

LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY VOLUME 33

FRET and FLIM Techniques

EDITOR: T.W.J. Gadella

SERIES EDITORS: S. Pillai and P.C. van der Vliet

FRET and FLIM Techniques

LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY

Series Editors

P.C. van der Vliet—Department for Physiological Chemistry, University of Utrecht, Utrecht, The Netherlands

and

S. Pillai-MGH Cancer Center, Boston, Massachusetts, USA

Volume 33

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

FRET AND FLIM TECHNIQUES

Edited by

T. W. J. Gadella

Section of Molecular Cytology and Centre for Advanced Microscopy Swammerdam Institute for Life Sciences University of Amsterdam Amsterdam, The Netherlands

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO *Cover photo credit*: Sensitized emission calculated from confocal images. Cells expressing CFP- and YFP-tagged Pleckstrin homology domains were seeded together with control cells expressing either CFP or YFP; image shows all input file. Image courtesy of Dr. Kees Jalink and Jacco van Rheenen. Laboratory Techniques in Biochemistry and Molecular Biology. (2009) **33**, pp 289–350.

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands Linacre House, Jordan Hill, Oxford OX2 8DP, UK

First edition 2009

Copyright © 2009 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-08-054958-3 ISSN: 0075-7535

For information on all Elsevier publications visit our website at elsevierdirect.com

Printed and bound in UK 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Contents

Contri	butors	xi
Prefac	e	xvii
Chapt	er 1. Förster resonance energy transfer—FRET	
<i>what i</i> Rober	s it, why do it, and how it's done	1
1.1.	Introduction	1
1.2.	Historical background; setting the groundwork	4
1.3.	FRET basics	10
1.4. 1.5.	What can we learn from energy transfer?	22
	FRET efficiency	24
1.6.	Measuring fluorescence emission of the donor	34
1.7.	Measuring any de-excitation process in order to determine	
	FRET efficiency; the acronym FRET	38
1.8.	Measuring photobleaching to determine FRET efficiency	40
1.9.	Measuring the acceptor fluorescence or reaction products to	
	determine the efficiency of energy transfer	42
1.10.	Transfer between identical molecules: Fluorescence	
	anisotropy	46
1.11.	Energy transfer by electron exchange	47
	Acknowledgments	48
	References	48
Chapt	er 2. Frequency domain FLIM theory,	
instrur	nentation, and data analysis	59
Peter.	J. Verveer and Quentin S. Hanley	
2.1.	Rates, time constants, and lifetimes	61
2.2.	Instrumentation	66
2.3.	Instrumentation: Frequency domain FLIM	68
2.4.	Systems for measuring lifetimes at multiple frequencies	70
2.5.	Spectral FLIM	70
2.6.	Data acquisition strategies	72

2.7.	Calibration and measurement validation	73
2.8.	Calibration by comparison with a scattering solution	73
2.9.	Calibration by use of reflecting surfaces	74
2.10.	Calibration by use of fluorophores of known lifetime	75
2.11.	Comparison of calibration methods	75
2.12.	Validation after calibration	76
2.13.	First pass analysis-data to modulation depth and phase shift	77
2.14.	Fourier methods for estimating phase and modulation	77
2.15.	Sine fitting methods for estimating phase and modulation	79
2.16.	Two-component analysis of FLIM data	80
2.17.	Application: Semi-quantitative FRET analysis	84
2.18.	Application: Quantitative FRET analysis	86
2.19.	Emerging techniques	88
2.20.	Segmented intensifiers	88
2.21.	Directly modulated detection schemes	89
	Acknowledgments	90
	References	90
Chapte	er 3. Time domain FLIM: Theory, instrumentation,	
and da	ta analysis	95
Н. С.	Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Espo	osito
3.1.	Introduction	96
3.2.	Lifetime detection methods	97
3.3.	Point scanning time domain FLIM implementations	104
3.4.	Wide field time-domain FLIM implementations	109
3.5.	Signal considerations and limitations	112
3.6.	Data analysis	122
3.7.	FRET-FLIM example application	125
	References	128

Chapter 4. Multidimensional fluorescence imaging	133
James McGinty, Christopher Dunsby, Egidijus Auksorius,	
Richard K. P. Benninger, Pieter De Beule, Daniel S. Elson,	
Neil Galletly, David Grant, Oliver Hofmann, Gordon Kenne	dy,
Sunil Kumar, Peter M. P. Lanigan, Hugh Manning, Ian Mur	ıro,
Björn Önfelt, Dylan Owen, Jose Requejo-Isidro, Klaus Suhlin	ng,
Clifford B. Talbot, P. Soutter, M. John Lever, Andrew J. deM	lello,
Gordon S. Stamp, Mark A. A. Neil, and Paul M. W. French	

4.1.	Introduction
4.2.	FLIM and wide-field time-gated imaging
4.3.	Spectrally resolved FLIM
4.4.	Polarization-resolved imaging
4.5.	Conclusions
	Acknowledgments
	References

Chapter 5. Visible fluorescent proteins for FRET 171 Gert-Jan Kremers and Joachim Goedhart

Introduction	172
Fluorescent proteins	173
Variants of avGFP	178
Variants of DsRed	184
Variants of eqFP578 and eqFP611	185
VFP variants from other sources	186
Chromoproteins and fluorescent derivatives	187
Optical highlighter fluorescent proteins	188
Choosing the right VFP FRET pair	190
VFP-based FRET pairs	196
Applications	203
Conclusion.	208
Acknowledgments	209
References	209
	IntroductionFluorescent proteinsVariants of avGFPVariants of DsRedVariants of eqFP578 and eqFP611VFP variants from other sourcesChromoproteins and fluorescent derivativesOptical highlighter fluorescent proteinsChoosing the right VFP FRET pair.VFP-based FRET pairsApplicationsConclusion.AcknowledgmentsReferences

<i>Chapte</i> Aman	er 6. Small molecule-based FRET probes da Cobos Correa and Carsten Schultz	225
6.1.	Introduction	225
6.2.	Fluorophores and quenchers	226
6.3.	Concepts and design of FRET sensors	248
6.4.	Small molecule-based FRET sensors and their applications	255
6.5.	Perspectives and future directions	273
	References	275 275
Chapt	er 7. FilterFRET: Quantitative imaging of	
<i>sensiti.</i> Kees J	zed emission	289
7.1.	Introduction	290
7.2.	Two-channel ratio imaging	295
7.3.	Three-channel measurements: FilterFRET	300
7.4.	Optimizing image acquisition.	314
7.5.	Postacquisition improvements and analysis	323
7.6.	Discussion	331
7.A.	Appendix	333
	Acknowledgments	347
	References	348
Chapte of För Steven Christ	er 8. Spectral imaging and its use in the measurement ster resonance energy transfer in living cells S. Vogel, Paul S. Blank, Srinagesh V. Koushik, and opher Thaler	351
8.1.	Introduction	352
8.2.	Understanding spectral imaging	353
8.3.	What is the spectral signature of FRET?	371
	Acknowledgments	388
	Appendix	388
	References	391

Chapte	er 9. Total internal reflection fluorescence lifetime	
imagin	g microscopy	3
T. W.	J. Gadella Jr.	
9.1.	Introduction: Total internal reflection theory	2
9.2.	TIRF microscopy history and applications.	
9.3.	Combining TIRF with FLIM	4
9.4.	Results and discussion	
9.5.	Methods	
	Acknowledgments	
	References	
Chant	on 10 EPET and ELIM applications in plants	1
Divoz	A Dhot	4
Riyaz	A. Dilat	
10.1	Introduction	
10.1	Multicolor and FRET imaging in plants	
10.2.	Ideal donor-accentor pairs for in planta FRET applications	
10.4	Ouantifying FRET—Methods and Pitfalls	
10.5	Protoplasts versus intact tissues: Which cell-type to FRET	
10.6	Beyond protein–protein interactions–development and use	
10101	of FRET-based nanosensors	
10.7.	Protocols for protoplast transfection and particle bombardment	
	of leaf epidermal cells	
10.8.	Functional assays and stable plant transformation	
10.9.	Outlook	
	Acknowledgments	
	References	
Chapt	er 11. Biomedical FRET–FLIM applications	4
Phill E	B. Jones, Brian J. Bacskai, and Bradley T. Hyman	
11.1	Introduction	
11.1.	Rationale	
11.2.	Methods	
11.5.	Materials	
11.7.	1v1atv11a10	

11.5.	Biomedical applications. 4	55
11.6.	Conclusions	66
	References 4	67
Chanta	er 12 Reflections on FRFT imaging Formalism	

Chapter 12. Reflections on TRET imaging. Tormatism,	
probes, and implementation	475
Elizabeth A. Jares-Erijman and Thomas M. Jovin	

12.1.	Introduction	476
12.2.	The FRET formalism revisited	477
12.3.	The "FRET Calculator"	481
12.4.	Novel FRET methods	483
12.5.	FRET probes	486
12.6.	Quo vadis	504
	Acknowledgments.	505
	References	505
Glossar Index .	y	519 521

CONTRIBUTORS

A. V. Agronskaia
Molecular Biophysics Group, Debye Institute, Utrecht University, NL
3508 TA, Utrecht, The Netherlands

Egidijus Auksorius Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Brian J. Bacskai Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disorders, Charlestown, Massachusetts 02129

A. N. Bader
Molecular Biophysics Group, Debye Institute, Utrecht University, NL
3508 TA, Utrecht, The Netherlands

Richard K. P. Benninger Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Riyaz A. Bhat Department of Biology, Indiana University, Bloomington, Indiana 47405

Paul S. Blank

National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive Bldg. 10 Bethesda, Maryland 20892

Robert M. Clegg Department of Physics, University of Illinois at Urbana-Champaign Loomis, Loomis Laboratory of Physics, Urbana, IL 61801-3080, USA Amanda Cobos Correa European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany

Pieter de Beule Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Andrew J. de Mello Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Christopher Dunsby Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Daniel S. Elson Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

A. Esposito

Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK; Molecular Biophysics Group, Debye Institute, Utrecht University, NL 3508 TA, Utrecht, The Netherlands

Paul M. W. French Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

T. W. J. Gadella Jr.

Section of Molecular Cytology and Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands

Neil Galletly Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

H. C. GerritsenMolecular Biophysics Group, Debye Institute, Utrecht University, NL 3508 TA, Utrecht, The Netherlands

Joachim Goedhart

Section Molecular Cytology and Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, NL-1098 SM Amsterdam, The Netherlands

David Grant

Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Quentin S. Hanley School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK

Oliver Hofmann Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Bradley T. Hyman

Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disorders, Charlestown, Massachusetts 02129

Kees Jalink

Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Elizabeth A. Jares-Erijman

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón II/Piso 3, 1428 Buenos Aires, Argentina

Phill B. Jones Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disorders, Charlestown, Massachusetts 02129

Thomas M. Jovin Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany

Gordon Kennedy Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Srinagesh V. Koushik National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20892

Gert-Jan Kremers Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 702 Light Hall, Nashville, Tennessee 37232, USA

Sunil Kumar Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Peter M. P. Lanigan Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

M. John Lever Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Hugh Manning Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

James McGinty Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Ian Munro Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Mark A. A. Neil Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Björn Önfelt Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

xiv

Dylan Owen Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Jose Requejo-Isidro Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Carsten Schultz European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany P. Soutter Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Gordon S. Stamp Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Klaus Suhling Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Clifford B. Talbot Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Christopher Thaler National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20892 Jacco van Rheenen Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands Peter J. Verveer Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto Hahn Straße 11, D-44227 Dortmund, Germany Steven S. Vogel National Institute on Alcohol Abuse and Alcoholism. National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20892

This page intentionally left blank

Preface

On September 13 2005 I received the invitation from professor P.C. van der Vliet (the editor of the Laboratory Techniques in Biochemistry and Molecular Biology Series) to become the editor of a new volume in the series on "FRET and FLIM". In the letter it was mentioned that "in view of the rapid developments in single cell technology, we feel that a book on imaging techniques in living cells, such as FRET and FLIM, is appropriate and timely".

Indeed FLIM and FRET (fluorescence lifetime imaging microscopy and Förster resonance energy transfer) have experienced a strong and (still exponentially) growing interest during the past vears (for a quantitative assessment see Chapter 10, Fig. 10.1). The three major driving forces for this uplift are (i) the ease of in situ fluorescent labeling using the visible fluorescent proteins (since \sim 1996); (ii) the commercial availability of advanced fluorescence microscopes with FRET acquisition software and with special detectors capable of acquiring complete spectra or fluorescence lifetimes (since \sim 2000), and most importantly (iii) the unique information on in situ molecular conformation and-proximity that FLIM and FRET can extract from single living cells. In the more early days, factor (iii) was the only driving force available: for performing in situ FRET measurements it was required to first go through the burden of chemical (fluorescent) labeling of molecules and/or building an imaging microscope capable of acquiring digital (lifetime) images. My personal first FRET experiment dates back to \sim 1990 in the laboratory of Karel Wirtz in Utrecht, when I measured FRET between tryptophan residues of a membrane protein and (self synthesized) pyrene-labeled polyphosphoinositides (see the Verbist et al. reference in Chapter 6). At that time almost the only reference to FRET work in biochemistry was the famous spectroscopic ruler review of Lubert Stryer of 1978 (see Chapter 1

for reference). During my postdoctorate time in the Laboratory of Tom Jovin (1992-1994) I worked on (donor) photobleaching FRET (see Section 8.1 of Chapter 1) and I was introduced to FLIM by Bob Clegg (together being the α and ω of this book). To get it to work, software for analysis had to be written and a dedicated (non-commercial) FLIM setup was required, but in the end we could measure the oligomerization of EGF receptors in situ with both FRET techniques using fluorescein- and rhodaminelabeled EGF (see the reference by Gadella and Jovin in Chapter 5). To perform FLIM-FRET in the pre-GFP era, it was required that a laboratory (or scientist) combined the skills of biochemical labeling, microscope equipment construction and analysis software programming with relevant knowledge of (molecular) biology/ biochemistry. Albeit this was a serious limitation for the technique to become more widespread, FRET-laboratories at that time typically could identify the sources of error, pitfalls and workarounds because they usually covered every aspect of the FRET experiment. In that respect I feel very privileged to have worked at that time with some of the pioneers of FRET-FLIM microscopy and fluorescence spectroscopy, most notably Tom Jovin, Bob Clegg and Ton Visser (incidentally, all of them worked in the lab of the ancestor of all fluorescence spectroscopy in biology: Professor Gregorio Weber).

Nowadays, with some background in molecular biology, almost any scientist can perform a FRET experiment using commercial microscopes. Some microscopes even are equipped with a "FRETbutton" so that all image acquisition and data processing is automated but "hidden" for the experimenter. The ease of performing automated FRET experiments by non-FRET experts also encompasses a danger: the underlying principles and pitfalls are often not well understood, leading to all sorts of misinterpretations, errors and frustration. Whether or not the correct filters, probes, laser sources, acquisition strategies, or image processing routines were used is often not completely (to completely not) known by the much larger community of FRET-scientists nowadays. Some of these frustrations culminate into statements that FRET technology is "unreliable" or produces "false negatives".

Hence, for modern FRET and FLIM techniques in Molecular Biology and Biochemistry it is important to keep the enthusiasm for the in situ technique, yielding unprecedented rich information on molecular states in live cells, and to keep the advantages of easy labeling techniques, modern microscopes and automated data processing. However, we need to "educate" the new generations of FRET scientists in the theoretical background of the technique, how it should be done correctly, and what the sources of errors are. Only then it will be clear that FRET–(FLIM) is a very direct, robust, extremely sensitive, and reliable technique.

This thought convinced me that I should accept Professor van Vliet's invitation to become editor of a FRET-FLIM volume. What I intended with this FLIM-FRET volume is to make a compilation of chapters that would be useful for the new generation of FRET scientists, but also interesting enough for the experts. So while nowadays, a variety of "exotic" FRET applications, theory, and instrumentation is around, I aimed to highlight the most straightforward and mainstream FRET work in this volume with sometimes also giving a peek into more advanced and future directions. Hence, this volume will not cover every aspect of FLIM-FRET. For instance, it does not cover single molecule, low temperature, detailed spectroscopic FRET work or very detailed hardware issues. In addition, triplet state conversion, or saturation effects (ground state depletion) giving rise to nonlinear excitation power-fluorescence intensity relationships are generally ignored (the reader is referred to Chapter 12, the FRET calculator for further information). Finally treatment of very complex FRET situations with (i) movement between donor and acceptor within the donor lifetime, (ii) multiple (n) acceptors for one donor (multiplying Eq. (1) of Chapter 1 with n), (iii) situations of a coexistence of many energy transfer states due to different conformations, (iv) effects of geometry leading for instance to a fourth power distance dependency for energy transfer to a planar surface of acceptors, and (v) changes in local refractive index in the cell leading to different local values of R_0 are not considered. It is of note however that in reality, in cells, (a multitude of) these situations will be applicable. So the basic FRET concepts and measurement strategies are illustrated for a situation with uniform FRET efficiency *E* in the cell in the absence of the above "problems" but with (local) variation in fractions of molecules (f_D and f_A) experiencing FRET, since these parameters are most interesting for biologists. In the more complex example cases (i)–(v) listed above, the equations listed in this volume will still be correct for defining an "average" or "apparent" energy transfer value in a microscopy image; this value will still represent an interaction or conformational state(s); but it will not be possible to make a statement on the fraction of molecules involved in such interactions and/or states with these formulas: simulation or more exotic equations are required.

The first chapter written by Bob Clegg introduces the FRET theory and basic equations. Also the original work and historic background of the FRET theory is presented in this chapter. Because sometimes it is difficult to picture a situation from an equation, Bob Clegg describes an analogy between FRET and monkeys escaping through doors of a dark room. Another highlight of this chapter is a description of a measurement of FRET without measuring fluorescence (arguing strongly in favor of FRET being "Förster resonance energy transfer" instead of "fluorescence resonance energy transfer").

The second chapter by Peter Verveer and Quentin Hanley describes frequency domain FLIM and global analysis. While the frequency domain technique for fluorescence lifetime measurement is sometimes counterintuitive, "the majority of the 10 most cited papers using FLIM have taken advantage of the frequency domain method" as stated by these authors. The global analysis of lifetime data in the frequency domain, resolving both E and f_D has contributed significantly to this advantage.

The third chapter by Alessandro Esposito et al., describes the time domain counterpart of FLIM. When photon economy and

fast decaying components are considered, the time-domain implementation of FLIM is the method of choice. Most commercial (multiphoton) confocal FLIM systems implement this technology.

The fourth chapter by James McGuinty et al. describes the more advanced forms of time-domain FLIM. While not immediately available on commercial instruments this chapter should give the reader an idea what the current state-of-the-art is in terms of FLIM instrumentation, and perhaps what to expect on future commercial instruments. Real-time FLIM, combined FLIM-spectral imaging, hyperspectral FLIM-imaging, combined lifetime-anisotropy imaging and some of their applications are covered here.

Besides FRET theory and instrumentation, also probes are a key issue for performing a valid FRET experiment in cells. Chapter 5 by Gert-Jan Kremers and Joachim Goedhart highlights the various visible fluorescent proteins (VFPs) for the use of FRET. These authors argue that "with the large number of spectral classes and several variants within each spectral class, choosing the right VFP FRET pair for FRET can be a daunting task". To assist in this choice, a unique table with all Förster radii (R_0) between the major monomeric VFPs (Chapter 5, Table 5.1) and spectra highlighting five different VFP combinations with theoretical FRET spectra, are included.

While VFPs have boosted the applications of FRET-FLIM, chemical FRET probes should not be dismissed. The advantage of chemical probes is that they are much smaller in size and that they often have much better spectral readout than VFP probes. In Chapter 6, Amanda Cobos Correa and Carsten Schultz highlight the various small molecule-based FRET probes and their use in bioimaging.

For many scientists dedicated FLIM instruments are too expensive and/or too complicated to work with. Therefore, Chapter 7 by Jacco van Rheenen and Kees Jalink is included dealing with "low budget" but "high quality" Filter FRET. Filter FRET has the advantage that it is fast, sensitive, direct and inexpensive. However, if you want to do it quantitatively and without errors, you need to go through a lot of formulas and correction factors. In this chapter, the reader is guided through these issues and a full comprehensive description is given to perform correct calibration of a filterFRET microscope (both wide-field and confocal).

Chapter 8 written by Steve Vogel et al. also deals with sensitized emission based FRET methodology, but now using a spectral imaging detector device. Because a spectral detector and spectral unmixing software nowadays are standard options on the major commercial confocal microscopes, here a complete description is given how to quantify FRET from unmixed spectral components.

The smallest Chapter 9 (written by undersigned) deals with total internal reflection FRET-(FLIM) imaging. This technique enables the measurement of FRET with high contrast in a layer of only 80 nm above the cover glass, which is very useful for cellular membrane-related events. It is explained how an existing FLIM-system can be "upgraded" to incorporate the TIRF contrast (with thanks to Carsten Schultz for proofreading/editing).

In Chapter 10, Riyaz Bhat highlights FLIM–FRET applications in plant systems. Particularly plant sciences suffering from notoriously difficult biochemistry can profit most from the detailed in situ molecular imaging and contrast provided by FRET–(FLIM) imaging. With the help of genetically encoded probes and the ease of plant transformation and (back)crossing, plant scientists increasingly see the benefit of FRET–FLIM. For non-plant scientists it may be interesting to read how shooting gold bullets into plant material can be used for performing FRET microscopy.

In Chapter 11, by Phill Jones et al., biomedical FRET–FLIM applications are reviewed and illustrated. The molecular background of a variety of diseases (e.g., Alzheimer's disease) can be uncovered by using FRET–FLIM. In this major funding area, the "killer"-applications of the technology are and will be found, leading to a further boost of the implementation and commercial availability of high-end microscopes with automated acquisition and standardized analysis features.

xxii

PREFACE

Chapter 12, by Eli Erijman and Tom Jovin concludes the volume. This special chapter introduces a new and quantitative definition of FRET-measurements without requiring knowledge of the donor quantum yield Q_D or the energy transfer efficiency *E*. Furthermore, it highlights the recent explosion in labeling strategies, ranging from genetic encoded FlAsH labeling, through AGT, NTA technology, photochromic labels to quantum dots and further. Hence, the potential of getting the most sensitive probe attached to a biomolecule of interest nowadays is phenomenal (and still increasing). They conclude their chapter with "Quo vadis"...

So approximately 3 years after receiving the invitation letter from professor van Vliet, the FLIM and FRET volume is ready and I believe the combined chapters make an excellent statement for FRET and FLIM technology. Hereby, I want to thank all chapter authors for their efforts and the fine work they have delivered. It was a pleasure from my side to work on the diverse chapters and for me it was also a good learning experience especially to go through the equation rich Chapters 1, 7, 8, and 12. For that I am especially grateful for the list of common symbols that we could agree on (see Table). The equations in the volume may scare off scientists with training mainly in (molecular) biology. Although they may appear as difficult, the vast majority of the equations represent "simple mathematics" being not more difficult than subtracting, adding, multiplying or dividing (elementary school stuff). Let the reward of understanding the equation (quantitative information on molecular interactions and conformation in situ) be a motivation to go through the math.

Having said this, I hope the above thoughts and chapters highlights make you curious and eager for reading the volume, contributing to more good, reliable and enthusiastic future FRET-FLIM work in Biochemistry and Molecular Biology.

Dorus Gadella, 5 August 2008

This page intentionally left blank

CHAPTER 1

Förster resonance energy transfer—FRET what is it, why do it, and how it's done

Robert M. Clegg

Department of Physics, University of Illinois at Urbana-Champaign Loomis, Loomis Laboratory of Physics, Urbana, IL 61801-3080, USA

The applications of Förster resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple technique in many biological and biophysical fields. Many publications appear weekly using FRET and most of the applications use FRET as a spectroscopic research tool. In this chapter, we have examined some general salient features of resonance energy transfer by stressing the kinetic competition of the FRET pathway with all other pathways of de-excitation. This approach emphasizes many of the biotechnological and biophysical uses of FRET, as well as emphasizing the important competing processes and biological functions of FRET in photosynthesis.

1.1. Introduction

There are numerous excellent reviews and original literature about Förster resonance energy transfer (FRET) where one can read detailed descriptions and get lists of earlier references [1–11]. This chapter is neither a review of the literature, nor a detailed account of experimental techniques and methods of analysis, nor a how-todo manual, nor an appraisal of theoretical descriptions of energy transfer for the specialist. The chapter focuses on a few critical essentials concerning the fundamentals of energy transfer and the methods of measurement. These basic aspects of FRET are helpful for understanding the important features and interpretations of energy transfer measurements. It is also useful to see historically how these ideas were developed. If one understands these simple fundamentals, it is usually straightforward to appreciate specific theoretical and experimental details pertaining to methods of acquisition and analysis.

1.1.1. Fluorescence and FRET are popular methods

Fluorescence has exquisite sensitivity for detecting very low concentrations of molecules over broad spatial and temporal dimensions. By choosing luminophores (fluorophores and phosphors) with lifetimes from subnanoseconds to milliseconds, molecular dynamics can be observed over a large time scale; nevertheless, the FRET measurement can be carried out on macrosystems. FRET is frequently applied to determine molecular distances or to show whether or not molecular complexes are present. Lifetimeresolved FRET has been carried out on fluorescence images [12–20]. FRET is increasingly occupying a center stage in biological studies and in biotechnology (especially dealing with DNA chips and other massively parallel assay systems). It has been applied in single molecule studies to provide information on conformational changes [21, 22] and the pharmaceutical industry has developed major microscopic fluorescence assay detection systems with very low sample volumes, even on the single molecule level, using fluorescence correlation spectroscopy [23–29].

Information about molecular interactions, spatial juxtapositions, and distributions of molecular and supramolecular components constituting biological structures are of crucial importance for understanding functions on a molecular scale in biology. This information is especially vital when we consider that a major part of biology takes place at the interface between interacting molecules and supramolecular organizations. Many of these macromolecular systems are ideally suited for FRET applications. For this reason, FRET has received so much interest in biotechnology and medicine as well as in biophysics [30-38]. Applications for FRET extend from more traditional cuvette spectroscopic measurements on larger volumes (from 100 μ m to 100 ml) to FRET imaging experiments in the fluorescence microscope [16, 17, 39-44] and single molecule experiments [21, 22]. The recent applications of FRET in the optical microscope have become very popular because of its interpretive power on the molecular scale with regard to statically and dynamically associating molecular systems in cellular biology [45-48]. Using geometrical and stereochemical information that can be attained from FRET measurements, we can more confidently propose models how biological structures carry out their functions, for instance in ribosomes [49, 50]. Knowing the spatial distribution of the parts of a structure makes it possible to ask more specific questions concerning the dynamics of intermolecular interactions

1.1.2. FRET—A molecular detective, transmitting molecular dimensional information to the experimenter

Fluorescence molecules are analogous to roaming molecular spies with radio transmitters, radiating information to the experimenter about the state of affairs on the molecular scale, and informing us where the spies are located and how many there are. A feature unique to FRET is the capability to inform us whenever two or more molecules (usually biological macromolecules) are close to one another on a molecular scale (≤ 80 Å), and whether they are moving relative to each other (Section 1.3.1.1). It is even sometimes possible to detect how the *D* and *A* transition moments are oriented relative to each other, because the efficacy of transfer depends on the relative angular dispositions of the two dipoles (Section 1.3.1.2). As with all other fluorescence methods, we can couple FRET with other physical and biological methods, and this greatly extends the usefulness. Such broad application is characteristic to fluorescence. Very importantly, FRET (and fluorescence in general) can be carried out in most laboratories, whether the "samples" are large (such as in cuvettes, or even on whole mammalian bodies) or small (such as in the fluorescence microscope, and on the single molecule level). No matter what scale of the sample, the information on the molecular scale derivable from FRET remains accessible. In this regard, FRET is like a spectroscopic microscope, providing us with distance and orientation information on the molecular scale regardless of the size of the sample (Stryer [9] dubbed FRET a molecular ruler). In addition, by observing FRET over time (such as in stopped-flow), we can follow the dynamics of changes in molecular dimensions and proximities.

As should be apparent from the above discussion, and a perusal of the contents of the recent literature, the range of applications of FRET is extremely broad.

In Section 1.2, we first introduce some historical facts concerning the development of FRET and indicate how FRET is interrelated with several scientific disciplines. If one is not interested in this historical account, then you can skip to Section 1.3 without losing the thread.

1.2. Historical background; setting the groundwork

In a series of remarkable papers, Theodor Förster revealed the correct theoretical explanation for nonradiative energy transfer [7, 51–55]. He was partly motivated by his familiarity with the extreme efficiency of photosynthetic systems in funneling the energy of absorbed photons to a relatively small number of reaction sites [51]. The average number of photons striking the total area of a leaf is much larger than that expected, considering the small area of the leaf containing the reaction centers, where the photosynthetic

electron transfer reactions take place. In order for the absorbed energy to be channeled efficiently into the reaction centers, he, and others, reasoned that the excitation energy is rapidly and efficiently transferred throughout an area that is large compared with the reaction center. Eventually, this energy is captured by a reaction center. This process increases the effective capture area of the reaction center. This process was pictured as a random diffusive spreading of the absorbed photon energy that is captured by a sink (the reaction center). Although such a mechanism was suspected at the time, the physical mechanism responsible for this energy transport in photosynthesis was not understood.

1.2.1. Pre-Förster: Dipole-dipole interaction; the Perrins

Early dipole-dipole models of energy transfer were developed by the Perrins (father (J.) and son (F.)) [56, 57]. Dipole interactions had already been used in descriptions of molecular interactions in bulk matter, including dipole-induced-dipole-induced van der Waals forces, dipole-dipole-induced forces, and dipole-dipole interactions [58]. Classically, the electric field emanating from an oscillating dipole, $\vec{E}\tilde{\mu}$, (real dipoles or transition dipoles) decreases as distance between the dipoles, R, is increased. The functional form of the oscillating dipole can be divided into three zones: the near-field zone $(\vec{E}\,\tilde{\mu}^{nf}\propto R^{-3})$, the far-field zone $(\vec{E}\,\tilde{\mu}^{ff}\propto R^{-1})$, and in the intermediate transition zone between the near- and far-field. We are concerned here only with the interaction energy between two dipoles in near field, which is very large compared with the other two zones. The near-field dipole-dipole transfer mechanism had been first proposed to explain energy transfer between atoms [59]. A nonradiative dipole-dipole model successfully accounted for energy transfer in gas mixtures arising from near collision processes between the atoms [58, 60–63]. It was found that energy could be transferred over distances beyond the hard core collision distances between molecules, in the near-field zone of dipole-dipole interactions.

The Perrins were the first to attempt a quantitative description of nonradiative (no emission of a photon) energy transfer in solution between an excited molecule (originally called the sensitizer; in this chapter called the *donor*) and a neighboring molecule in the ground state (originally called the activator; in this chapter called the acceptor). The Perrins' reasoned that the depolarization that occurs in a solution of a fluorophore at higher concentrations resulted from the transfer of excitation energy between molecules with different orientations, before a photon was emitted. The Perrins' model involved a near-field energy of interaction, E_{int} , between the oscillating dipoles of two molecules, D and A $(E_{\rm int} \propto \overline{E}_{\ \overline{\mu}_n}^{nf} \cdot \overline{\mu}_A); \ \overline{\mu}_A$ is the dipole of the acceptor. This is simply the general form of the interaction energy of a dipole in an electric field. This interaction is identical to the perturbation employed in a quantum mechanical representation of FRET. An interesting account of the early history of energy transfer is given in a recent review of the Perrins' accomplishments [64], and a recent historical review of FRET [58]. They assumed identical molecules [56, 57, 65]. Initially, they considered a classical model involving oscillating point dipoles; later they presented a quantum mechanical model. In modern quantum mechanical descriptions, the dipoles are the transition dipoles [1, 6, 7]. They were correct that the energy transfer involved dipole perturbations, as had also been realized by earlier researches studying molecular interactions. However, their model did not account quantitatively for the energy transfer between identical molecules in solution. It was known that fluorescence becomes depolarized at concentrations of fluorophores where they are separated by $\sim 2-5$ nm; and that depolarization can be detected below concentrations required for quenching effects. However, their models for explaining this depolarization predicted energy transfer (and therefore depolarization) between two molecules separated by a much larger distance, on the order of a fractional wavelength of light (\sim 100–500 nm). Because of this large discrepancy, F. Perrin's theory of energy transfer lay dormant for about 20 years.