

Fundamentals of Soil Physics

# Fundamentals of Soil Physics

## DANIEL HILLEL

DEPARTMENT OF PLANT AND SOIL SCIENCES UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS



#### ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Toronto Sydney

San Francisco

COPYRIGHT © 1980, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

#### Library of Congress Cataloging in Publication Data

Hillel, Daniel. Fundamentals of soil physics.

Bibliography: Includes indexes. 1. Soil physics. I. Title. S592.3.H54 631.4'3 80-16688 ISBN 0-12-348560-6

PRINTED IN THE UNITED STATES OF AMERICA

81 82 83 9 8 7 6 5 4 3 2

Dedicated to Rachel, who has made my labor of seven years, as that of Patriarch Jacob, seem but a few days.

PREFACE

| NOWLEDGMENTS                                                                                                                                                                                                                                                                                                                                 | xvii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part I: BASIC RELATIONSHIPS                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The Task of Soil Physics                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| General Physical Characteristics of Soils                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>A. Introduction</li> <li>B. Soil Physics</li> <li>C. Chemical and Physical Aspects of Soil Productivity</li> <li>D. Soil as a Disperse Three-Phase System</li> <li>E. Volume and Mass Relationships of Soil Constituents</li> <li>F. The Soil Profile<br/>Sample Problems</li> </ul>                                                | 6<br>7<br>8<br>9<br>14<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Properties of Water in Relation to Porous Media                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>A. Introduction</li> <li>B. Molecular Structure</li> <li>C. Hydrogen Bonding</li> <li>D. States of Water</li> <li>E. Ionization and pH</li> <li>F. Solvent Properties of Water</li> <li>G. Osmotic Pressure</li> <li>H. Solubility of Gases</li> <li>I. Adsorption of Water on Solid Surfaces</li> <li>J. Vapor Pressure</li> </ul> | 21<br>22<br>24<br>25<br>27<br>29<br>31<br>34<br>35<br>37<br>vii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Part I: BASIC RELATIONSHIPS</li> <li>The Task of Soil Physics</li> <li>General Physical Characteristics of Soils</li> <li>A. Introduction</li> <li>B. Soil Physics</li> <li>C. Chemical and Physical Aspects of Soil Productivity</li> <li>D. Soil as a Disperse Three-Phase System</li> <li>E. Volume and Mass Relationships of Soil Constituents</li> <li>F. The Soil Profile<br/>Sample Problems</li> <li>Droperties of Water in Relation to Porous Media</li> <li>A. Introduction</li> <li>B. Molecular Structure</li> <li>C. Hydrogen Bonding</li> <li>D. States of Water</li> <li>E. Solvent Properties of Water</li> <li>G. Osmotic Pressure</li> <li>H. Solubility of Gases</li> <li>I. Adsorption of Water on Solid Surfaces</li> </ul> |

xiii

| Κ. | Surface Tension                                      | 40 |
|----|------------------------------------------------------|----|
| L. | Curvature of Water Surfaces and Hydrostatic Pressure | 42 |
| М. | Contact Angle of Water on Solid Surfaces             | 43 |
| N. | Capillarity                                          | 45 |
| 0. | Density and Compressibility                          | 47 |
| Ρ. | Viscosity                                            | 48 |
|    | Sample Problems                                      | 50 |
|    |                                                      |    |

#### Part II: THE SOLID PHASE

## 4. Texture, Particle Size Distribution, and Specific Surface

| Α. | Introduction                   | 55 |
|----|--------------------------------|----|
| В. | Soil Texture                   | 56 |
| С. | Textural Fractions (Separates) | 56 |
| D. | Soil Classes                   | 59 |
| E. | Particle Size Distribution     | 60 |
| F. | Mechanical Analysis            | 62 |
| G. | Specific Surface               | 65 |
|    | Sample Problems                | 68 |
|    |                                |    |

#### 5. Nature and Behavior of Clay

| Α. | Introduction                                    | 71 |
|----|-------------------------------------------------|----|
| В. | Structure of Clay                               | 71 |
| С. | The Principal Clay Minerals                     | 74 |
| D. | Humus: The Organic Constituent of Soil Colloids | 76 |
| E. | The Electrostatic Double Layer                  | 77 |
| F. | Ion Exchange                                    | 81 |
| G. | Hydration and Swelling                          | 84 |
| H. | Flocculation and Dispersion                     | 87 |
|    | Sample Problems                                 | 90 |

#### 6. Soil Structure and Aggregation

| Α. | Introduction                             | 93  |
|----|------------------------------------------|-----|
| В. | Types of Soil Structure                  | 94  |
| С. | Structure of Granular Soils              | 95  |
| D. | Structure of Aggregated Soils            | 97  |
| E. | Additional Factors Affecting Aggregation | 101 |
| F. | Characterization of Soil Structure       | 103 |
| G. | Aggregate Stability                      | 108 |
| Η. | Soil Crusting                            | 112 |
| Ι. | Soil Conditioners                        | 113 |
| J. | Hydrophobization of Soil Aggregates      | 115 |
|    | Sample Problems                          | 117 |
|    |                                          |     |

### Part III: THE LIQUID PHASE

### 7. Soil Water: Content and Potential

| Introduction                                    | 123                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Soil-Water Content (Wetness)                | 124                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measurement of Soil Wetness                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Energy State of Soil Water                      | 134                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total Soil-Water Potential                      | 136                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Thermodynamic Basis of the Potential Concept    | 138                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gravitational Potential                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pressure Potential                              | 141                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Osmotic Potential                               | 144                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Revised Terminology                             | 144                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Quantitative Expression of Soil-Water Potential | 145                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Soil-Moisture Characteristic Curve              | 148                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hysteresis                                      | 152                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measurement of Soil-Moisture Potential          | 155                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Problems                                 | 162                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 | The Soil-Water Content (Wetness)<br>Measurement of Soil Wetness<br>Energy State of Soil Water<br>Total Soil-Water Potential<br>Thermodynamic Basis of the Potential Concept<br>Gravitational Potential<br>Pressure Potential<br>Osmotic Potential<br>Revised Terminology<br>Quantitative Expression of Soil-Water Potential<br>Soil-Moisture Characteristic Curve<br>Hysteresis<br>Measurement of Soil-Moisture Potential |

#### 8. Flow of Water in Saturated Soil

| Α. | Laminar Flow in Narrow Tubes                               | 166 |
|----|------------------------------------------------------------|-----|
| В. | Darcy's Law                                                | 168 |
| С. | Gravitational, Pressure, and Total Hydraulic Heads         | 172 |
| D. | Flow in a Vertical Column                                  | 174 |
| E. | Flow in a Composite Column                                 | 176 |
| F. | Flux, Flow Velocity, and Tortuosity                        | 177 |
| G. | Hydraulic Conductivity, Permeability, and Fluidity         | 178 |
| Н. | Limitations of Darcy's Law                                 | 181 |
| Ι. | Relation of Conductivity and Permeability to Pore Geometry | 183 |
| J. | Homogeneity and Isotropy                                   | 185 |
| Κ. | Measurement of Hydraulic Conductivity of Saturated Soils   | 187 |
| L. | Equations of Saturated Flow                                | 188 |
|    | Sample Problems                                            | 190 |

#### 9. Flow of Water in Unsaturated Soil

| Α. | Introduction                                                   | 195 |
|----|----------------------------------------------------------------|-----|
| В. | Comparison of Flow in Unsaturated versus Saturated Soil        | 195 |
| C. | Relation of Conductivity to Suction and Wetness                | 198 |
| D. | General Equation of Unsaturated Flow                           | 202 |
| E. | Hydraulic Diffusivity                                          | 204 |
| F. | The Boltzmann Transformation                                   | 207 |
| G. | Theoretical Calculation of the Hydraulic Conductivity Function | 209 |
| Н. | Measurement of Unsaturated Hydraulic Conductivity and          |     |
|    | Diffusivity in the Laboratory                                  | 212 |
| I. | Measurement of Unsaturated Hydraulic Conductivity of           |     |
|    | Soil Profiles in Situ                                          | 213 |
|    |                                                                |     |

| Con | ents |
|-----|------|
|-----|------|

| J. | Vapor Movement  | 221 |
|----|-----------------|-----|
|    | Sample Problems | 223 |

#### 10. Movement of Solutes and Soil Salinity

| Α.         | Introduction                                  | 233 |
|------------|-----------------------------------------------|-----|
| <b>B</b> . | Convective Transport of Solutes               | 234 |
| С.         | Diffusion of Solutes                          | 236 |
| D.         | Hydrodynamic Dispersion                       | 238 |
| E.         | Miscible Displacement and Breakthrough Curves | 240 |
| F.         | Combined Transport of Solutes                 | 242 |
| G.         | Effects of Solutes on Water Movement          | 245 |
| H.         | Soil Salinity and Alkalinity                  | 250 |
| I.         | Salt Balance of the Soil Profile              | 251 |
| J.         | Leaching of Excess Salts                      | 254 |
|            | Sample Problems                               | 257 |

### Part IV: THE GASEOUS PHASE

#### 11. Soil Air and Aeration

| Α. | Introduction                               | 265 |
|----|--------------------------------------------|-----|
| В. | Volume Fraction of Soil Air                | 266 |
| C. | Composition of Soil Air                    | 268 |
| D. | Convective Flow of Soil Air                | 269 |
| E. | Diffusion of Soil Air                      | 272 |
| F. | Soil Respiration and Aeration Requirements | 277 |
| G. | Measurement of Soil Aeration               | 280 |
|    | Sample Problems                            | 283 |

#### Part V: COMPOSITE PROPERTIES AND BEHAVIOR

#### 12. Soil Temperature and Heat Flow

| Α. | Introduction                                | 287 |
|----|---------------------------------------------|-----|
| В. | Modes of Energy Transfer                    | 288 |
| С. | Energy Balance for a Bare Soil              | 290 |
| D. | Conduction of Heat in Soil                  | 291 |
| Е. | Volumetric Heat Capacity of Soils           | 293 |
| F. | Thermal Conductivity of Soils               | 295 |
| G. | Simultaneous Transport of Heat and Moisture | 300 |
| Н. | Thermal Regime of Soil Profiles             | 303 |
| I. | Modification of the Soil Thermal Regime     | 309 |
|    | Sample Problems                             | 313 |
|    |                                             |     |

x

### 13. Stress-Strain Relations and Soil Strength

| Α. | Introduction                                       | 318 |
|----|----------------------------------------------------|-----|
| В. | The Concept of Strain and Stress                   | 319 |
| С. | Elasticity and Plasticity                          | 322 |
| D. | Rheology of Liquids                                | 325 |
| E. | Rheological Models                                 | 327 |
| F. | Stress Distribution in Soil                        | 328 |
| G. | The Mohr Circle of Stresses                        | 331 |
| Η. | Stress-Strain Relations and Failure of Soil Bodies | 334 |
| I. | The Concept of Soil Strength                       | 337 |
| J. | Measurement of Soil Strength                       | 338 |
| Κ. | Soil Consistency                                   | 347 |
|    | Sample Problems                                    | 352 |
|    |                                                    |     |

#### 14. Soil Compaction and Consolidation

| Α. | Introduction                                         | 355 |
|----|------------------------------------------------------|-----|
| В. | Two Opposing Views of Soil Compaction:               |     |
|    | Engineering and Agronomic                            | 356 |
| С. | Soil Compactibility in Relation to Wetness           | 357 |
| D. | Occurrence of Soil Compaction in Agricultural Fields | 360 |
| Ε. | Pressures Caused by Machinery                        | 361 |
| F. | Soil Compaction under Machinery-Induced Stresses     | 367 |
| G. | Occurrence and Consequences of Soil Compaction       | 371 |
| Η. | Control of Soil Compaction                           | 375 |
| Ι. | Soil Consolidation                                   | 376 |
|    | Sample Problems                                      | 382 |
|    |                                                      |     |

#### **Bibliography**

Index

407

387

"And furthermore, my son, be admonished Of the making of many books there is no end and much study is a weariness of the flesh."

Ecclesiastes XII: 12

## Preface

Tradition has it that wise King Solomon, using Ecclesiastes as *nom de plume*, reached his sorrowful conclusion (cited above) only in old age; otherwise, we might have been deprived of the enchanting "Song of Songs" of his youth and of the worldly "Proverbs" of his middle age.

This book is not, in any case, in total defiance of the Wise Old Man's admonition, for it is not an entirely new book. Rather, it is an outgrowth of a previous treatise, written a decade ago, entitled "Soil and Water: Physical Principles and Processes." Though that book was well enough received at the time, the passage of the years has inevitably made it necessary to either revise and update the same book, or to supplant it with a fresh approach in the form of a new book which might incorporate still-pertinent aspects of its predecessor without necessarily being limited to the older book's format or point of view.

After some deliberation, I have decided to follow the second course. In so doing, I have also endeavored to enlarge the scope of the book so as to encompass a number of topics that were omitted or only scantily treated in the original book, such as the properties of clay, soil structure, soil aeration, soil heat, soil rheology and mechanics, and solute movement. Consequently, the present book is an attempt at a comprehensive, albeit elementary, exposition of the foundations of soil physics as a whole, rather than a restricted treatment of soil–water relations alone. A companion volume, entitled "Applications of Soil Physics," deals specifically with the field- water cycle and associated phenomena.

In writing this book, I have attempted to answer the need for an upper-level undergraduate textbook in soil physics for students of the agricultural as well as of the environmental and engineering sciences. Toward this end, I have made a conscious effort to avoid unnecessary technical or mathematical jargon and unfamiliar notation, and to explain each development explicitly without assuming anything more than general undergraduate knowledge of the basic concepts of calculus, physics, chemistry, and biology. This book is thus meant to be as autonomous and self-sustaining as possible. When necessary, however, the reader is referred to outside sources for supplementary study, particularly where the topic relates to a field of science outside the scope of our own necessarily limited coverage. Sample problems are presented at the end of each chapter and are worked out explicitly (in what some might consider *excruciating* detail) in an effort to help students transmute the vague abstractions of unfamiliar theory into actual working knowledge.

Some students of agriculture and biology are deterred by the very sight of mathematical equations, and tend to skip over them (as if they were merely irrelevant clusters of meaningless symbols . . .) and to read only the narrative text. This is a mistake. Equations should be deciphered and digested, for they provide essential information on the quantitative relationships among factors and variables, and they do so with precision and logic. Mathematics, as Josiah Willard Gibbs once defined it so aptly, is a *language*. In fact, it is the indispensible language of science. Ordinary language is too cumbersome and imprecise to replace the elegance and economy of mathematics. Still, the fear of mathematics is so pervasive that it alone can prevent highly intelligent people from understanding science. We have therefore attempted in this text to meet our friends half-way, by refraining from excessive or avoidable mathematical niceties and by going to some length to explain the mathematics we could not avoid.

Some students may even feel uneasy about the amount of physics involved in a study of soil physics. They, too, have nothing to fear. The concepts are elementary and ought to be understood by all naturalists. These concepts include the conservation of mass, energy, and momentum; velocity and acceleration; force and force fields; pressure and viscosity; as well as potential and kinetic energy. They also include a few basic physicochemical and thermodynamic concepts—all essential to the understanding not merely of soil physics but of all natural systems. At this point the bewildered student might be tempted to ask: Is that all? Well, that is *practically* all . . . .

A textbook on so vital a subject as soil physics ought by right to capture and convey the special fascination and excitement of the soil physicist's quest for knowledge and understanding of his (or her) complex system, and hence should give some pleasure in the reading. It is my hope that this book might be read, not merely consulted, and that the reader might discover in it a few insights as well as facts.

#### Preface

While any book written by an individual author inevitably reflects his particular point of view, it is in the nature of the ongoing process of scientific exchange that one's own ideas cannot easily be distinguished from those of numerous others. Some of the concepts elucidated herein have had their roots in my formal studies in various universities, mainly in my native U.S.A. Others were conceived during the course of my rather extensive travels, which included assignments and sojourns as observer, consultant, researcher, and teacher in such diverse places as Japan, India, Southeast Asia, Australia, Europe, Africa, and the Americas. An important nursery of this book is the State of Israel, where I witnessed and took part in the development of intensive land and water management methods which have enabled that country, despite its arid climate, to multiply its agricultural production severalfold within a single generation.

Being still in midcareer, I cannot yet assume the mantle of the Wise Old Man and encapsulate my experience as an ultimate truth in the form of a terse maxim of my own. Suffice it to say that I have already discovered the truth of the ancient Talmudic adage: "Much have I learned from my teachers, and yet more from my colleagues, but most of all from my students."

## Acknowledgments

Thanks are due to the following colleagues who read and commented on various parts of the book during its formative stages: Professors John Baker, Allen Barker, Bernard Berger, Haim Gunner, and Mack Drake, as well as my graduate student David Leland, of the University of Massachusetts; and to Professors David Elrick of Guelph University and Peter Wierenga of New Mexico State University. I hereby absolve them of any responsibility for the book's undoubtedly numerous shortcomings, for which I alone am to blame. I am grateful to Lisa Cohn for her careful typing of the manuscript. Finally, an acknowledgment is also due to the draftsman who prepared the illustrations. Indeed he seemed to have worked harder on doing these than did the author on writing the text. However, being something of an amateur and still unsure of the quality of the results, he chooses to remain anonymous.

# Part I: BASIC RELATIONSHIPS

To see a world in a grain of sand and heaven in a wild flower Hold Infinity in the palm of your hand and eternity in an hour. William Blake Innocence and Experience 1789-1794

# **1** The Task of Soil Physics

The soil beneath our feet is the basic substrate of all terrestrial life. The intricate and fertile mix composing the soil, with its special life-giving attributes, is a most intriguing field of study. The soil serves not only as a medium for plant growth and for microbiological activity per se but also as a sink and recycling factory for numerous waste products which might otherwise accumulate to poison our environment. Moreover, the soil supports our buildings and provides material for the construction of earthen structures such as dams and roadbeds.

The attempt to understand what constitutes the soil and how it operates within the overall biosphere, which is the essential task of soil science, derives both from the fundamental curiosity of man, which is his main creative impulse, and from urgent necessity. Soil and water are, after all, the two fundamental resources of our agriculture, as well as of our natural environment. The increasing pressure of population has made these resources scarce or has led to their abuse in many parts of the world. Indeed, the necessity to manage these resources efficiently on a sustained basis is one of the most vital tasks of our age.

That knowledge of the soil is imperative to ensure the future of civilization has been proven repeatedly in the past, at times disastrously. In many regions we find shocking examples of once-thriving agricultural fields reduced to desolation by man-induced erosion or salinization resulting from injudicious management of the soil-water system. Add to that the shortsighted depletion of unreplenished water resources as well as the dumping of poisonous wastes—and indeed we see a consistent pattern of mismanagement. In view of the population–environment–food crisis facing the world, we can ill afford to continue squandering and abusing such precious resources.