
Advances in VIRUS RESEARCH

71

Edited by
Karl Maramorosch
Aaron J. Shatkin
Frederick A. Murphy

Advances in **VIRUS RESEARCH**

VOLUME 7

ADVISORY BOARD

DAVID BALTIMORE

ROBERT M. CHANOCK

PETER C. DOHERTY

H. J. GROSS

B. D. HARRISON

BERNARD MOSS

ERLING NORRBY

J. J. SKEHEL

M. H. V. VAN REGENMORTEL

Advances in VIRUS RESEARCH

VOLUME 7

Edited by

KARL MARAMOROSCH

Rutgers University, New Jersey, USA

AARON J. SHATKIN

Center for Advanced Biotechnology and Medicine, New Jersey, USA

FREDERICK A. MURPHY

University of Texas Medical Branch, Texas, USA

Academic Press is an imprint of Elsevier 84 Theobald's Road, London WC1X 8RR, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2008

Copyright © 2008 Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) (0) 1865 843830, fax: (+44) (0) 1865 853333; e-mail: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-374321-3

ISSN: 0065-3527

For information on all Academic Press publications visit our website at books.elsevier.com

Printed and bound in USA

08 09 10 11 12 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International

AID Sabre Foundation

CONTENTS

1.	The Pathogenesis of Poliomyelitis: What We Don't Know	1
	Neal Nathanson	
	I. Introduction	3
	II. Sequential Steps in the Spread of Infection	3
	A. Questions unanswered: Cellular sites of replication	4
	B. Questions unanswered: Neural invasion from the blood	6
	III. Provocation Poliomyelitis	6
	A. Questions unanswered: The mechanism of the provoking effect	7
	B. Questions unanswered: Neural spread	10
	IV. PVR, Tropism, and the Localization of Lesions	11
	A. Questions unanswered: Receptor expression is necessary but	
	not sufficient	11
	B. Questions unanswered: Localization within the CNS	13
	C. Questions unanswered: How poliovirus kills cells	15
	V. Host Innate and Immune Response to Infection	15
	A. Questions unanswered: The acquired immune response	16
	VI. Immune Defenses and Viral Clearance: Mechanisms of	
	Vaccine-Induced Protection	17
	A. Primary infections	17
	B. Secondary infection in immune hosts	18
	C. Poliovirus serotypes	20
	VII. Animal Models of Human Poliomyelitis	21
	A. Questions unanswered: Determinants of primate susceptibility	22
	B. Questions unanswered: The mechanism of rodent adaptation	23
	C. Questions unanswered: PVR mice	25
	D. Questions unanswered: The tropism enigma	26
	VIII. Virulence of Polioviruses	26
	A. Questions unanswered: Mechanisms of neurovirulence	32
	B. Questions unanswered: Viremia and virulence	32
	C. Questions unanswered: Epidemiological properties of polioviruses	33
	IX. How Does Poliovirus Persist?	34
	A. Questions unanswered: Overt persistence of poliovirus	35
	B. The post-polio syndrome and covert persistence of poliovirus	35

	X. Eradication	36
	A. Questions unanswered: Why is it so difficult to complete the	
	global eradication of wild polioviruses?	37
	XI. Vaccine-Derived Polioviruses and the Eradication EndgameA. Questions unanswered: What strategy should be followed if wild	38
	polioviruses are eradicated?	39
	XII. Reprise	41
	Acknowledgments	42
	References	42
2.		
	Relevance of Hepatitis C Virus Cell Culture Systems	51
	Judith M. Gottwein and Jens Bukh	
	I. Introduction	53
	II. Genetic Heterogeneity of HCV—Genotypes, Subtypes,	
	Isolates, and Quasispecies	54
	III. The HCV Genome and Its Encoded Proteins	59
	IV. Host Cell Factors Supporting the HCV Life Cycle	67
	V. Consensus HCV cDNA Clones—Infectious in	
	Transfected Chimpanzees	71
	VI. The Replicon System—Autonomous HCV RNA Replication in	
	Hepatoma Cell Lines	73
	A. Identification of adaptive mutations led to more efficient	
	replicon systems	74
	B. The study of replicon systems led to identification of highly	
	permissive Huh7 cell lines	78
	VII. Pseudo-Particles Expressing the HCV Envelope Proteins (HCVpp)—A	
	System for the Study of Viral Entry and Neutralization	79
	VIII. The JFH1 Isolate—Generation of Cell Culture Derived HCV (HCVcc)	
	in Full Viral Life Cycle Cell Culture Systems	82
	A. The original and adapted JFH1 cell culture system	82
	B. The J6/JFH1 cell culture system	87
	C. Analysis of HCV buoyant density suggests a role of lipoproteins	
	for the viral life cycle	89
	D. Possible causes of special growth characteristics of JFH1	
	and J6/JFH1	91
	E. Applicability of JFH1 and J6/JFH1 cell culture systems	92
	IX. Perspectives for Further Development of HCV Cell Culture Systems	95
	A. Adaptation of cell culture systems to yield higher viral titers	95
	B. Cell culture systems for other HCV genotypes	95
	C. Expansion of cell culture systems to different host cells	100
	X. Conclusion—Implications of Novel Cell Culture Systems	103

		ontents	٧
Δι	cknowledgments		10
	eferences		10
3. Poxvi	rus Host Range Genes		13
St	even J. Werden, Masmudur M. Rahman, and Grant McFadden		
	I. Introduction		13
	II. Orthopoxvirus Host Range Genes		1.
	A. SPI-1		14
	B. K1L		14
	C. C7L		14
	D. CHOhr		14
	E. p28/N1R		14
	F. B5R (ps/hr)		14
	G. E3L		14
	H. K3L		15
I	II. Myxoma Virus Host Range Genes		15
	A. M-T2		15
	B. M-T4		15
	C. M-T5		15
	D. M11L		15
	E. M13L		15
	F. M063		15
ľ	V. Molluscum Contagiosum: An Extreme Example of Host		1/
	Range Restriction		16
	V. Conclusions		16
	cknowledgments		10
Ke	eferences		10
	ptor Interactions, Tropism, and Mechanisms Involved billivirus-Induced Immunomodulation	in	17
	rgen Schneider-Schaulies and Sibylle Schneider-Schaulies		
	I. Introduction		17
	A. General aspects of MV- and morbillivirus-induced		17
	immunosuppression		17
	B. Relationships between tropism of the virus, spread of inf	fection	17
	and immunosuppression	ection,	1
	II. Leukopenia Associated with Morbillivirus Infections		1
	II. Mechanisms and Consequences of T Cell Silencing in		'
ı	Morbillivirus Infections		18
17	V. Receptors and Signaling Involved in Suppression of Cell Fun	ctions	18
I.	v. Neceptors and signating involved in suppression of Cell Fun	CHOHS	10

	V. Virus Interactions with DCsA. Virus interference with DC functions in animal models	190 190
	B. Experimental models and consequences of DC surface	
	interactions with viral proteins	191
	C. Consequences of infection on DC viability and function	192
	VI. Conclusions and Perspectives	195
	References	196
5.	Lyssaviruses—Current Trends	207
	Susan A. Nadin-Davis and Christine Fehlner-Gardiner	
	I. Introduction	208
	II. Developments in Diagnostic and Surveillance Tools	209
	A. Diagnosis	209
	B. Viral typing	210
	C. Evolutionary time frames	211
	D. Modeling applications	212
	III. Fundamental Aspects of Virus–Host Interactions	213
	A. What is the basis for RABV pathogenicity?	214
	B. Role of viral proteins	214
	C. Role of host cell pathways	218
	D. Considerations for future studies on rabies pathogenesis	222
	IV. Reverse Genetics—Methodology and Applications	222
	A. RABV vaccines	224
	B. Vaccines for other diseases	225
	V. Other Strategies for Rabies Vaccine Development	227
	A. Adenovirus recombinants	227
	B. DNA vaccines	228
	VI. The Challenge of Rabies Biologics for Passive Immunity	230
	VII. Novel Applications of RABV	231
	A. Use as a neuronal tracer	231
	B. Use of RABV proteins for molecular targeting	235
	VIII. Concluding Remarks	236
	References	237
Inc	dex	251

Color plate section at the end of the book

CHAPTER

The Pathogenesis of Poliomyelitis: What We Don't Know

Neal Nathanson

Contents	l.	Introduction	3
	II.	Sequential Steps in the Spread of Infection	3
		A. Questions unanswered: Cellular sites of	
		replication	4
		B. Questions unanswered: Neural invasion from	
		the blood	6
	III.	Provocation Poliomyelitis	6
		A. Questions unanswered: The mechanism of	
		the provoking effect	7
		B. Questions unanswered: Neural spread	10
	IV.	PVR, Tropism, and the Localization of Lesions	11
		A. Questions unanswered: Receptor expression is	
		necessary but not sufficient	11
		B. Questions unanswered: Localization	
		within the CNS	13
		C. Questions unanswered: How poliovirus	
		kills cells	15
	٧.	Host Innate and Immune Response to Infection	15
		A. Questions unanswered: The acquired immune	
		response	16
	VI.	Immune Defenses and Viral Clearance: Mechanisms	
		of Vaccine-Induced Protection	17
		A. Primary infections	17
		B. Secondary infection in immune hosts	18
		C. Poliovirus serotypes	20

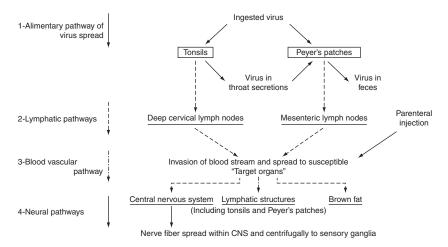
Departments of Microbiology and Neurology, School of Medicine, University of Pennsylvania, Philadelphia 19104

VII.	Animal Models of Human Poliomyelitis	21
	A. Questions unanswered: Determinants of	
	primate susceptibility	22
	B. Questions unanswered: The mechanism of	
	rodent adaptation	23
	C. Questions unanswered: PVR mice	25
	D. Questions unanswered: The tropism enigma	26
VIII.	Virulence of Polioviruses	26
	A. Questions unanswered: Mechanisms of	
	neurovirulence	32
	B. Questions unanswered: Viremia and virulence	32
	C. Questions unanswered: Epidemiological	
	properties of polioviruses	33
IX.	How Does Poliovirus Persist?	34
	A. Questions unanswered: Overt persistence of	
	poliovirus	35
	B. The post-polio syndrome and covert	
	persistence of poliovirus	35
Χ.	Eradication	36
	A. Questions unanswered: Why is it so difficult to	
	complete the global eradication of wild	
	polioviruses?	37
XI.	Vaccine-Derived Polioviruses and the Eradication	
	Endgame	38
	A. Questions unanswered: What strategy should be	
	followed if wild polioviruses are eradicated?	39
XII.	Reprise	41
Ackr	nowledgments	42
Refe	erences	42

Abstract

Poliomyelitis has long served as a model for studies of viral pathogenesis, but there remain many important gaps in our understanding of this disease. It is the intent of this review to highlight these residual but important questions, in light of a possible future moratorium on research with polioviruses. Salient questions include: (1) What cells in the gastrointestinal tract are initially infected and act as the source of excreted virus? (2) What is the receptor used by mouse-adapted strains of poliovirus and how can some polioviruses use both mouse and primate receptors? (3) What determines species differences in susceptibility of the gastrointestinal tract to polioviruses? Why cannot PVR transgenic mice be infected by the natural enteric route? (4) Why are neuroadapted polioviruses unable to infect nonneural cells? (5) What is the role of postentry blocks in replication as determinants of neurovirulence? (6) What route(s) does poliovirus take to enter the central nervous system and how does it cross the blood-brain barrier? (7) Why does

poliovirus preferentially attack lower motor neurons in contrast to many other neuronal types within the central nervous system? (8) Does cellular immunity play any role in recovery from acute infection or in vaccine-induced protection? (9) In which cells does poliovirus persist in patients with γ -globulin deficiencies? (10) Is there any evidence that poliovirus genomes can persist in immunocompetent hosts? (11) Why has type 2 poliovirus been eradicated while types 1 and 3 have not? (12) Can transmission of vaccine-derived polioviruses be prevented with inactivated poliovirus vaccine? (13) What is the best strategy to control and eliminate vaccine-derived polioviruses?

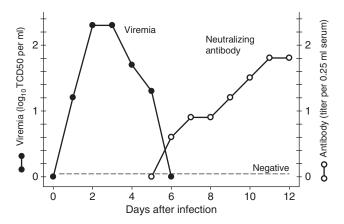

I. INTRODUCTION

Poliomyelitis has served as a model for studies of viral pathogenesis, beginning soon after the virus was isolated by Landsteiner and Popper (Flexner, 1931; Landsteiner and Popper, 1909). Since 1990, the development of transgenic rodent models and the ready manipulation of the viral genome have provided new approaches to polio pathogenesis. Beginning about 2000, it was perceived that the world was on the verge of global eradication of poliovirus, leading to proposals for a permanent moratorium on poliovirus research (Dowdle *et al.*, 2006; Thompson *et al.*, 2006). Thus, it is timely to review our knowledge of pathogenesis while opportunity may still exist to conduct research with wild polioviruses.

Surprisingly, there remain many important gaps in our understanding of the pathogenesis of poliomyelitis, and it is the intent of this review to highlight these residual but important questions (Minor, 2004). The interested reader may wish to consult several excellent recent discussions by leading researchers (Mueller *et al.*, 2005; Ohka and Nomoto, 2001; Racaniello, 2006).

II. SEQUENTIAL STEPS IN THE SPREAD OF INFECTION

The general outlines of the sequential events in an infection with poliovirus (Fig. 1) were delineated by Bodian, Sabin, and others in the 1950s (Bodian, 1955a; Sabin, 1956). Polio is an enterovirus that is ingested and travels through the gastrointestinal tract where it can initiate infection at several sites, including the tonsils and Peyer's patches of the small intestine. From the initial sites of entry, the virus travels to the draining lymph nodes where it replicates further and spreads via the efferent lymphatic vessels and thoracic duct to enter the bloodstream. In some instances, virus spreads to the central nervous system (CNS) and rarely (estimated 1 case


FIGURE 1 The sequential events in poliovirus infection in chimpanzees. Boxes indicate primary sites of implantation while the secondary and tertiary sites of multiplication are underlined [from Bodian D. (1955a). Emerging concept of poliomyelitis infection. Science 122, 105-108. Reprinted with permission from AAAS].

per 100–200 infections) leads to permanent flaccid paralysis. Infected humans shed poliovirus in the pharyngeal secretions and feces, usually for 2–8 weeks, implying that virus replicates in the intestine. Presumably, virus contaminates the hands of the infected person and is transmitted by hand to hand contact to the next person in the chain of infection. There is little published information on the relative importance in transmission of pharyngeal versus fecal shedding that could be relevant to the impact of polio vaccines on herd immunity (see below).

Poliovirus can spread in a susceptible host by either of two different routes, viremia or the neural pathway. The dominant route of spread depends upon the strain of virus. All polioviruses are neurotropic and most primary isolates are also pantropic (enterotropic and viremogenic) as shown in Fig. 2. A few neuroadapted strains behaved as obligatory neurotropes, defined by experimental data of the kind shown in Table I (Nathanson and Bodian, 1961).

A. Questions unanswered: Cellular sites of replication

Many significant details about the sequential steps in infection remain unanswered. There is considerable evidence that poliovirus invades the gastrointestinal tract by transcytosis via microfold (M) cells that express the poliovirus receptor (PVR) on their surface. *Ex vivo* fragments of human Peyer's patches have been reported to endocytose poliovirus

FIGURE 2 Viremia in experimental poliomyelitis. In this model, cynomolgus monkeys were infected by intramuscular injection of Mahoney virus, a virulent strain of wild type 1 poliovirus [after Nathanson and Bodian (1961), with permission].

TABLE I Different tropism of two strains of poliovirus, the neuroadapted MV (mixed virus) and the viremogenic Mahoney virus

	Neuroadapted MV strain		Viremogenic Mahoney strain	
	Control	Nerve block	Control	Nerve block
Paralysis	25/26	0/11	19/19	18/20
Site of initial paralysis				
Injected leg	24	_	3	5
Other	1	_	16	13
Incubation to paralysis (median)	5 days	-	7 days	7.5 days

After injection into the gastronemius muscle, the MV strain spreads only by the neural route, causes initial paralysis in the injected limb, and is impeded by a neural block, while the viremogenic Mahoney strain spreads by viremia, does not cause localized initial paralysis, and is not impeded by nerve block. Neural block was achieved just prior to virus injection by freezing the innervating sciatic nerve with dry ice proximal to the site of virus injection [after Nathanson and Bodian (1961), with permission].

and similar observations have been made in a human monolayer culture containing M-like cells (Iwasaki *et al.*, 2002; Ouzilou *et al.*, 2002; Siciski *et al.*, 1990). Following transcytosis, one or more types of lymphoreticular cells are infected at the sites of primary infection. Although freshly isolated human blood monocytes are not very susceptible to infection (Eberle *et al.*, 1995; Freistadt and Eberle, 1996; Freistadt *et al.*, 1993), when cultured under conditions that promote differentiation into