Animal and Translational Models for CNS Drug Discovery

VOLUME 2

Neurological Disorders

EDITED BY Robert A. McArthur • Franco Borsini

Animal and Translational Models for CNS Drug Discovery

Animal and Translational Models for CNS Drug Discovery VOLUME I Psychiatric Disorders (ISBN: 978-0-12-373856-1) VOLUME II Neurological Disorders (ISBN: 978-0-12-373855-4) VOLUME III Reward Deficit Disorders (ISBN: 978-0-12-373860-8)

(ISBN set: 978-0-12-373861-5)

Animal and Translational Models for CNS Drug Discovery

VOLUME II Neurological Disorders

Edited by

Robert A. McArthur, PhD

Associate Professor of Research Consultant Behavioral Pharmacologist McArthur and Associates GmbH, Basel, Switzerland

Franco Borsini, PhD

Head, Central & Peripheral Nervous System and General Pharmacology Area - R&D Department sigma-tau S.p.A., Pomezia (Rome), Italy

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 360 Park Avenue South, Newyork, NY 10010-1710, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 32 Jamestown Road, London NW1 7BY, UK

◎This book is printed on acid-free paper.

Copyright © 2008, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-373861-5 (set) ISBN: 978-0-12-373855-4 (vol 2)

For information on all Academic Press publications visit our web site at www.elsevierdirect.com

Typeset by Charon Tec Ltd., A Macmillan Company. (www.macmillansolutions.com)

Printed and bound in the United States of America 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

This book is dedicated to that happy band of behavioral pharmacologists who over the generations have occasionally seen their compound progress into clinical development, and more rarely still seen it used to treat patients. New skills are being learned and new species creeping into the lab, including the ones "without tails." These offer new opportunities and challenges, but equally so greater satisfaction working at the interface. May all your compounds be winners! This page intentionally left blank

Contents

Preface	
Acknowledgements	
List of Contributors	

xv xliii xlv

Volume 2 Animal and Translational Models for CNS Drug Discovery: Neurological Disorders

CHAPTER 1	Animal and Translational Models of Neurological Disorders: An Industrial Perspective A. Jackie Hunter	1
	Introduction	1
	Overview of Traditional Drug Discovery and Development Process in	
	Neurology	2
	Animal Models of Disease: Historical Use	5
	Refinement of Animal Models: The Importance of Genetics	6
	The Importance of Target Validation	7
	The Development of Better Models of Disease for Novel	
	Drug Development	9
	A Move Toward Pharmacodynamic Models and Models of Mechanism	9
	Pharmacodynamic Models and Translation to Man	11
	Neurological Side Effect Profiling and Safety	11
	Experimental Medicine and Translational Science	12
	The Importance of Imaging	13
	The Role of Experimental Medicine	15
	The Future	16
	References	16
CHAPTER 2	Issues in Design and Conduct of Clinical Trials for Cognitive-Enhancing Drugs	. 21
	Introduction	22
	Section 1: Current Clinical Trials Design and Regulatory Guidelines	23
	History and Background	23
	Cognitive Impairment Syndromes and Potential Therapeutic Targets	24
	Typical Inclusion Criteria for AD Clinical Trials	
	Typical Outcomes and Endpoints for AD Clinical Trials	
	Regulatory Considerations	
	Regulatory Guidelines for AD	
	<i>De Facto</i> Guidelines for Other Dementia and Cognitive Impairment	
	Syndromes	39

Section 2: Research Design Needs and Controversies	
Diagnosis and Clarity of Therapeutic Conditions	
Sample Selection	
Genotyping and Biomarkers for Sample Selection	
Clinically Relevant and Stage-Specific Outcomes	
Time to Event Trials ("Survival Trials")	
Current Issues in Phase II and III Symptomatic Trials	
Disease-Modification Trials	
Biological and Surrogate Markers in Disease-Modification	
Trials	
Statistical Considerations	
Prevention Trials	60
Concluding Remarks	62
Section 3: Conduct of Clinical Trials, Drug Development, and GCP	63
Perception that GCP May Impair Study Conduct and Drug	
Development	63
Conducting Clinical Trials of Cognitive Enhancers	64
Methodological Issues	68
Conclusions and Future Directions	
Acknowledgments	71
References	71

CHAPTER 3 Molecular and Cellular Mechanisms of Learning Disabilities: A Focus on Neurofibromatosis Type I

Type I	7
Carrie Shilyansky, Weidong Li, M. Acosta, Y. Elgersma,	
F. Hannan, M. Hardt, K. Hunter-Schaedle, L.C. Krab,	
E. Legius, B. Wiltgen and Alcino J. Silva	
Introduction	78
Introduction to Learning Disabilities7	78
NF1 and Learning Disabilities	79
NF1 and ADHD	30
Other NF1 Phenotypes	31
Model Studies of NF1: Drosophila and Mice	32
Anatomical Correlates of Learning Disabilities and Cognitive	
Symptoms in NF1	32
Molecular Mechanisms Underlying the Cognitive Deficits in NF1	33
Reversing the Molecular, Physiological and Cognitive Deficits of	
NF1 with Statins	34
Measuring Efficacy in Statin Clinical Trials	35
The Role of Patient Organizations in Studies of Learning Disabilities	36
Findings From Studies of NF1: Implication to Learning Disabilities	37
Genetic and Pharmacological Manipulations that Enhance Learning and	
Memory: An Alternative Strategy	37
References	39

CHAPTER 4	Development, Optimization and Use of Preclinical Behavioral Models to Maximize the Productivity of Drug Discovery for Alzheimer's Disease	93
	Mark D. Lindner, Robert A. McArthur, Sam A. Deadwyler,	
	Robert E. Hampson and Pierre N. Tariot	
	Introduction	94
	AD: Clinical Presentation	
	Targets and Compounds in the Clinic: Failed, Approved, and Under	
	Development	
	Drug Discovery Strategies: Proven, Tested, and Hypothetical	100
	Clinical Trials of Treatments For AD: How is Efficacy Established?	101
	Critical Role of Behavioral Models and Endpoints	102
	Historical Origins of Animal Models of Cognitive Processes	104
	Clinically Relevant Cognitive Deficits in AD	105
	Spatial Memory and Spatial Mapping	105
	Episodic and Recognition Memory	105
	Global Functional Deficits	106
	Animal Models Used to Assess Drug Candidates for Impaired	
	Cognition in AD	106
	Pharmacological Models	107
	Lesions	107
	Neurogenesis	107
	Aged Animals	108
	Genetic	108
	Procedures Used to Assess Cognition in Animals	111
	Passive and Active Avoidance	111
	Conditioned Fear	112
	Novel Object or Social Recognition	112
	Delayed Matching and Non-Matching to Sample	113
	Radial Arm and Water Mazes	113
	Set Shifting	114
	Role of Behavioral Models in Drug Discovery for AD	115
	Primary Screening	115
	Target Validation and Proof of Concept	115
	Final Preclinical Testing in NHPs	116
	Suggested Procedures to Assess Potential Efficacy Using Donepezil	
	As an Example	117
	Review Publications in the Literature	117
	Determine if Potential Efficacy Can Be Replicated in Rodents	123
	Determine if Potential Efficacy Can Be Replicated in NHPs	123
	Evaluate Potential Efficacy Based on Thorough Analysis of All	
	the Evidence	126
	Translational Initiatives in AD	127
	Explore Non-Cholinergic Targets and Models without AChEIs as	
	Positive Control	128
	Optimize Clinical Relevance of Models and Behavioral Tests	129

	Develop and Validate Clinically Relevant Behavioral Tests	129
	Combine Behavioral/Functional with Molecular/Biological Measures	131
	Determine Reliability and Generalizability of Results	134
	Consider Potential Non-Specific, Non-Cognitive Confounds	135
	Increase Communication and Collaborations	136
	Improve Experimental and Decision-Making Processes	136
	Summary and Consensus Statement	137
	References	137
CHAPTER 5	Animal Models of Parkinson's Disease to	
	Aid Drug Discovery and Development	. 159
	Kalpana M. Merchant, Marie-Françoise Chesselet,	
	Shu-Ching Hu and Stanley Fahn	
	Introduction	160
	Brief Description of Clinical Syndrome of PD	160
	Synopsis of Current Treatment of PD	162
	Unmet Medical Needs	168
	Clinical Trials of Treatments for PD	168
	Animal Models that Led to the Discovery and Development of Curren	tly
	Available Drugs to Treat Motoric Symptoms and Their Limitations	171
	Reserpine Model	171
	6-Hydroxydopamine Model	172
	MPTP Model	173
	Other Toxin-Based Models	174
	Etiopathology of PD: Genetic and Environmental Factors	176
	Genetic Etiology-based Models; Translatability of Phenotypes to Clinic	al
	Symptoms	179
	Difficulties in PD Research	183
	Utility of Animal Models in the Process of Drug Discovery	
	and Development	184
	Use of Animal Models for Target Identification and Validation	185
	Animal Models to Develop a Clinically Translatable Understanding of	
	Pharmacokinetic-pharmacodynamic Relationships	187
	Animal Models for Assessment of Efficacy Predictive of Clinical Benefit	188
	Animal Models for Discovery of Clinically Translatable Biomarkers to	
	Help Set the Dose Range and Assess Efficacy In Human Clinical Trials	190
	Concluding Remarks	191
	References	192
	Handington Discours	007
CHAPTER 6	Huntington Disease	. 207
	Laura A. Wagner, Liliana Menalled, Alexander D.	
	Goumeniouk, Daniela Brunner and Blair R. Leavitt	
	Introduction	208
	Clinical Presentation of HD	209
	Signs and Symptoms	209
	Genetics of HD	210

	Neuropathology of HD	211
	Pathogenic Mechanisms	211
	Treatment Options in HD	213
	Symptomatic Treatments	214
	Disease Modifying Treatments	
	Clinical Conclusion	218
	Animal Models of HD	
	Validity of Animal Models of HD	218
	Pre-Gene (Chemical) HD Models	
	HD Fragment Models	220
	HD Full-Length Models	223
	Knock-in Models	225
	Other Models	228
	Comparing HD Mouse Models for Pre-clinical Trials	228
	Pre-clinical Studies in HD Mouse Models	
	Endpoints/Outcome Measures	
	Pre-clinical Trial Design	
	Breeding	
	Housing Conditions	
	Testing Protocol	
	Optimal Allocation	
	Pre-clinical Trials	
	Energy Metabolism	
	Oxidative Damage and Excitotoxicity	
	Protease Inhibitors	
	Transglutaminase Inhibitor	
	Diet and Enrichment	
	Aggregate Formation Inhibitors	
	Targeting Gene Transcription	249
	Tissue Transplantation	
	Other Drugs/Treatments	
	Translation from Pre-clinical to Clinical	250
	Future Directions	251
	References	253
CUADTED 7	Translational Posoarch in ALS	267
UNAFILK /	lacqueline Mentes, Caterina Bendetti, Massime Tertarele	207
	Cristing Charani, Hussoin Hallak, Zingra Spaiser	
	Savi Caron, Fran Blaugrund and Daul II, Cardan	
		2(0
	HISTORY	
	Epidemiology	
	Familial ALS	
	Sporadic ALS	
	Pathophysiology: Mechanisms of Neurodegeneration	
	Clinical Presentation	271

El Escorial Criteria	271
ALS Phenotypes	271
Heterogeneity in Rates of Progression	273
Current Treatment Options	273
Riluzole (Rilutek®)	273
Symptomatic and Palliative Treatments	273
Current Preclinical Approaches	276
ALS Models	276
In Vitro Models and High-Throughput Screens	277
Transgenic SOD1 Models	279
Other Animal Models	281
Representation of Motor Impairment	281
Cognitive Alterations in Mutant ALS Mice	282
Dopaminergic Hypofunction in G93a Mice and Cognitive	
Performance	283
Glutamate Overactivity in Mutant ALS Mice and Cognitive	
Performance	283
Into the Future of Preclinical Research	284
Challenges in Representing a Heterogeneous Disease	284
Discrepancies in Animal Testing Protocols and ALS Clinical Trials	285
Guidelines for Future Animal Trial Design	285
Between Preclinical and Clinical Testing	286
Riluzole	286
Celecoxib	288
Gabapentin	290
Trial Design	291
Challenges of Recruitment and Retention	292
Measuring Progression and Outcome Measures	293
Potential Biomarkers	295
Slowing Disease Progression	295
Conclusion and Future Directions	296
Acknowledgements	296
References	297

CHAPTER 8 Animal and Translational Models of

the Epilepsies	311
Henrik Klitgaard, Alain Matagne, Steven C. Schachter and	
H. Steve White	
Introduction	312
Diagnosis of Epilepsy	312
Principles of Treatment	314
Pharmacological and Non-pharmacological Therapies	315
Antiepileptic Drugs	316
Outcome	316
Non-Pharmacological Therapies	316
Unmet Medical Needs	321

	Animal Models for AED Discovery	
	In Vivo Testing	
	Correlation of Animal Anticonvulsant Profile and Clinical Utility	
	The MES and Kindled Rat Models	
	The sc PTZ Seizure Model	
	Models of Spike-Wave Seizures	
	Models for Adverse Effect Testing	
	Strategies for AED Discovery	
	Random Screening of New Chemical Entities	
	Derivatives of Existing AEDs	
	Rational, Target-Based Drug Discovery	
	Models of Pharmacoresistance	
	PHT-Resistant Kindled Rat Model	
	LTG-Resistant Kindled Rat Model	
	The Low-Frequency (6Hz) Electroshock Seizure Model	
	Post-Status Epilepticus Models of Temporal Lobe Epilepsy	
	Biomarkers of Therapeutic Response	
	Summary and Concluding Remarks	
	References	
EPILOGUE	Translational Models for the 21st Century: Reminiscence, Reflections and Some	
	Recommendations	337
	Paul Willner, Franco Borsini and Robert A. McArthur	
	Introduction	
	References	
Index		

This page intentionally left blank

What Do *You* Mean by "Translational Research"? An Enquiry Through Animal and Translational Models for CNS Drug Discovery: Neurological Disorders

Robert A. McArthur¹ and Franco Borsini²

¹McArthur and Associates GmbH, Basel, Switzerland ²Sigma-tau S.p.A, Pomezia (Rome), Italy

In the 50-odd years since the introduction of clinically effective medications for the treatment of behavioral disorders such as depression,¹ anxiety² or schizophrenia³ there has recently been growing unease with a seeming lack of substantive progress in the development of truly innovative and effective drugs for behavioral disorders; an unease indicated by escalating research and development expenditure associated with diminishing returns (e.g.,⁴) and discussed by Hunter⁵ in this book series. There are a number of reasons that may account for this lack of new drugs for CNS disorders $(cf., {}^{6})$, but according to the US Food and Drug Administration's (FDA) white paper on prospects for 21st century drug discovery and development,⁷ one of the main causes for failure in the clinic is the discrepancy between positive outcomes of candidate drugs in animal models and apparent lack of efficacy in humans, that is, the predictive validity of animal models. Consequently, there have been a number of initiatives from the US National Institutes of Health (NIH) (http://nihroadmap.nih. gov/) and The European Medicines Agency (EMEA),⁸ to bring interested parties from Academia and Industry together to discuss, examine and suggest ways of improving animal models of behavioral disorders⁹⁻¹⁴. The value of NIH-supported initiatives, even to the point of participating directly in drug discovery from screening to registration is not to be underestimated, as evidenced by the successful registration of buprenorphine (Subutex®) and buprenorphine/naloxone (Suboxone®) by Reckitt-Benckiser in collaboration with the National Institute on Drug Abuse¹⁵, see also¹⁶.

Translational research and experimental medicine are closely related activities that have evolved in answer to the need of improving the attrition rate of novel drugs between the preclinical and clinical stage of development.^{5,19-22} In general, translational research defines the *process* through which information and insights flow from clinical observations to refine the development of animal models *as well as* the complementary flow of information and insights gained from animal models to the clinical

ⁱFor a comprehensive discussion of NIH-sponsored initiatives and collaborations and opportunities, please refer to Winsky and colleagues¹⁷ and Jones and colleagues¹⁸, for specifics on NIH-Academic-Industrial collaborations in schizophrenia.

setting, be it through improved diagnosis, disease management or treatment; including pharmacological treatment.²³ Experimental medicine, in terms of drug discovery, refers to studies in human volunteers to (1) obtain mechanistic and pharmacological information of compounds entering into development, (2) explore and define biological markers with which the state and progress of a disorder can be monitored, as well as the effects of pharmacological interventions on its progress and (3) establish models and procedures with which to obtain initial signals of efficacy test.^{5,15,22} Though claimed as an innovative paradigm shift, translational research nevertheless, is not a new concept, as pointed out by Millan in this book series.²⁴ The origins of psychopharmacology abound with numerous examples of how pharmaceutical or medicinal chemists interacted directly with their clinical colleagues to "test their white powder", or clinicians who would knock at the chemists' door for anything new. Kuhn and Domenjoz, for example, describes the initial "Phase II" trials of the novel "sleeping pill" forerunner of imipramine.^{25,26} Paul Janssen tells how the observation of the paranoid schizophrenia-like hallucinations experienced by cyclists who were consuming amphetamine to stay alert, led him to search for better amphetamine antagonists, one of which was haloperidol. This compound was subsequently given to a young lad in the midst of a psychotic episode by a local psychiatrist with good results.²⁷ Though largely overtaken in sales and prescription rates by 2nd generation atypical antipsychotics, Haloperidol (Haldol®) remains one of the standard drugs used in the treatment of schizophrenia.18,28,29

Translational research is a two-way process which, nonetheless can lead to differences in emphasis and agenda. We have gathered a number of definitions from different sources listed in Table 1 below to help us determine what one of our authors asked us to do when he was contacted to contribute to this book project, "What do *you* mean by 'translational research'?"

These definitions may emphasize the clinical, or top-down approach to translational research,^{20,30} or the bottom-up approach of "bench-to-bedside".^{21,31} It is clear though, that translational research has a purpose of integrating basic and clinical research for the benefit of the patient in need. While we welcome this as a general definition of translational research, we acknowledge, as do others (e.g.,^{31,32}), that a more pragmatic, working definition is required. Consequently, we define translational research, in the context of drug discovery and research, as the partnership between preclinical and clinical research to align not only "... basic science discoveries into medications",³¹ but also the information derived from the clinic during the development of those medications. The purpose of this reciprocal definition is to refine the model systems used to understand the disorder by identifying the right targets, interacting with those targets pharmacologically in both animals and humans and monitoring the responses in each throughout a compound's development (cf.,^{5 and 15}). Central to this definition is the acknowledgement that the etiology of behavioral disorders and their description are too diffuse to attempt to model or simulate in their entirety. Consequently, emphasis must be placed on identifying specific symptoms or core features of the disorder to model, and to define biological as well as behavioral responses as indices of state, changes in state and response to pharmacological treatment. This process is made easier if, at the same time, greater effort is made to identify procedures used to measure these biological and behavioral responses that are consistent

Table 1 Selected definitions of translational research

Definition	Reference
Translational medicine may also refer to the wider spectrum of patient- oriented research that embraces innovations in technology and biomedical devices as well as the study of new therapies in clinical trials. It also includes epidemiological and health outcomes research and behavioral studies that can be brought to the bedside or ambulatory setting.	30
connotes an attempt to bring information that has been confined to the laboratory into the realm of clinical medicine.	
To the extent that clinical studies could be designed to answer such questions (generated by information from the laboratory), they would represent types of translational clinical research.	20
a two-way street where the drive to cure should be complemented by the pursuit to understand human diseases and their complexities.	21, 220
 Basic science studies which define the biological effects of therapeutics in humans 	
2. Investigations in humans which define the biology of disease and provide the scientific foundation for development of new or improved therapies for human disease	
3. Non-human or non-clinical studies conducted with the intent to advance therapies to the clinic or to develop principles for application of therapeutics to human disease	
4. Any clinical trial of a therapy that was initiated based on #1–3 with any endpoint including toxicity and/or efficacy.	M. Sznol cited by 21
research efforts intended to apply advances in basic science to the clinical research setting. For drug discovery and development, the term refers to research intended to progress basic science discoveries into medications.	31
By bringing together top-down and bottom-up approaches, there is potential for a convergence of unifying explanatory constructs relating aetiology to brain dysfunction and treatment.	37, 221
information gathered in animal studies can be translated into clinical relevance and vice versa, thus providing a conceptual basis for developing better drugs.	
the application of scientific tools and method to drug discovery and development taking a pragmatic or operational rather than a definitional approach, a key to a successful translation of non-human research to human clinical trials lies in the choice of biomarkers.	32
two-way communication between clinical and discovery scientists during the drug development process are likely to help in the development of more relevant, predictive preclinical models and biomarkers, and ultimately a better concordance between preclinical and clinical efficacy.	82

within and between species.^{23,24} Brain imaging is one technique that has cross-species consistency (e.g.,³³⁻³⁶), as do various operant conditioning procedures.^{37,38}

There are at least two aspects of translational research to be considered as a result of the definition proposed above. First is the concept of specific symptoms, or core features of the disorder to model. Attempts to simulate core disturbances in behavior formed the basis of early models of behavioral disorders. McKinney and Bunney, for example, describe how they sought to "translate" the clinically observed changes in human depressed behavior (secondary symptoms) with analogous changes in animals induced by environmental or pharmacological manipulations.³⁹

Whereas modelers have traditionally referred to diagnostic criteria such as DSM- IV^{40} or ICD-10⁴¹ the consensus to be found in this book series and other sources is that these diagnostic criteria do not lend themselves easily to basic or applied research. The etiology of behavioral disorders is unclear, and there is considerable heterogeneity between patients with different disorders but similar symptoms. Nevertheless, attempts to model particular behavioral patterns have been and are being done. Thus, for example, the construct of anhedonia (the loss of ability to derive pleasure), or the construct of social withdrawal, may be diagnostic criteria for a number of behavioral disorders including depression, schizophrenia, as well as a number of other disorders (cf., 4^{2}). There is considerable momentum to establish a dimension – rather than diagnostic-based classification or to "deconstruct" syndromes into "symptom-related clusters" that would help guide neurobiological researchⁱⁱ.^{18,43,44} In order to define these "symptom-based clusters", however, the symptoms have to be defined. Previously, these were identified as behavioral patterns, though lately they have been referred to variously as behavioral endophenotypes or exophenotypes (e.g.,⁴⁵⁻⁴⁹). It is appropriate here to review the definitions of both. Exophenotype and endophenotypes have been defined by Gottesman and Schields⁵⁰ as:

John and Lewis (1966) introduced the useful distinction between exophenotype (external phenotype) and endophenotype (internal), with the latter only knowable after aid to the naked eye, e.g. a biochemical test or a microscopic examination of chromosome morphology (p. 19).ⁱⁱⁱ

Subsequently, endophenotypes have been more rigorously defined⁵¹ as:

- 1. The endophenotype is associated with illness in the population.
- 2. The endophenotype is heritable.
- 3. The endophenotype is primarily state-independent (manifests in an individual whether or not illness is active).
- 4. Within families, endophenotype and illness co-segregate.
- 5. The endophenotype found in affected family members is found in nonaffected family members at a higher rate than in the general population. (p. 639)

ⁱⁱ For reviews of the initiatives deconstructing a complex disorder like schizophrenia, the reader is invited to consult the following two issues of *Schizophrenia Bulletin*, where these initiatives are thoroughly discussed: *Schizophr Bull*, 2007, 33:1 and *Schizophr Bull*, 2007, 33:4.

ⁱⁱⁱ See also Tannock *et al.*,⁶¹ for definitions of endophenotypes and biomarkers.

And that "...The number of genes involved in a phenotype is theorized to be directly related to both the complexity of the phenotype and the difficulty of genetic analysis" (*op cit.*, p. 637). On the other hand, exophenotypes have been defined by Holzman⁵² (and others) as:

... the external symptoms of a disorder that clinicians detect during an examination. An endophenotype, on the other hand, is a characteristic that requires special tools, tests, or instruments for detection. (p. 300)

It behooves the unwary researcher to be careful with terminology and thus not fall into the trap of pretending greater accuracy by changing the name of the phenomenon being studied. Finally, to quote Hyman's $caveat^{43}$,

The term "endophenotype" has become popular for describing putatively simpler or at least objectively measurable phenotypes, such as neuropsychological measures that might enhance diagnostic homogeneity. I find this term less than ideal, because it implies that the current diagnostic classification is basically correct, and that all that is lacking is objective markers for these disorders. If, however, the lumping and splitting of symptoms that gave rise to the current classification was in error, then the search for biological correlates of these disorders will not prove fruitful. (p. 729).

The second aspect to be considered in translational research is the concept of biomarkers. Biomarkers are crucial to translational research and serve as the interface between preclinical research, experimental medicine and clinical development. As with endophenotypes above, however, biomarkers also require some discussion. The FDA, NIH, and EMEA have been at the forefront in helping define and establish biomarkers, surrogate markers, and clinical endpoints⁵³⁻⁵⁷ (http://ospp.od.nih.gov/biomarkers); an initiative now being carried out in partnership with private enterprise⁵⁸ (http://ppp.od.nih.gov/ pppinfo/examples.asp). Lesko and Atkinson have provided summary definitions of various markers that are worth considering:⁵⁵

A synthesis of some proposed working definitions is as follows: (a) biological marker (biomarker) - a physical sign or laboratory measurement that occurs in association with a pathological process and that has putative diagnostic and/or prognostic utility; (b) surrogate endpoint - a biomarker that is intended to serve as a substitute for a clinically meaningful endpoint and is expected to predict the effect of a therapeutic intervention; and (c) clinical endpoint - a clinically meaningful measure of bow a patient feels, functions, or survives. The bierarchical distinction between biomarkers and surrogate endpoints is intended to indicate that relatively few biomarkers will meet the stringent criteria that are needed for them to serve as reliable substitutes for clinical endpoints (p. 348).

An important characteristic of biomarkers is that they should also be capable of monitoring disease progression.⁵⁴ It is interesting more over that the establishment of biomarkers should also be subject to the same concepts of validity as defined by Willner initially for models of behavioral disorders, that is, face, construct and predictive validity.⁵⁹ Lesko and Atkinson further indicate that biomarkers must be evaluated and validated for (1) clinical relevance (face validity in being able to reflect physiologic/pathologic processes), (2) sensitivity and specificity (construct validity that it is capable to measure changes though a given mechanism in a target population) and (3) must ultimately be validated in terms of clinical change, that is, predictive validity. Biomarkers also have other criteria that they need to fulfill such as: their accuracy, precision and reproducibility; an estimated rate of false positive and false negative probability; and practicality and simplicity of use. In addition, pharmacological isomorphism is used to establish a biomarker's predictive validity where response to a known clinically effective standard is ultimately required, especially if drugs of different mechanisms of action produce the same response in the biomarker. These criteria are very familiar to the animal modeler and highlight the shared interests and expertise that the preclinical researcher brings to the clinical arena. Biomarkers for behavioral disorders thus share many of the problems inherent to their animal models.⁶⁰ Nevertheless, it is among the most active pursuits in Pharma today (cf.,⁶¹⁻⁷⁰).

It is clear from the previous discussion that translational research demands the combined efforts of a number of participants, each of which contributes a particular expertise to achieve a common goal. Translational research cannot be done effectively using the "tried and true" process of compartmentalization prevalent up to the end of the last century, that is, the splitting of R from D, or maintaining the preclinical from clinical, academic from industrial divides. For the past decade Pharma has fostered cross-disciplinary collaboration with the creation of Project teams in which participants from preclinical, clinical and marketing sections of the Industry are brought together in relation to the maturity of the Project. The concept of "pitching the compound over the fence" is no longer tolerated, and preclinical participation even in mature Projects is expected. This creates a much more stimulating environment for all the participants, who not only learn from the experiences of others, but also maintain a sense of ownership even when their particular expertise is no longer required for a Project's core activities. Nevertheless, creation of and participation in Project teams is not always an easy task as group dynamics evolve. Team members are assigned to a Project by line managers, and can be removed depending on priorities. Some team members contribute more than their share, while others coast. The skills of the Project Leader must go beyond scientific expertise in order to forge an effective team and deliver a successful drug.

The use of animal models is an essential step in the drug discovery and indeed the translational research process. Use of appropriate models can minimize the number of drug candidates that later fail in human trials by accurately predicting the pharma-cokinetic and dynamic (PK/PD) characteristics, efficacy and the toxicity of each compound. Selection of the appropriate models is critical to the process. Primary diseases such as those caused by infections, genetic disorders or cancers are less problematic to model using both *in vitro* and *in vivo* techniques. Similarly some aspects of degenerative diseases have also been successfully modeled. However, modeling of disorders with a strong behavioral component has been less successful. This is not to say that there are no models for various aspects of these disorders. Many models have been proposed, validated pharmacologically with standard, clinically effective drugs and extensively reviewed. Indeed, these models have become so standardized that their use to characterize mechanisms of action and lead novel compounds in CNS drug discovery projects is mandatory, and positive outcomes are required before these compounds