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4 Stephen Murray
Abstract

The use of standard room temperature chemical fixation protocols for the

ultrastructural preservation of yeast and subsequent observation under the electron

microscope is fraught with diYculties. Many protocols require the use of enzymatic

digestion of the cell wall in order to facilitate the entry of fixatives into the cell

interior. Others rely on the use of permanganate-based fixative solutions, which

whilst enabling overall preservation of the cell, does requiremultiple centrifugation,

washing, and resuspension steps. This often results in the significant loss of sample

volume whilst the use of permanganate can cause extraction of cytoplasmic com-

ponents. The use of low temperature techniques and in particular high pressure

freezing (HPF) and freeze substitution (FS) overcomes many of these problems.

With the recent advances in cryotechnologies and in particular the development

of commercially available equipment such as the high pressure freezer, the level

of ultrastructural preservation attainable in electron microscopy has increased

markedly. It is now possible to capture dynamic time sensitive events and to

place them in their ultrastructural context with a level of resolution which at the

present time can only be achieved with electron microscopy.
I. Introduction

The use of high pressure freezing (HPF) and freeze substitution (FS) as a method

of preserving yeast can now be considered a mainstream technique. As with all

procedures in electron microscopy, there are numerous HPF and FS protocols

published in the scientific literature, with each individual worker having a preference

for a particular processing regime. Some are designed to with one specific aim

e.g. preservation of epitopes (Monaghan and Robertson, 1990; Monaghan et al.,

1998; Neuhaus et al., 1998) while others would seem to be counterintuitive

e.g. addition of water to the FS cocktail (van Donselaar, et al., 2007; Walther and

Ziegler, 2002). All of the protocols have one single aim, the preservation of the tissue

or cell being investigated in as close to the native state as possible. The ultimate is of

course to observe the sample in a frozen fully hydrated state with out addition of

chemical fixatives (Al-Amoudi et al., 2004; McDowall et al., 1983, 1984; Michel,

1991). However, for the purposes of this chapter, the author deals purely with aHPF

and FS protocol he has found to work consistently well with both wild type and

mutant strains of Schizosaccharomyces pombe and Schizosaccharomyces cerevisae.

II. Materials and Instrumentation

HPF was performed using a Bal-Tec HPM010 high pressure freezer (Bal-Tec

AG Principality of Liechtenstein) and using interlocking brass hats as the specimen

carrier (Swiss Precision, Inc., Palo Alto, CA, USA). Subsequent FS was performed
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using an automatic FS unit (Leica AFS; Leica Microsystems, Vienna) with the FS

solution being contained in 1.5-ml conical Eppendorf centrifuge tubes (catalogue

0030 120.086; Eppendorf UK, Ltd., Cambridge, UK).

Yeast cultures were vacuum concentrated onto 0.45 mm membrane filters

(catalogue # VLP02500; Millipore UK Ltd., Watford, UK) using a KNF Labo-

port N86KT.18 dry vacuum pump (KNF Neuberger UK Ltd.) and Sartorius

suction flask and 25 mm glass filter holder assembly (catalogue 16672 & 16306;

Sartorius Ltd., Epsom, UK). To facilitate quick vacuum release, an in line

Edwards AV10K manual air admit valve and T-piece assembly were placed

between the vacuum pump and the suction flask. An image of the filtration

system can be seen in Fig. 2. To aid sample loading into the specimen carriers,

any standard stereo zoom dissecting microscope and cold light source may be

used. Removal of the yeast sample from the filter and its subsequent loading

into the brass hat was achieved using a pointed cocktail stick. Fig. 1 shows

additional useful tools for the handling, manipulation, removal, and separation

of the sample carriers following HPF include two pairs of Dumont Dumoxel #3

medical grade tweezers catalogue T5272 (Agar Scientific, Essex, UK) used to

manipulate the brass hats and load them into the specimen rod. Two flat bladed

screwdrivers with fine tips, CK Xonic 4880X, one with 1.5 mm tip, the other

with 2.5 mm tip (catalogue 2508619214 & 2508618794; RS Components, Corby,

UK). The screwdrivers are used to pry the brass hat assembly apart once frozen.
Fig. 1 Tools used during loading and manipulation: (1) Dumont No. 3 forceps, (2) Pointed applicator

sticks for paste scraping/loading, (3) Interlocking brass sample carriers, (4) Fine blade screwdrivers

for separating hats following freezing, (5) Insulated cryoforceps for handling frozen sample, (6) Dumont

No. 6 forceps for pushing sample carrier from specimen rod, (7)Milliporemembrane filter 0.45 mm,22 mm.



Fig. 2 Filtration system for sample harvesting (manual air inlet valve on the right).

Fig. 3 Cryowork box with cryotubes and holder.

6 Stephen Murray
A pair of Dumont Dumostar #6 medical grade tweezers (catalogue T5277; Agar

Scientific, Essex, UK) is useful to push the frozen brass hat assembly from the HPF

specimen rod should it be required. The frozen samples are placed into prelabeled

1 ml CryoPlus tubes held in the work chamber of the HPF (catalogue 72.377;
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Sarstedt, Leicester, UK). In order to hold the vials and allow easy attachment of

the lids, the author has found it invaluable to use a Sarsted Cryorack 40 cut to size

and fixed firmly to the bottom of the HPF cryo work chamber (see Fig. 3) using

Araldite or epoxy resin (catalogue 93.856.040; Sarstedt, Leicester, UK).

Other chemicals and consumables mentioned in this article are commonly

available from electron microscopy supply companies.
III. Procedures
A. Preparation of Sample Holders

1. Clean the Brass Hats as Follows
� Ultrasonicate for 5 min in acetone

� Rinse in double distilled water

� Ultrasonicate in 70% ethanol

� Dry using a hair dryer

� Place in a plastic Petri dish lined with hardened filter paper ready for use
B. Filtration of Yeast Sample
The cells are grown to mid log phase equivalent to 0.4–1.0�107 cells/ml. At this

density approximately 50–100 ml of culture will be required to produce a paste which

should be slightly glossy and have an apple sauce consistency. It should be noted that

the degree of filtration required to produce the paste varies from strain to strain.

If upon removal of themembrane filter the paste is found to be towet, excessmoisture

can be removed by carefully dabbing the underside of the membrane filter onto

hardened filter paper. If the paste is too dry, nothing can be done. Too much fluid

in the paste will result in poor freezing, too littlewill result in poor FS and embedding.

1. Place a fresh membrane filter into the filter assembly. Turn on the vacuum

pump and ensure that the vacuum release valve is fully closed.

2. Pour the yeast culture into the filter assembly and top up as required.

3. At the moment the last visible trace of solution disappears, turn oV the pump

and open the vacuum release valve.

4. Unclamp the filter funnel and remove the membrane filter.

5. Using a cocktail stick carefully scrape some of the paste from the filter and

load it into the bottom of the brass hat pair. The hat should be overfilled and

no air bubbles should be seen. Air bubbles will result in poor freezing.

6. Place the top part of the brass hat onto the bottom and press down using

the forceps.

7. Quickly place the complete assembly into the specimen rod of the HPF and

clamp into position.
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C. High-Pressure Freezing of the Sample
Following filtration, the filling of the specimen carrier and the loading and

freezing of the sample should take between 20 and 30 s. While this procedure can

be carried out by a single operator, it is much better to have an additional person to

assist in the filtration and sample loading of the brass hats. Additionally, the HPF

sample rod will need to be defrosted between each freezing cycle. The author has

found the purchase of an additional specimen rod invaluable in speeding up the

process. While one rod defrosts and dries out, the other can be put into use.

All tools used subsequent to the freezing process must be precooled to LN2

temperature before handling the sample.

1. Insert the specimen rod into the freezing chamber of the HPF and secure with

the locking bolt.

2. Initiate the freezing cycle by pressing the ‘‘Jet’’ button.

3. As soon as the Jet button has been pressed, allow a couple of seconds to pass

before removing the locking bolt and rapidly transferring the specimen rod

into the cryo work chamber of the HPF.

4. Allow the end of the rod to rest for a few seconds in the liquid nitrogen before

unclamping the specimen holder.

5. Under nitrogen and on the metal working platform of the cryowork chamber,

push the brass hat from the specimen holder using the precooled No. 6

forceps if necessary.

6. Using the two precooled screwdrivers, separate the two halves of the brass

hat by prising them apart. Take care at this stage, it is very easy to apply too

much pressure and catapult the brass hat out of the cryowork station.

7. Place the separated halves of the specimen carrier into the relevant prelabeled

vial using precooled No. 6 forceps.

8. Once all samples have been frozen place the lids on the cryovials and transfer

them either to a storage Dewar or the FS unit.
D. Freeze Substitution of Yeast
After much experimentation, the author has found that the addition of water to

the FS cocktail has resulted in the optimal preservation of his particular samples.

It was of particular importance that the nuclear membranes, the spindle pole bodies

and microtubules be well delineated and preserved. The protocol which follows

fulfills these requirements and has the added bonus that subsequent staining

of ultrathin sections requires the use of Reynolds lead citrate only (Reynolds, 1963).
1. Programming of the AFS
1. Set the first temperature step to �90 �C and the time to 72 h

2. Set the first slope to þ5 �C/h
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3. Set the second temperature step to �20 �C and the time to 2 h

4. Set the second slope to þ5 �C/h
5. Set the final temperature step to þ4 �C and the time to 4 h

6. Place the AFS into pause mode and allow the temperature to reach �90 �C
2. Prepare the Freeze Substitution Cocktail
1. Prelabel the 1.5 ml Eppendorf tubes as required. Up to ten 1.5 ml Ependorfs

can be accommodated at one time.

2. Dissolve 0.2 g of crystalline osmium tetroxide in 9.5 ml of acetone.

3. Add 500 ml of 2% aqueous uranyl acetate to the acetone/osmium mix.

4. Dispense 1 ml into each of the Eppendorfs.

5. Place the Eppendorfs into the AFS and allow the temperature to equilibrate.

6. Due to the toxicity of osmium tetroxide and uranyl acetate Steps 2–4 of the

above must be carried out in a fume hood.
3. Transfer of Specimens to AFS
1. Place the cryovials containing the samples into a small transfer container

filled with liquid N2.

2. Using precooled No. 3 forceps, quickly transfer the specimen carrier from the

cryotube to the relevant pre labeled Eppendorf tube in the AFS.

3. Once all samples have been placed into the AFS, cancel the pause function to

begin FS cycle.
4. Resin Infiltration and Embedding of Samples
During FS, the samples will readily separate from the specimen carrier. After 2 h

atþ4 �C, the FS cocktail is rinsed out with fresh acetone. This can be done with the

Eppendorf carrier in the AFS or, it can be transferred to a fume hood and placed

over ice.

1. Wash the specimens three times with fresh acetone over a 1 h period atþ4 �C.
2. During the third wash, remove the empty specimen carriers from the

Eppendorfs.

3. Carefully transfer each sample from the Eppendorf into a prelabeled 7-ml glass

vial containing 2 ml of acetone. The transfer can be eVected either by using fine

point forceps (No. 3) or a wide bore disposable plastic Pasteur pipette.

4. Infiltrate the sample with Spurr’s (Spurr, 1969) resin/acetone mixtures.

If possible, degas the resin under vacuum prior to dilution with acetone
� 1:7 resin/acetone 3 h

� 1:3 resin/acetone overnight
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� 1:1 resin/acetone 4 h

� 3:1 resin/acetone 4 h or overnight

� 100% resin 4 h (with no lid on sample vials)

� 100% resin 4 h (under vacuum if available)

� 100% resin overnight (under vacuum if available)

� Place a small volume of fresh resin into prelabeled Beem capsules

� Carefully transfer each sample from the glass vial to the Beem capsule using

a pointed wooden stick or wide bore plastic Pasteur pipette and centralize

in the capsule

� Fill the capsules with resin

� Polymerize the resin for 48 h at 60 �C or 24 h at 70 �C under vacuum if

possible.

5. Once polymerized trim a standard trapezoid block face and proceed to cut

50–70-nm ultrathin sections and collect on formvar/carbon coated grids.

6. Post stain the sections for 5 min using Reynold’s lead citrate in the presence

of sodium hydroxide pellets.

7. Wash sections to remove stain.

8. Carefully remove excess water and allow to dry.

9. Image under the TEM at 80 kV.
IV. Comments and Problems

It has been reported that the presence of water in the FS medium in excess of 1%

severely reduces the ability of acetone to replace the sample ice (Humbel and

Mueller, 1986) Certainly the addition of water to the FS medium would seem

counter intuitive but it has been demonstrated in numerous publications that

addition of water to the FS medium dramatically enhances the visibility of mem-

branes and in particular the nuclear envelope in yeast (Fig. 4). It is possible to

achieve improved membrane visibility using other protocols (Giddings, 2003), but

this often requires the use of two diVerent FS mediums and has the considerable

challenge of washing and replacement steps being carried out at �90 �C.
It has been reported that the use of epoxy resin as a fixative during FS

of Caenorhabditis elegans resulted in a more complete preservation of cellular

proteins and membranes (Matsko and Mueller, 2005). Results with yeast show

some improvement in membrane visibility (Fig. 5) when compared to a standard

osmium/acetone protocol (Fig. 6), but are not as remarkable as those inwhichwater

is added to the FSmedium (Fig. 4). It should also be noted that the concentration of

water in the FS medium is important. There appears to be virtually no diVerence
in terms of membrane visibility in yeast when only 1% water is added, compared to

FS medium containing no water (Fig. 6). Another intriguing observation is that

in the presence of high water concentration (10%) S. cerevisiae appears to be well



Fig. 4 Nuclear Envelope (NE) of S. pombe (A) with Spindle Pole Body (SPB) and Microtubules

(MTB) and (B) Nuclear Pore (NP). Sample freeze substituted in medium containing 2% osmium

tetroxide/0.1% uranyl acetate/5% water in acetone. Each element of the NE is clearly visible, demon-

strating typical membrane structure. Bars (A) 200 nm and (B) 100 nm.
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preserved while S. pombe is very poorly preserved and shows distinct ice damage

(Fig. 7), which would seem to imply that eVects of water addition are not only

concentration dependant but also sample dependant. It is recommended that a

water concentration of 5% be used initially and if necessary adjustments made

during subsequent FS runs.

One common artifact induced by HPF particularly when freezing yeast is the

rupture of the cell wall and/or the nuclear envelope (Fig. 8). In the author’s

experience, this occurs in 5–10% of yeast cells both wild type and mutant

(an observation also made by M. Morphew, personal communication).



Fig. 5 SPB andMTB of S. cerevisiae freeze substituted in epoxy/araldite embedding mix. Bar 100 nm.
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1. Safety
It is extremely important when using cryogenic equipment that the manufac-

turer’s recommendations and safety instructions are followed. It is essential that

the safe handling and use of liquid nitrogen and a thorough understanding of the

very specific hazards associated with it are clearly understood before any work

commences. Many of the chemicals used for FS and embedding are at the very least

irritants andmany are extremely toxic and even carcinogenic. They should therefore

always be handled in a fume hood with the operator wearing suitable protective

clothing and gloves.When using resins, standard latex or nitrile gloves do not aVord
suYcient protection. Instead, the use of vinyl gloves is recommended. Once con-

taminated, gloves should be changed immediately. The exhaust from the AFS

should be placed into the fume hood. Care should be exercised when handling the

polymerized resin blocks. If it is necessary to file or hacksaw the blocks, the operator

should where gloves and a mask and all debris and dust removed immediately.
2. Vacuum Concentration of the Yeast Culture and Loading of Specimen Carriers
It is very important that the yeast paste produced by vacuum filtration is neither

too wet nor too dry. The ideal paste should have an apple sauce consistency. When

scraping the paste from theMillipore filter, care should be taken not to rip it with the

tip of the cocktail stick. When loading the sample carriers, it is essential for good

freezing that no air pockets are present in the sample or the carrier. The pastewill dry

very quickly so speed is important when loading the sample carrier. The paste is also

quite sticky and during handling with forceps, the specimen carriers will quite

happily attach themselves to the tips. This can provide the operator with minutes


