, University of Virginia Health System, Charlottesville, VA

Marc Breton

University of Virginia Health System, Charlottesville, Virginia

Emre Brookes

Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas

Yang Cao

Department of Computer Science, Virginia Tech, Blacksburg, Virginia

William Clarke

University of Virginia Health System, Charlottesville, Virginia

Borries Demeler

Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas

Harold B. Dowse

School of Biology and Ecology and Department of Mathematics and Statistics, University of Maine, Orono, Maine

William S. Evans

Endocrinology and Metabolism Department of Medicine, and Department of Obstetrics and Gynecology, University of Virginia Health System, Charlottesville, Virginia

Leon S. Farhy

Endocrinology and Metabolism Department of Medicine, University of Virginia Health System, Charlottesville, Virginia

David M. Freiberger

Sleep and Performance Research Center, Washington State University, Spokane, Washington

Alan Genz

Department of Mathematics, Washington State University, Pullman, Washington

A. Granada

Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany

Alexander Greene

School of Medicine, University of Florida, Gainesville, Florida

R. M. Hennig

Behavioral Physiology, Biology Department, Humboldt-Universität zu Berlin, Berlin, Germany

H. Herzel

Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany

Michael L. Johnson

Departments of Pharmacology and Medicine, University of Virginia Health System, Charlottesville, VA

Boris Kovatchev

University of Virginia Health System, Charlottesville, Virginia

A. Kramer

Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Berlin, Germany

Gary H. Kamimori

Department of Behavioral Biology, Walter Reed Army Institute of Research, Division of Neuroscience, Silver Spring, Maryland

Martin J. Kushmerick

Departments of Radiology, Bioengineering, Physiology and Biophysics, University of Washington, Seattle, Washington

George I. Makhatadze

Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York

Jay I. Myung

Department of Psychology, Ohio State University, Columbus, Ohio

Luitgard Nagel-Steger

Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany

Ralf Nass

Endocrinology and Metabolism Department of Medicine, University of Virginia Health System, Charlottesville, Virginia

Jens Erik Nielsen

School of Biomolecular and Biomedical Science, Centre Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland

Robert Palais

Department of Pathology, University of Utah, Salt Lake City, Utah, and Department of Mathematics, University of Utah, Salt Lake City, Utah

Lenore Pipes

Departments of Pharmacology and Medicine, University of Virginia Health System, Charlottesville, VA

Mark A. Pitt

Department of Psychology, Ohio State University, Columbus, Ohio

Raina Robeva

Department of Mathematical Sciences, Sweet Briar College, Sweet Briar, Virginia

B. Ronacher

Behavioral Physiology, Biology Department, Humboldt-Universität zu Berlin, Berlin, Germany

David C. Samuels

Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Nashville, TN

Katrina L. Schweiker

Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania, and Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York

Amber D. Smith

Sleep and Performance Research Center, Washington State University, Spokane, Washington

Yun Tang

Department of Psychology, Ohio State University, Columbus, Ohio

Joel Tellinghuisen

Department of Chemistry, Vanderbilt University, Nashville, Tennessee

Michael O. Thorner

Endocrinology and Metabolism Department of Medicine, University of Virginia Health System, Charlottesville, Virginia

Hans P. A. Van Dongen

Sleep and Performance Research Center, Washington State University, Spokane, Washington

Paula P. Veldhuis

Departments of Pharmacology and Medicine, University of Virginia Health System, Charlottesville, VA

Kalyan C. Vinnakota

Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Carl T. Wittwer

Department of Pathology, University of Utah, Salt Lake City, Utah

Fan Wu

Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

PREFACE

The use of computers and computational methods has become ubiquitous in biological and biomedical research. This has been driven by numerous factors, a few of which follow: One primary reason is the emphasis being placed on computers and computational methods within the National Institutes of Health (NIH) roadmap; another factor is the increased level of mathematical and computational sophistication among researchers, particularly among junior scientists, students, journal reviewers, and NIH study section members; and another is the rapid advances in computer hardware and software, which make these methods far more accessible to the rank-and-file research community.

A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications, they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend this limited perception.

The training of the majority of senior M.D.'s and Ph.D.'s in clinical or basic disciplines at academic medical centers rarely includes advanced coursework in mathematics, numerical analysis, statistics, or computer science. Generally, their hardware and software are maintained by a hospital staff that installs all hardware and software and even restricts what is available on their computers. Therefore, a critical aspect of this volume is information and methodology transfer to this target audience. This specific audience is indifferent as to whether the hardware and software are modern, objectoriented, portable, reusable, use the latest markup language, interchangeable, or easily maintained. These users are only interested in analyzing their data. The chapters within this volume have been written in order to be accessible to this target audience.

Michael L. Johnson and Ludwig Brand

This page intentionally left blank

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME IV. Special Techniques for the Enzymologist Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan **VOLUME VIII.** Complex Carbohydrates Edited by ELIZABETH F. NEUFELD AND VICTOR GINSBURG VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD VOLUME X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman **VOLUME XI. Enzyme Structure** Edited by C. H. W. HIRS VOLUME XII. Nucleic Acids (Parts A and B) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions Edited by KENNETH KUSTIN VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B) Edited by HERBERT TABOR AND CELIA WHITE TABOR VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME XIX. Proteolytic Enzymes Edited by Gertrude E. Perlmann and Laszlo Lorand VOLUME XX. Nucleic Acids and Protein Synthesis (Part C) Edited by Kivie Moldave and Lawrence Grossman VOLUME XXI. Nucleic Acids (Part D) Edited by Lawrence Grossman and Kivie Moldave VOLUME XXII. Enzyme Purification and Related Techniques Edited by WILLIAM B. JAKOBY VOLUME XXIII. Photosynthesis (Part A) Edited by ANTHONY SAN PIETRO VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B) Edited by ANTHONY SAN PIETRO VOLUME XXV. Enzyme Structure (Part B) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVI. Enzyme Structure (Part C) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVII. Enzyme Structure (Part D) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVIII. Complex Carbohydrates (Part B) Edited by VICTOR GINSBURG VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F) Edited by Kivie Moldave and Lawrence Grossman VOLUME XXXI. Biomembranes (Part A) Edited by Sidney Fleischer and Lester Packer VOLUME XXXII. Biomembranes (Part B) Edited by Sidney Fleischer and Lester Packer VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX Edited by MARTHA G. DENNIS AND EDWARD A. DENNIS VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B) Edited by William B. JAKOBY AND MEIR WILCHEK

VOLUME XXXV. Lipids (Part B) Edited by JOHN M. LOWENSTEIN VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones) Edited by Bert W. O'MALLEY AND JOEL G. HARDMAN VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones) Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides) Edited by Joel G. HARDMAN AND BERT W. O'MALLEY VOLUME XXXIX. Hormone Action (Part D: Isolated Cells, Tissues, and Organ Systems) Edited by Joel G. HARDMAN AND BERT W. O'MALLEY VOLUME XL. Hormone Action (Part E: Nuclear Structure and Function) Edited by Bert W. O'MALLEY AND JOEL G. HARDMAN VOLUME XLI. Carbohydrate Metabolism (Part B) Edited by W. A. WOOD VOLUME XLII. Carbohydrate Metabolism (Part C) Edited by W. A. WOOD **VOLUME XLIII.** Antibiotics Edited by JOHN H. HASH VOLUME XLIV. Immobilized Enzymes Edited by KLAUS MOSBACH VOLUME XLV. Proteolytic Enzymes (Part B) Edited by LASZLO LORAND VOLUME XLVI. Affinity Labeling Edited by William B. JAKOBY AND MEIR WILCHEK VOLUME XLVII. Enzyme Structure (Part E) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XLVIII. Enzyme Structure (Part F) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XLIX. Enzyme Structure (Part G) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME L. Complex Carbohydrates (Part C) Edited by VICTOR GINSBURG VOLUME LI. Purine and Pyrimidine Nucleotide Metabolism Edited by PATRICIA A. HOFFEE AND MARY ELLEN JONES VOLUME LII. Biomembranes (Part C: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer

VOLUME LIII. Biomembranes (Part D: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer VOLUME LIV. Biomembranes (Part E: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer VOLUME LV. Biomembranes (Part F: Bioenergetics) Edited by Sidney Fleischer and Lester Packer VOLUME LVI. Biomembranes (Part G: Bioenergetics) Edited by Sidney Fleischer and Lester Packer VOLUME LVII. Bioluminescence and Chemiluminescence Edited by MARLENE A. DELUCA VOLUME LVIII. Cell Culture Edited by William B. JAKOBY AND IRA PASTAN VOLUME LIX. Nucleic Acids and Protein Synthesis (Part G) Edited by Kivie Moldave and Lawrence Grossman VOLUME LX. Nucleic Acids and Protein Synthesis (Part H) Edited by Kivie Moldave and Lawrence Grossman VOLUME 61. Enzyme Structure (Part H) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 62. Vitamins and Coenzymes (Part D) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 63. Enzyme Kinetics and Mechanism (Part A: Initial Rate and Inhibitor Methods) Edited by DANIEL L. PURICH VOLUME 64. Enzyme Kinetics and Mechanism (Part B: Isotopic Probes and Complex Enzyme Systems) Edited by DANIEL L. PURICH VOLUME 65. Nucleic Acids (Part I) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME 66. Vitamins and Coenzymes (Part E) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 67. Vitamins and Coenzymes (Part F) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 68. Recombinant DNA Edited by RAY WU VOLUME 69. Photosynthesis and Nitrogen Fixation (Part C) Edited by ANTHONY SAN PIETRO VOLUME 70. Immunochemical Techniques (Part A) Edited by Helen Van Vunakis and John J. Langone

VOLUME 71. Lipids (Part C) Edited by JOHN M. LOWENSTEIN VOLUME 72. Lipids (Part D) Edited by JOHN M. LOWENSTEIN VOLUME 73. Immunochemical Techniques (Part B) Edited by John J. Langone and Helen Van Vunakis VOLUME 74. Immunochemical Techniques (Part C) Edited by John J. Langone and Helen Van Vunakis VOLUME 75. Cumulative Subject Index Volumes XXXI, XXXII, XXXIV-LX Edited by Edward A. Dennis and Martha G. Dennis VOLUME 76. Hemoglobins Edited by Eraldo Antonini, Luigi Rossi-Bernardi, and Emilia Chiancone VOLUME 77. Detoxication and Drug Metabolism Edited by WILLIAM B. JAKOBY VOLUME 78. Interferons (Part A) Edited by SIDNEY PESTKA VOLUME 79. Interferons (Part B) Edited by SIDNEY PESTKA VOLUME 80. Proteolytic Enzymes (Part C) Edited by LASZLO LORAND VOLUME 81. Biomembranes (Part H: Visual Pigments and Purple Membranes, I) Edited by LESTER PACKER VOLUME 82. Structural and Contractile Proteins (Part A: Extracellular Matrix) Edited by Leon W. CUNNINGHAM AND DIXIE W. FREDERIKSEN VOLUME 83. Complex Carbohydrates (Part D) Edited by VICTOR GINSBURG VOLUME 84. Immunochemical Techniques (Part D: Selected Immunoassays) Edited by John J. Langone and Helen Van Vunakis VOLUME 85. Structural and Contractile Proteins (Part B: The Contractile Apparatus and the Cytoskeleton) Edited by Dixie W. Frederiksen and Leon W. Cunningham VOLUME 86. Prostaglandins and Arachidonate Metabolites Edited by WILLIAM E. M. LANDS AND WILLIAM L. SMITH VOLUME 87. Enzyme Kinetics and Mechanism (Part C: Intermediates, Stereo-chemistry, and Rate Studies) Edited by DANIEL L. PURICH VOLUME 88. Biomembranes (Part I: Visual Pigments and Purple Membranes, II)

Edited by Lester Packer

VOLUME 89. Carbohydrate Metabolism (Part D) Edited by WILLIS A. WOOD VOLUME 90. Carbohydrate Metabolism (Part E) Edited by WILLIS A. WOOD VOLUME 91. Enzyme Structure (Part I) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 92. Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods) Edited by JOHN J. LANGONE AND HELEN VAN VUNAKIS VOLUME 93. Immunochemical Techniques (Part F: Conventional Antibodies, Fc Receptors, and Cytotoxicity) Edited by JOHN J. LANGONE AND HELEN VAN VUNAKIS **VOLUME 94.** Polyamines Edited by Herbert Tabor and Celia White Tabor VOLUME 95. Cumulative Subject Index Volumes 61-74, 76-80 Edited by Edward A. Dennis and Martha G. Dennis VOLUME 96. Biomembranes [Part J: Membrane Biogenesis: Assembly and Targeting (General Methods; Eukaryotes)] Edited by Sidney Fleischer and Becca Fleischer VOLUME 97. Biomembranes [Part K: Membrane Biogenesis: Assembly and Targeting (Prokaryotes, Mitochondria, and Chloroplasts)] Edited by Sidney Fleischer and Becca Fleischer VOLUME 98. Biomembranes (Part L: Membrane Biogenesis: Processing and Recycling) Edited by Sidney Fleischer and Becca Fleischer VOLUME 99. Hormone Action (Part F: Protein Kinases) Edited by Jackie D. Corbin and Joel G. Hardman VOLUME 100. Recombinant DNA (Part B) Edited by RAY WU, LAWRENCE GROSSMAN, AND KIVIE MOLDAVE VOLUME 101. Recombinant DNA (Part C) Edited by RAY WU, LAWRENCE GROSSMAN, AND KIVIE MOLDAVE VOLUME 102. Hormone Action (Part G: Calmodulin and Calcium-Binding Proteins) Edited by ANTHONY R. MEANS AND BERT W. O'MALLEY VOLUME 103. Hormone Action (Part H: Neuroendocrine Peptides) Edited by P. MICHAEL CONN VOLUME 104. Enzyme Purification and Related Techniques (Part C) Edited by WILLIAM B. JAKOBY

VOLUME 105. Oxygen Radicals in Biological Systems Edited by LESTER PACKER VOLUME 106. Posttranslational Modifications (Part A) Edited by FINN WOLD AND KIVIE MOLDAVE VOLUME 107. Posttranslational Modifications (Part B) Edited by FINN WOLD AND KIVIE MOLDAVE VOLUME 108. Immunochemical Techniques (Part G: Separation and Characterization of Lymphoid Cells) Edited by Giovanni Di Sabato, John J. Langone, and Helen Van Vunakis VOLUME 109. Hormone Action (Part I: Peptide Hormones) Edited by LUTZ BIRNBAUMER AND BERT W. O'MALLEY VOLUME 110. Steroids and Isoprenoids (Part A) Edited by JOHN H. LAW AND HANS C. RILLING VOLUME 111. Steroids and Isoprenoids (Part B) Edited by JOHN H. LAW AND HANS C. RILLING VOLUME 112. Drug and Enzyme Targeting (Part A) Edited by Kenneth J. Widder and Ralph Green VOLUME 113. Glutamate, Glutamine, Glutathione, and Related Compounds Edited by ALTON MEISTER VOLUME 114. Diffraction Methods for Biological Macromolecules (Part A) Edited by HAROLD W. WYCKOFF, C. H. W. HIRS, AND SERGE N. TIMASHEFF VOLUME 115. Diffraction Methods for Biological Macromolecules (Part B) Edited by HAROLD W. WYCKOFF, C. H. W. HIRS, AND SERGE N. TIMASHEFF VOLUME 116. Immunochemical Techniques (Part H: Effectors and Mediators of Lymphoid Cell Functions) Edited by Giovanni Di Sabato, John J. Langone, and Helen Van Vunakis VOLUME 117. Enzyme Structure (Part J) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 118. Plant Molecular Biology Edited by Arthur Weissbach and Herbert Weissbach VOLUME 119. Interferons (Part C) Edited by SIDNEY PESTKA VOLUME 120. Cumulative Subject Index Volumes 81-94, 96-101 VOLUME 121. Immunochemical Techniques (Part I: Hybridoma Technology and Monoclonal Antibodies) Edited by John J. Langone and Helen Van Vunakis VOLUME 122. Vitamins and Coenzymes (Part G) Edited by Frank Chytil and Donald B. McCormick

VOLUME 123. Vitamins and Coenzymes (Part H) Edited by Frank Chytil and Donald B. McCormick VOLUME 124. Hormone Action (Part J: Neuroendocrine Peptides) Edited by P. MICHAEL CONN VOLUME 125. Biomembranes (Part M: Transport in Bacteria, Mitochondria, and Chloroplasts: General Approaches and Transport Systems) Edited by Sidney Fleischer and Becca Fleischer VOLUME 126. Biomembranes (Part N: Transport in Bacteria, Mitochondria, and Chloroplasts: Protonmotive Force) Edited by Sidney Fleischer and Becca Fleischer VOLUME 127. Biomembranes (Part O: Protons and Water: Structure and Translocation) Edited by LESTER PACKER VOLUME 128. Plasma Lipoproteins (Part A: Preparation, Structure, and Molecular Biology) Edited by JERE P. SEGREST AND JOHN J. ALBERS VOLUME 129. Plasma Lipoproteins (Part B: Characterization, Cell Biology, and Metabolism) Edited by JOHN J. ALBERS AND JERE P. SEGREST VOLUME 130. Enzyme Structure (Part K) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 131. Enzyme Structure (Part L) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 132. Immunochemical Techniques (Part J: Phagocytosis and Cell-Mediated Cytotoxicity) Edited by Giovanni Di Sabato and Johannes Everse VOLUME 133. Bioluminescence and Chemiluminescence (Part B) Edited by MARLENE DELUCA AND WILLIAM D. MCELROY VOLUME 134. Structural and Contractile Proteins (Part C: The Contractile Apparatus and the Cytoskeleton) Edited by RICHARD B. VALLEE VOLUME 135. Immobilized Enzymes and Cells (Part B) Edited by KLAUS MOSBACH VOLUME 136. Immobilized Enzymes and Cells (Part C) Edited by KLAUS MOSBACH VOLUME 137. Immobilized Enzymes and Cells (Part D) Edited by KLAUS MOSBACH VOLUME 138. Complex Carbohydrates (Part E) Edited by VICTOR GINSBURG