Methods in ENZYMOLOGY

Volume 445 Angiogenesis: *In Vivo* Systems, Part B

Edited by David A. Cheresh

METHODS IN ENZYMOLOGY Angiogenesis: *In Vivo* Systems, Part B

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

METHODS IN ENZYMOLOGY Angiogenesis: *In Vivo* Systems, Part B

EDITED BY

DAVID A. CHERESH Professor and Vice Chair of Pathology University of California San Diego CA, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32 Jamestown Road, London, NW1 7BY, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

Copyright © 2008, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2008 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2008 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at elsevierdirect.com

ISBN-13: 978-0-12-374314-5

PRINTED IN THE UNITED STATES OF AMERICA 08 09 10 11 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com \mid www.bookaid.org \mid www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

CONTENTS

Contributors		xi
Preface		XV
Volum	e in Series	xvii
1. In	flammation, Angiogenesis, and Lymphangiogenesis	1
Со	rnelia Halin and Michael Detmar	
1.	Introduction	2
2.		3
	Mouse Models of Inflammation	5
	Commonly Used Markers of Blood Vessels and of Lymphatic Vessels	8
	Measuring the (Lymph)angiogenic Response by Immunofluorescence Quantitating (Lymph)angiogenesis by Fluorescence-Activated	10
	Cell Sorting	12
7.	Measuring Vascular Permeability and Flow	13
	Material and Methods	14
	knowledgments	20
Re	ferences	20
2. Co	lor-Coded Fluorescent Mouse Models of Cancer Cell	
In	teractions with Blood Vessels and Lymphatics	27
Mi	chele McElroy, Michael Bouvet, and Robert M. Hoffman	
1	. Introduction	28
2	. Mouse Models: Fluorescent Tumors to Image Angiogenesis	29
3	. Color-Coded Tumor-Host Models: GFP Nude Mouse	32
4	. Color-Coded Tumor-Host Models: Nestin-Driven-GFP Nude Mouse	36
5	. Imaging Cancer Cell Trafficking in Lymphatics: Experimental	
	Metastasis Model	37
6	. Imaging Cancer Cell Trafficking in Lymphatics: Spontaneous	
	Metastasis Model	39
7	. Protocol: Production of Fluorescent-Protein-Expressing	
	Cancer Cell Lines	41
8	. Protocol: Imaging of Cancer Cell Interactions with Blood Vessels	
	and Lymphatics	45
9	. Protocol: Imaging Methods for Mice Expressing	
	Fluorescent Proteins	47

v

	10. Summary and Conclusions References	49 50
3.	. Bone Marrow–Derived Vascular Progenitors and Proangiogenic Monocytes in Tumors Kan Lu, Chrystelle Lamagna, and Gabriele Bergers	53
	1. Introduction	54
	2. Methods for the Visualization of BMDCs in Tumors	56
	3. Analysis of Pericyte Progenitors in Tumors References	66 79
4.	Screening Phage-Display Peptide Libraries for Vascular	
	Targeted Peptides	83
	Martin Trepel, Renata Pasqualini, and Wadih Arap	
	1. Introduction	84
	2. Methods	90
	3. Concluding Remarks and Perspective	100
	Acknowledgments References	101 101
		101
5.	. Avian Embryos: A Model for the Study of Primary Vascular	
	Assembly in Warm-Blooded Animals	107
		107
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little	
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction	107 108 109
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little	108
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 	108 109
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 	108 109 109 113 113
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 	108 109 109 113 113 113
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 	108 109 109 113 113 115 116
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 	108 109 109 113 113 115 116 120
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 9. Whole-Mount Immunolabeling 	108 109 109 113 113 115 116
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 	108 109 109 113 113 115 116 120 121
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 9. Whole-Mount Immunolabeling 10. Plastic Embedding and Sectioning References Mouse Models to Investigate Anti-Cancer Effects	108 109 109 113 113 115 116 120 121 122 122
	 Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 9. Whole-Mount Immunolabeling 10. Plastic Embedding and Sectioning References 	108 109 109 113 113 115 116 120 121 122
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 9. Whole-Mount Immunolabeling 10. Plastic Embedding and Sectioning References Mouse Models to Investigate Anti-Cancer Effects of VEGF Inhibitors	108 109 109 113 113 115 116 120 121 122 122
	Assembly in Warm-Blooded Animals Paul A. Rupp, Mike B. Filla, Cheng Cui, and Charles D. Little 1. Introduction 2. Culture Insert Preparation 3. Culture Chamber Preparation 4. Construction of Microscope Incubator 5. Construction of Electroporation Chamber 6. Embryonic Culture Insert/Dish Preparation 7. Cell Labeling 8. Post-Incubation Fixation and Processing 9. Whole-Mount Immunolabeling 10. Plastic Embedding and Sectioning References 4. Mouse Models to Investigate Anti-Cancer Effects of VEGF Inhibitors Yongping Crawford and Napoleone Ferrara	108 109 109 113 113 115 116 120 121 122 122 125

	3. Genetic Models	129
	4. Conclusions	134
	References	135
7.	7. Molecular Imaging of Tumor Vasculature	141
	Weibo Cai, Sanjiv S. Gambhir, and Xiaoyuan Chen	
	1. Introduction	142
	2. Structural/Functional Imaging of Tumor Vasculature	143
	3. Molecular Imaging	148
	4. Imaging Integrin $\alpha_v \beta_3$ in Tumor Vasculature	149
	5. Non-Radionuclide–Based Imaging of VEGFR in Tumor Vas	culature 153
	6. Radionuclide-Based Imaging of VEGFR in Tumor Vasculate	ure 156
	7. Experimental Section	161
	8. Summary	167
	Acknowledgments	168
	References	168
8.	3. Proteomic Mapping of the Vascular Endothelium <i>In Vi</i>	vo
	for Vascular Targeting	177
	Noelle M. Griffin and Jan E. Schnitzer	
	1. Introduction	178
	2. Proteomics: An Overview	180
	3. Proteomic Methodologies	181
	4. Databases	187
	5. Quantitative Proteomics	188
	6. Application of Proteomics to the Vasculature	192
	7. Summary	198
	8. Protocols	198
	References	202
9.	9. Development of Coronary Vessels	209
	Xiu Rong Dong, Colin T. Maguire, San-Pin Wu, and Mark W. M	ajesky
	1. Introduction	210
	2. Microdissection and Explant Culture of the Proepicardium	213
	3. Isolation of Total RNA from Individual PEs for Gene	
	Expression Studies	216
	4. Explant Culture of the Epicardium	217
	5. Analysis of PE and Epicardium <i>In Vivo</i> by Scanning	
	Electron Microscopy	218
	6. Methods to Study Coronary Vessel Development In Vivo	220

	knowledgments	225
Re	ferences	225
	ethods for Evaluating Uteroplacental Angiogenesis and Their oplication Using Animal Models	229
Pa	wel P. Borowicz, Shireen Hafez, Dale A. Redmer, and Lawrence P. Reynolds	5
1.	Introduction	230
2.		
	Growth and Development	232
3.	· , · · · ·	235
4.	1 0 0	220
5	Using Animal Models Conclusions	238 249
	knowledgments	249
	iferences	250
	travital Microscopic Investigation of Leukocyte Interactions	
wi	ith the Blood Vessel Wall	255
	aus Ley, Javier Mestas, Maria K. Pospieszalska, Prithu Sundd, Alexander oisman, and Alexander Zarbock	
1.	Introduction	256
2.	Transillumination Intravital Microscopy	256
3.	Measuring Leukocyte Rolling, Adhesion, and Transmigration	259
4.		268
5.		274
Re	ferences	274
12. Pl	acental Remodeling of the Uterine Vasculature	281
Na	athan M. Hunkapiller and Susan J. Fisher	
1.	Introduction	282
2.	Isolation and Culture of Human Cytotrophoblasts	285
3.	Isolation and Culture of First-Trimester, Human Placental	
	Villous Explants	290
4.	Identification of Cytotrophoblast-Modified Blood Vessels	
	in Tissue Sections	291
5.	· · · · · · · · · · · · · · · · · · ·	
	Apoptosis During Co-Culture	293
6.	5	205
7	Explanted Spiral Arterioles	295
7. Po	<i>In Vivo</i> Models of Human Cytotrophoblast Vascular Remodeling ferences	297 299
Ke		477

13. An In Vivo Experimental Model for Postnatal Vasculogenesis		
Juan M. Melero-Martin and Joyce Bischoff		
1. Introduction	304	
2. Isolation of Blood-Derived Endothelial Progenitor Cells	307	
3. Expansion and Characterization of Blood-derived Endothelial Progenitor Cells	316	
4. Growth of Human Smooth Muscle Cells	310	
5. In Vivo Vasculogenic Assay	321	
6. Conclusion	325	
Acknowledgments	325	
References	325	
14. Assessment of Arteriogenesis	331	
Michael Simons		
1. Introduction	332	
2. Anatomical Assessment of Arteriogenesis	333	
3. Microangiography	337	
4. Functional Assessment of Arteriogenesis	339	
5. Laser-Doppler Perfusion Imaging	339	
6. Electron Paramagnetic Resonance Tissue Oxymetry	340	
7. Magnetic Resonance Imaging	341	
Acknowledgments	341	
References	342	
15. Methods to Study Myeloid Cell Roles in Angiogenesis	343	
Michael C. Schmid and Judith A. Varner		
1. Introduction	344	
2. Methods for the Study of Myeloid Cells in Tumor		
Neovascularization and Growth	347	
3. Conclusions	369	
References	369	
Author Index	373	
Subject Index		

This page intentionally left blank

CONTRIBUTORS

Wadih Arap

The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, Texas

Gabriele Bergers

Comprehensive Cancer Center, University of California-San Francisco, San Francisco, California, and Department of Neurological Surgery, Brain Tumor Research Center, University of California-San Francisco, San Francisco, California

Joyce Bischoff

Vascular Biology Program and Department of Surgery, Children's Hospital, Boston, Harvard Medical School, Boston, Massachusetts

Pawel P. Borowicz

Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, North Dakota

Michael Bouvet

Department of Surgery, University of California, San Diego, California

Weibo Cai

Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin, and Stanford University School of Medicine, Stanford, California

Xiaoyuan Chen

Stanford University School of Medicine, Stanford, California

Yongping Crawford

Genentech, Inc., South San Francisco, California

Cheng Cui

Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas

Michael Detmar

Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland

Xiu Rong Dong

Carolina Cardiovascular Biology Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Napoleone Ferrara

Genentech, Inc., South San Francisco, California

Mike B. Filla

Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas

Susan J. Fisher

Department of Obstetrics, Gynecology and Reproductive Biology, Department of Anatomy, Director, Human Embryonic Stem Cell Program, Faculty Director, Sandler-Moore Mass Spectrometry Core Facility, Institute for Regeneration Medicine, Center for Reproductive Sciences, University of California-San Francisco, San Francisco, California

Sanjiv S. Gambhir

Stanford University School of Medicine, Stanford, California

Noelle M. Griffin

Sidney Kimmel Cancer Center, San Diego, California

Alexander Groisman

Department of Physics, University of California San Diego, La Jolla, California

Shireen Hafez

Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Edfina, Elbehera, Egypt

Cornelia Halin

Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland

Robert M. Hoffman

AntiCancer, Inc., San Diego, California, and Department of Surgery, University of California, San Diego, California

Nathan M. Hunkapiller

Department of Obstetrics, Gynecology and Reproductive Biology, University of California-San Francisco, San Francisco, California

Chrystelle Lamagna

Department of Neurological Surgery, Brain Tumor Research Center, University of California-San Francisco, San Francisco, California

Klaus Ley

La Jolla Institute for Allergy and Immunology, La Jolla, California

Charles D. Little

Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas

Kan Lu

Department of Neurological Surgery, Brain Tumor Research Center, University of California-San Francisco, San Francisco, California

Colin T. Maguire

Cardiovascular Sciences Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, and Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Mark W. Majesky

Carolina Cardiovascular Biology Center and Departments of Medicine and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, and Cardiovascular Sciences Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston

Michele McElroy

Department of Surgery, University of California, San Diego, California

Juan M. Melero-Martin

Vascular Biology Program and Department of Surgery, Children's Hospital, Boston, Harvard Medical School, Boston, Massachusetts

Javier Mestas

La Jolla Institute for Allergy and Immunology, La Jolla, California

Renata Pasqualini

The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, Texas

Maria K. Pospieszalska

La Jolla Institute for Allergy and Immunology, La Jolla, California

Dale A. Redmer

Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, North Dakota

Lawrence P. Reynolds

Center for Nutrition and Pregnancy, and Department of Animal Sciences, North Dakota State University, Fargo, North Dakota

Paul A. Rupp

Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas

Michael C. Schmid

Moores UCSD Cancer Center, University of California-San Diego, La Jolla, California

Jan E. Schnitzer

Sidney Kimmel Cancer Center, San Diego, California

Michael Simons

Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut

Prithu Sundd

La Jolla Institute for Allergy and Immunology, La Jolla, California

Martin Trepel

Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Judith A. Varner

Moores UCSD Cancer Center, University of California-San Diego, La Jolla, California

San-Pin Wu

Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas

Alexander Zarbock

La Jolla Institute for Allergy and Immunology, La Jolla, California, and Department of Anesthesiology and Intensive Care Medicine, University of Münster, Münster, Germany

Preface

A TRIBUTE TO DR. JUDAH FOLKMAN

The field of angiogenesis has recently lost its pioneer and leader, Dr. Judah Folkman. This was a tremendous loss to many of us who knew him and to the field in general. Dr. Folkman inspired a generation of scientists in efforts to translate basic discoveries toward new therapeutics for a wide range of diseases including cancer, blinding eye disease, and inflammatory disease. Due in large part to Dr. Folkman's efforts and direction, we now have the first generation of therapeutics that disrupt angiogenesis in patients suffering from cancer and macular degeneration. While Dr. Folkman clearly passed away before his time, he did live long enough to observe that many thousands of patients are now better off due to antiangiogenic therapy.

I had a rather interesting initiation to the field of antiangiogenesis that was wholly inspired by Dr. Folkman. In the mid-1980s as a junior faculty at the Scripps Research Institute, I was studying what many of us in the field were beginning to appreciate were a family of cell adhesion receptors, later termed "integrins." I had developed a monoclonal antibody (LM609) to the vitronectin receptor later referred to as integrin $\alpha v\beta 3$. During the course of my work, LM609 was used to stain a variety of diseased and normal tissues. To my surprise, LM609 reacted strongly with blood vessels in tumors and inflammatory sites, but failed to react with blood vessels in normal tissues. After seeing this result, I began to read up on the emerging field of angiogenesis research. It was clear that most of the literature in the field came from Dr. Folkman or one of his disciples. I immediately contacted Dr. Folkman. By the time I finished describing our results, I realized that he was excited as I was about our studies. In fact, before I could ask him any questions, he suggested that I visit his lab to learn the chick chorioallantoic membrane (CAM) assay to determine whether LM609 might have an impact on angiogenesis in a quantitative animal model.

Naturally I arranged a trip to the Folkman lab within the next couple of weeks. I had never been to Harvard, and was a bit intimidated by the place. I introduced myself to his administrative assistant, who welcomed me and indicated that Dr. Folkman was expecting me. Within minutes, Dr. Folkman, clad in a lab coat greeted me and suggested that we get started. At this point, I assumed he was going to introduce me to one of his students or technicians who would then proceed to show me the CAM assay step by step. To my surprise, Dr. Folkman led me to a hood, sat down,

and immediately started to instruct me in how to induce angiogenesis on the CAM. In fact, the next thing I knew, I was sitting at the hood next to Dr. Folkman going through the procedure in detail. Therefore, I can say I learned the technique from the master. Ultimately, Dr. Folkman introduced me to several members of the Folkman lab, including Drs. Donald Inber, Pat D'Amore, and Mike Klagsburn. I remember how enthusiastic and communicative all of these folks were. In fact, I am happy to say that I still maintain close contact with them and have had many opportunities over the years to discuss science and reminisce about the past. In fact, Don, Pat, and Mike have all kindly contributed chapters to *Methods in Enzymology* volumes on angiogenesis.

While on the airline flight home from the Folkman lab, I began to realize that my career was about to take a change in course. From that point forward, I began to focus on the role of adhesion receptors in angiogenesis and began to realize that blocking angiogenesis with integrin antagonists could have a very impressive impact on the growth of tumors in mice. Importantly, two of the agents we developed, including humanized LM609, have shown clinical activity in patients with late-stage cancer.

Since my initiation to the field, I have since followed Dr. Folkman's work and have attended dozens of his lectures. Listening to a Folkman lecture is like watching one of your favorite movies—you can watch it over and over again and still find something interesting to think about. It was difficult for anyone to attend his lecture and not come away excited about science in general and angiogenesis in particular. The field of angiogenesis has matured over the past 25 years due in large part to Dr. Folkman's drive, enthusiasm, perseverance, and kindness. Dr. Folkman's leadership has helped to recruit many scientists and physicians from the academic and private sectors to focus on new approaches to develop angiogenesis inhibitors.

In the early days, there were a limited number of technological approaches to measure and study angiogenesis. The CAM assay was among the first quantitative approaches to measure the growth of newly forming blood vessels. From this humble beginning, the field has exploded and as a result we now have a wide range of techniques, approaches, and animal models designed to monitor and study the growth of new blood vessels in development, tissue remodeling, and disease. These methods are described in detail in this volume by many of the current leaders of the field.

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME IV. Special Techniques for the Enzymologist Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan **VOLUME VIII.** Complex Carbohydrates Edited by ELIZABETH F. NEUFELD AND VICTOR GINSBURG VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD VOLUME X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman **VOLUME XI. Enzyme Structure** Edited by C. H. W. HIRS VOLUME XII. Nucleic Acids (Parts A and B) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions Edited by KENNETH KUSTIN VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B) Edited by HERBERT TABOR AND CELIA WHITE TABOR VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT **VOLUME XIX.** Proteolytic Enzymes Edited by Gertrude E. Perlmann and Laszlo Lorand VOLUME XX. Nucleic Acids and Protein Synthesis (Part C) Edited by Kivie Moldave and Lawrence Grossman VOLUME XXI. Nucleic Acids (Part D) Edited by Lawrence Grossman and Kivie Moldave VOLUME XXII. Enzyme Purification and Related Techniques Edited by WILLIAM B. JAKOBY VOLUME XXIII. Photosynthesis (Part A) Edited by ANTHONY SAN PIETRO VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B) Edited by ANTHONY SAN PIETRO VOLUME XXV. Enzyme Structure (Part B) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVI. Enzyme Structure (Part C) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVII. Enzyme Structure (Part D) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XXVIII. Complex Carbohydrates (Part B) Edited by VICTOR GINSBURG VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F) Edited by Kivie Moldave and Lawrence Grossman VOLUME XXXI. Biomembranes (Part A) Edited by Sidney Fleischer and Lester Packer VOLUME XXXII. Biomembranes (Part B) Edited by Sidney Fleischer and Lester Packer VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX Edited by MARTHA G. DENNIS AND EDWARD A. DENNIS VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B) Edited by William B. JAKOBY AND MEIR WILCHEK

VOLUME XXXV. Lipids (Part B) Edited by JOHN M. LOWENSTEIN VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones) Edited by Bert W. O'MALLEY AND JOEL G. HARDMAN VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones) Edited by Bert W. O'MALLEY AND JOEL G. HARDMAN VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides) Edited by Joel G. HARDMAN AND BERT W. O'MALLEY VOLUME XXXIX. Hormone Action (Part D: Isolated Cells, Tissues, and Organ Systems) Edited by Joel G. HARDMAN AND BERT W. O'MALLEY VOLUME XL. Hormone Action (Part E: Nuclear Structure and Function) Edited by Bert W. O'MALLEY AND JOEL G. HARDMAN VOLUME XLI. Carbohydrate Metabolism (Part B) Edited by W. A. WOOD VOLUME XLII. Carbohydrate Metabolism (Part C) Edited by W. A. WOOD **VOLUME XLIII.** Antibiotics Edited by JOHN H. HASH VOLUME XLIV. Immobilized Enzymes Edited by KLAUS MOSBACH VOLUME XLV. Proteolytic Enzymes (Part B) Edited by LASZLO LORAND VOLUME XLVI. Affinity Labeling Edited by William B. JAKOBY AND MEIR WILCHEK VOLUME XLVII. Enzyme Structure (Part E) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XLVIII. Enzyme Structure (Part F) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME XLIX. Enzyme Structure (Part G) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME L. Complex Carbohydrates (Part C) Edited by VICTOR GINSBURG VOLUME LI. Purine and Pyrimidine Nucleotide Metabolism Edited by PATRICIA A. HOFFEE AND MARY ELLEN JONES VOLUME LII. Biomembranes (Part C: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer

VOLUME LIII. Biomembranes (Part D: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer VOLUME LIV. Biomembranes (Part E: Biological Oxidations) Edited by Sidney Fleischer and Lester Packer VOLUME LV. Biomembranes (Part F: Bioenergetics) Edited by Sidney Fleischer and Lester Packer VOLUME LVI. Biomembranes (Part G: Bioenergetics) Edited by Sidney Fleischer and Lester Packer VOLUME LVII. Bioluminescence and Chemiluminescence Edited by MARLENE A. DELUCA VOLUME LVIII. Cell Culture Edited by William B. JAKOBY AND IRA PASTAN VOLUME LIX. Nucleic Acids and Protein Synthesis (Part G) Edited by Kivie Moldave and Lawrence Grossman VOLUME LX. Nucleic Acids and Protein Synthesis (Part H) Edited by Kivie Moldave and Lawrence Grossman VOLUME 61. Enzyme Structure (Part H) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 62. Vitamins and Coenzymes (Part D) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 63. Enzyme Kinetics and Mechanism (Part A: Initial Rate and Inhibitor Methods) Edited by DANIEL L. PURICH VOLUME 64. Enzyme Kinetics and Mechanism (Part B: Isotopic Probes and Complex Enzyme Systems) Edited by DANIEL L. PURICH VOLUME 65. Nucleic Acids (Part I) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME 66. Vitamins and Coenzymes (Part E) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 67. Vitamins and Coenzymes (Part F) Edited by DONALD B. MCCORMICK AND LEMUEL D. WRIGHT VOLUME 68. Recombinant DNA Edited by RAY WU VOLUME 69. Photosynthesis and Nitrogen Fixation (Part C) Edited by ANTHONY SAN PIETRO VOLUME 70. Immunochemical Techniques (Part A) Edited by Helen Van Vunakis and John J. Langone

VOLUME 71. Lipids (Part C) Edited by JOHN M. LOWENSTEIN VOLUME 72. Lipids (Part D) Edited by JOHN M. LOWENSTEIN VOLUME 73. Immunochemical Techniques (Part B) Edited by John J. Langone and Helen Van Vunakis VOLUME 74. Immunochemical Techniques (Part C) Edited by John J. Langone and Helen Van Vunakis VOLUME 75. Cumulative Subject Index Volumes XXXI, XXXII, XXXIV-LX Edited by Edward A. Dennis and Martha G. Dennis VOLUME 76. Hemoglobins Edited by Eraldo Antonini, Luigi Rossi-Bernardi, and Emilia Chiancone VOLUME 77. Detoxication and Drug Metabolism Edited by WILLIAM B. JAKOBY VOLUME 78. Interferons (Part A) Edited by SIDNEY PESTKA VOLUME 79. Interferons (Part B) Edited by SIDNEY PESTKA VOLUME 80. Proteolytic Enzymes (Part C) Edited by LASZLO LORAND VOLUME 81. Biomembranes (Part H: Visual Pigments and Purple Membranes, I) Edited by LESTER PACKER VOLUME 82. Structural and Contractile Proteins (Part A: Extracellular Matrix) Edited by Leon W. CUNNINGHAM AND DIXIE W. FREDERIKSEN VOLUME 83. Complex Carbohydrates (Part D) Edited by VICTOR GINSBURG VOLUME 84. Immunochemical Techniques (Part D: Selected Immunoassays) Edited by John J. Langone and Helen Van Vunakis VOLUME 85. Structural and Contractile Proteins (Part B: The Contractile Apparatus and the Cytoskeleton) Edited by Dixie W. Frederiksen and Leon W. Cunningham VOLUME 86. Prostaglandins and Arachidonate Metabolites Edited by WILLIAM E. M. LANDS AND WILLIAM L. SMITH VOLUME 87. Enzyme Kinetics and Mechanism (Part C: Intermediates, Stereo-chemistry, and Rate Studies) Edited by DANIEL L. PURICH VOLUME 88. Biomembranes (Part I: Visual Pigments and Purple Membranes, II)

Edited by Lester Packer

VOLUME 89. Carbohydrate Metabolism (Part D) Edited by WILLIS A. WOOD VOLUME 90. Carbohydrate Metabolism (Part E) Edited by WILLIS A. WOOD VOLUME 91. Enzyme Structure (Part I) Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF VOLUME 92. Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods) Edited by JOHN J. LANGONE AND HELEN VAN VUNAKIS VOLUME 93. Immunochemical Techniques (Part F: Conventional Antibodies, Fc Receptors, and Cytotoxicity) Edited by JOHN J. LANGONE AND HELEN VAN VUNAKIS **VOLUME 94.** Polyamines Edited by Herbert Tabor and Celia White Tabor VOLUME 95. Cumulative Subject Index Volumes 61-74, 76-80 Edited by Edward A. Dennis and Martha G. Dennis VOLUME 96. Biomembranes [Part J: Membrane Biogenesis: Assembly and Targeting (General Methods; Eukaryotes)] Edited by Sidney Fleischer and Becca Fleischer VOLUME 97. Biomembranes [Part K: Membrane Biogenesis: Assembly and Targeting (Prokaryotes, Mitochondria, and Chloroplasts)] Edited by Sidney Fleischer and Becca Fleischer VOLUME 98. Biomembranes (Part L: Membrane Biogenesis: Processing and Recycling) Edited by Sidney Fleischer and Becca Fleischer VOLUME 99. Hormone Action (Part F: Protein Kinases) Edited by Jackie D. Corbin and Joel G. Hardman VOLUME 100. Recombinant DNA (Part B) Edited by RAY WU, LAWRENCE GROSSMAN, AND KIVIE MOLDAVE VOLUME 101. Recombinant DNA (Part C) Edited by RAY WU, LAWRENCE GROSSMAN, AND KIVIE MOLDAVE VOLUME 102. Hormone Action (Part G: Calmodulin and Calcium-Binding Proteins) Edited by ANTHONY R. MEANS AND BERT W. O'MALLEY VOLUME 103. Hormone Action (Part H: Neuroendocrine Peptides) Edited by P. MICHAEL CONN VOLUME 104. Enzyme Purification and Related Techniques (Part C) Edited by WILLIAM B. JAKOBY