Introduction to Soil Physics

DANIEL HILLEL

Introduction to Soil Physics

Introduction to Soil Physics

DANIEL HILLEL

Department of Plant and Soil Sciences University of Massachusetts Amherst, Massachusetts

ACADEMIC PRESS 1982 A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Paris San Diego San Francisco São Paulo Sydney Tokyo Toronto COPYRIGHT © 1980, 1982, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Hillel, Daniel. Introduction to soil physics.

Based on the author's Applications of soil physics and Fundamentals of soil physics. Bibliography: p. Includes index. 1. Soil physics. I. Title S592.3.H55 631.4'3 81-10848 ISBN 0-12-348520-7 AACR2

PRINTED IN THE UNITED STATES OF AMERICA

82 83 84 85 9 8 7 6 5 4 3 2 1

This book is only a small clearing at the edge of the woods where students might observe a few of the trees as they prepare to set out independently to explore the great forest which yet lies beyond.

Contents

Preface

xiii

Part I BASIC RELATIONSHIPS

1. The Task of Soil Physics

2. General Physical Characteristics of Soils

Α.	Introduction	5
В.	Soil Physics Defined	6
С.	Soil as a Disperse Three-Phase System	6
D.	Volume and Mass Relationships of Soil Constituents	8
Ε.	The Soil Profile	12
	Sample Problems	14

Part II THE SOLID PHASE

3. Texture, Particle Size Distribution, and Specific Surface

Α.	Introduction	21
В.	Soil Texture	22
С.	Nature of Clay	25
D.	Soil Classes	28
Ε.	Particle Size Distribution	30

F.	Mechanical Analysis	31
G.	Specific Surface	34
	Sample Problems	37

4. Soil Structure and Aggregation

Α.	Introduction	40
В.	Types of Soil Structure	41
С.	Structure of Granular Soils	42
D.	Structure of Aggregated Soils	43
Ε.	Characterization of Soil Structure	46
F.	Aggregate Stability	49
G.	Soil Crusting	51
	Sample Problems	52

Part III THE LIQUID PHASE

5. Soil Water: Content and Potential

Α.	Introduction	57
В.	The Soil-Water Content (Wetness)	58
С.	Measurement of Soil Wetness	59
D.	Energy State of Soil Water	64
Ε.	Soil-Water Potential	66
F.	Quantitative Expression of Soil-Water Potential	73
G.	Soil-Moisture Characteristic Curve	75
Η.	Hysteresis	78
I.	Measurement of Soil-Moisture Potential	80
	Sample Problems	86

6. Flow of Water in Saturated Soil

Α.	Introduction	90
В.	Darcy's Law	92
С.	Gravitational, Pressure, and Total Hydraulic Heads	95
D.	Flow in a Vertical Column	97
Ε.	Flux, Flow Velocity, and Tortuosity	99
F.	Hydraulic Conductivity, Permeability, and Fluidity	100
G.	Measurement of Hydraulic Conductivity of Saturated Soils	103
	Sample Problems	104

7. Flow of Water in Unsaturated Soil

.

Α.	Introduction	107
В.	Comparison of Flow in Unsaturated versus Saturated Soil	107

С.	Relation of Conductivity to Suction and Wetness	110
D.	General Equation of Unsaturated Flow	113
Ε.	Hydraulic Diffusivity	114
F.	Measurement of Unsaturated Hydraulic Conductivity and	
	Diffusivity in the Laboratory	117
G.	Measurement of Unsaturated Hydraulic Conductivity of Soil	
	Profiles in Situ	118
Н.	Vapor Movement	124
	Sample Problems	126

Part IV THE GASEOUS PHASE

8. Soil Air and Aeration

Α.	Introduction	135
В.	Volume Fraction of Soil Air	136
С.	Composition of Soil Air	138
D.	Convective Flow of Soil Air	139
Ε.	Diffusion of Soil Air	142
F.	Soil Respiration and Aeration Requirements	144
G.	Measurement of Soil Aeration	147
	Sample Problems	150

Part V COMPOSITE PROPERTIES AND BEHAVIOR

9. Soil Temperature and Heat Flow

Α.	Introduction	155
В.	Modes of Energy Transfer	156
С.	Conduction of Heat in Soil	158
D.	Volumetric Heat Capacity of Soils	160
Ε.	Thermal Conductivity of Soils	161
F.	Thermal Regime of Soil Profiles	167
	Sample Problems	172

10. Soil Compaction and Consolidation

Α.	Introduction	176
В.	Soil Compactibility in Relation to Wetness	177
С.	Occurrence of Soil Compaction in Agricultural Fields	180
D.	Pressures Caused by Machinery	181
Ε.	Consequences of Soil Compaction	188

102
191
196

11. Tillage and Soil Structure Management

Α.	Introduction	200
В.	Traditional and Modern Approaches to Tillage	201
С.	Problems of Tillage Research	203
D.	Operation of Tillage Tools	204

Part VI THE FIELD-WATER CYCLE AND ITS MANAGEMENT

12. Infiltration and Surface Runoff

Α.	Introduction	211
В.	"Infiltration Capacity" or Infiltrability	212
С.	Profile Moisture Distribution during Infiltration	215
D.	Infiltrability Equations	217
Ε.	Basic Infiltration Theory	219
F.	Infiltration into Layered Profiles	224
G.	Infiltration into Crust-Topped Soils	226
Н.	Rain Infiltration	228
I.	Surface Runoff	230
	Sample Problems	231

13. Internal Drainage and Redistribution Following Infiltration

Α.	Introduction	235
В.	Internal Drainage in Thoroughly Wetted Profiles	236
С.	Redistribution of Soil Moisture in Partially Wetted Profiles	238
D.	Analysis of Redistribution Processes	240
Ε.	"Field Capacity"	243
F.	Summary of Factors Affecting Field Capacity	247
	Sample Problems	248

14. Groundwater Drainage

Α.	Introduction	250
В.	Flow of Unconfined Groundwater	251

С.	Analysis of Falling Water Table	252
D.	Equations Pertaining to Flow of Unconfined Groundwater	254
Ε.	Groundwater Drainage	256
F.	Factors Influencing Drainage	259
G.	Drainage Design Equations	261
	Sample Problems	265

15. Evaporation from Bare-Surface Soils

Α.	Introduction	268
В.	Physical Conditions	269
С.	Evaporation in the Presence of a Water Table	271
D.	Hazard of Salinization Due to High Water Table	274
Ε.	Evaporation in the Absence of a Water Table (Drying)	275
F.	Analysis of the First and Second Stages of Drying	278
G.	Reduction of Evaporation from Bare Soils	281
	Sample Problems	283

16. Uptake of Soil Moisture by Plants

Α.	Introduction	288
В.	The Soil-Plant-Atmosphere Continuum	290
С.	Basic Aspects of Plant-Water Relations	291
D.	Root Uptake, Soil-Water Movement, and Transpiration	293
Ε.	Classical Concepts of Soil-Water Availability to Plants	297
F.	Newer Concepts of Soil-Water Availability to Plants	300
G.	Irrigation, Water-Use Efficiency, and Water Conservation	301

17. Water Balance and Energy Balance in the Field

Α.	Introduction	304
В.	Water Balance of the Root Zone	305
С.	Evaluation of the Water Balance	308
D.	Radiation Exchange in the Field	309
Ε.	Total Energy Balance	311
F.	Transport of Heat and Vapor to the Atmosphere	313
G.	Advection	315
Н.	Potential Evapotranspiration (Combination Formulas)	316
	Sample Problems	319

Bibliography

321

Preface

This book is a unified, condensed, and simplified version of the recently issued twin volumes, "Fundamentals of Soil Physics" and "Applications of Soil Physics." It is meant to serve as a textbook for undergraduate students in the agronomic, horticultural, silvicultural, environmental, and engineering sciences. Nonessential topics and complexities have been deleted, and little prior knowledge of the subject is assumed. An effort has been made to provide an elementary, readable, and self-sustaining description of the soil's physical properties and of the manner in which these properties govern the processes taking place in the field. Consideration is given to the ways in which the soil's processes can be influenced, for better or for worse, by man. Sample problems are provided in an attempt to illustrate how the abstract principles embodied in mathematical equations can be applied in practice. The author hopes that the present version will be still more accessible to students than its precursors and that it might serve to arouse their interest in the vital science of soil physics.

> Daniel Hillel Amherst, Massachusetts

Part I BASIC RELATIONSHIPS

1 The Task of Soil Physics

The soil beneath our feet is the basic substrate of all terrestrial life. The intricate and fertile mix composing the soil, with its special life-giving attributes, is a most intriguing field of study. The soil serves not only as a medium for plant growth and for microbiological activity per se but also as a sink and recycling factory for numerous waste products which might otherwise accumulate to poison our environment. Moreover, the soil supports our buildings and provides material for the construction of earthen structures such as dams and roadbeds.

The attempt to understand what constitutes the soil and how it operates within the overall biosphere, which is the essential task of soil science, derives both from the fundamental curiosity of man, which is his main creative impulse, and from urgent necessity. Soil and water are, after all, the two fundamental resources of our agriculture, as well as of our natural environment. The increasing pressure of population has made these resources scarce or has led to their abuse in many parts of the world. Indeed, the necessity to manage these resources efficiently on a sustained basis is one of the most vital tasks of our age.

That knowledge of the soil is imperative to ensure the future of civilization has been proven repeatedly in the past, at times disastrously. In many regions we find shocking examples of once-thriving agricultural fields reduced to desolation by man-induced erosion or salinization resulting from injudicious management of the soil-water system. Add to that the shortsighted depletion of unreplenished water resources as well as the dumping of poisonous wastes—and indeed we see a consistent pattern of mismanagement. In view of the population–environment–food crisis facing the world, we can ill afford to continue squandering and abusing such precious resources. The soil itself is of the utmost complexity. It consists of numerous solid components (mineral and organic) irregularly fragmented and variously associated and arranged in an intricate geometric pattern that is almost indefinably complicated. Some of the solid material consists of crystalline particles, while some consists of amorphous gels which may coat the crystals and modify their behavior. The adhering amorphous material may be iron oxide or a complex of organic compounds which attaches itself to soil particles and binds them together. The solid phase further interacts with the fluids, water and air, which permeate soil pores. The whole system is hardly ever in a state of equilibrium, as it alternately wets and dries, swells and shrinks, disperses and flocculates, compacts and cracks, exchanges ions, precipitates and redissolves salts, and occasionally freezes and thaws.

To serve as a favorable medium for plant growth, the soil must store and supply water and nutrients and be free of excessive concentrations of toxic factors. The soil-water-plant system is further complicated by the facts that plant roots must respire constantly and that most terrestrial plants cannot transfer oxygen from their aerial parts to their roots at a rate sufficient to provide for root respiration. Hence the soil itself must be well aerated, by the continuous exchange of oxygen and carbon dioxide between the air-filled pores and the external atmosphere. An excessively wet soil will stifle roots just as surely as an excessively dry soil will desiccate them.

These are but a few of the issues confronting the relatively new science of soil physics, a field of study which has really come into its own only in the last generation. Definable as the study of the state and transport of all forms of matter and energy in the soil, soil physics is an inherently complex subject, a fact which may account for its rather late development.

Our present-day knowledge of the soil physical system is still rather fragmentary. Hence, we continue to search and re-search for answers to the numerous newly arising questions. The business, and fun, and occasional agony of science is the continuing endeavor to achieve a coordinated understanding and explanation of observable phenomena without ever resting on yesterday's conclusions. Consequently a valid book on soil physics should reflect the complexity of the system even while attempting to present a coordinated and logical description of what is admittedly only a partial knowledge of it.