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I NTROD U CTl ON 

In scattering theory one investigates the link between t h e  asymptotic 

behaviour o f  a system as t h e  time t tends t o  --oo and +m, respectively. 

Usually one compares the solutions of a perturbed system with t h e  solutions 

o f  a free system whose solutions can be described easily. The evolution o f  

the perturbed system is given by a contraction semigroup (unitary group) o f  

operators V ( t ) ,  t 2 0, acting in  a Hilbert space H, called the  energy space. 

Similarly, the free system is described by a unitary group Uo(t)  of  operators 

acting in  the free energy space Ho. 

The main problem in the construction of scattering theory is t h e  existence 

of the wave operators 

W-f = lim V * ( t ) J U o ( - t ) f ,  

Wf = lim U o ( - t ) J * V ( t ) f ,  

f E HO , 
t-oo 

f E 'H , 
t-+m 

where J : Ho 4 H is a projection, V*( t )  is the adjoint semigroup and 

J* : H 4 Ho is the adjoint o f  J .  Here 'H is a subspace o f  H with the 

property that  the local energy o f  V ( t ) f  wi th  f E 'FI decreases as t -+ 00. 

This property is necessary for the  existence o f  Wf and it is natural t o  find 

a maximal subspace 31 of  this type and, also, t o  establish the inclusion 

(1) RanW- c'H. 

Once this is done, one is able t o  introduce the scattering operator S = 

W o W- following the diagram 

'H 
W W- 

HO HO 
S 



X Introduction 

In  the same way one investigates perturbed systems with time-dependent 

perturbations (time-dependent potentials, moving obstacles). In this situa- 

t ion the evolution is given by a family o f  operators acting f rom the  energy 

space H ( s )  t o  the energy space H ( t ) ,  and the solution w i th  initial data 

f E H ( s )  has the form U ( t ,  s)f .  The wave operators connecting U ( t ,  0) 

and Uo(t) become 

W- = lim U(O, - t ) J ( - t ) U o ( - t ) f ,  f E Ho , 
t-m 

Wf = lim Uo(-t)J*(t)U(t,O)f, f E 3-1 c H ( 0 )  
t-m 

with J ( t )  : Ho -+ H ( t )  being a bounded operator which plays the role o f  

a restriction. Also in this case the description of a maximal subspace ',Jf o f  

H ( 0 )  such that W f  exists for f E 31 is an important problem. 

The existence of W-, W and S has been established for a large class 

of perturbed systems described by a unitary group of operators which arise 

in mathematical physics. In this direction the reader should consult the 

classical books o f  Lax and Phillips [2] and of Reed and Simon [3], where an 

excellent exposition o f  this subject is presented. In their analysis the spectral 

properties of the generator of the unitary group plays an essential role. 

The situation changes considerably when one studies systems related to 

a contraction semigroup V ( t )  or t o  a propagator U ( t , s ) .  In the first case 

one has dissipation o f  the energy, while, in the second one, the global or 

even the local energy might increase exponentially when the t ime t goes to 

infinity. Another difficulty is connected with the fact that the spectral theory 

for generators G of contraction semigroups is not so well developed as the 

spectral theory for self-adjoint operators. A similar difficulty arises for U ( t ,  s), 
and, in general, one cannot find an operator playing the role of G. Some 

simplification is possible when one examines t ime periodic perturbations. 

Then one introduces the monodromy operator V = U(T ,O) ,  T > 0 being 

the period o f  the perturbation. Nevertheless, in general a suitable spectral 

theory for V is not available. 

During the last fifteen years, scattering theory for dissipative and time- 

dependent systems has been intensively studied. The results in  this field are 

exposed in  many papers based on various tools and techniques which are 
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scattered in  the scientific literature. In this book we present an approach t o  

these problems founded on a few ideas, which can be applied simultaneously 

t o  the cases of even and o f  odd space dimension. These ideas are connected 

with the RAGE type theorem, wi th Enss' decomposition of the phase space 

and w i th  a time-dependent proof o f  the existence o f  the operator 'CY which 

exploits the decay o f  the local energy of the perturbed and free systems. 

Moreover, we treat some inverse scattering problems for time-dependent 

potentials and moving obstacles wi th an arbitrary geometry. These problems 

are connected with the so-called generalized scattering kernels I<# which can 

be defined even if the scattering operator S cannot be determined in the sense 

mentioned above. On  the other hand, if S exists, then I<# coincides with 

the  kernel o f  S-Id considered in a suitable representation. Thus we obtain 

a natural generalization o f  the situation o f  stationary (time-independent) 

potentials and obstacles, where our methods imply the results previously 

obtained by other means. 

In Chapter I, we expose some results f rom functional analysis which are 

necessary for the monograph. We restrict our attention t o  the so-called 

RAGE type theorems for contraction semigroups and power bounded opera- 

tors. These theorems play a crucial role in the analysis of the decay o f  local 

energy. 

In Chapter It, basic facts are collected for the unitary group U o ( t )  related 

t o  the Cauchy problem for the wave equation. We treat both cases when the 

space dimension n is odd or even. Also, we construct the translation repre- 

sentations of Uo(t )  associated with the Lax-Phillips spaces D*. We describe 

the link between these translation representations and the asymptotic wave 

profiles. Following the approach o f  Cooper and Strauss (21, [4], we introduce 

outgoing (incoming) solutions for time-dependent problems and we show, 

that  these solutions admit asymptotic wave profiles. This fact is important 

for the definitions of the generalized scattering kernels I<# in Chapters VI  

and VIII. 

Chapter Ill is devoted t o  first order symmetric systems with characte- 

ristics of variable multiplicity in  the exterior o f  a domain w i th  uniformly 

characteristic boundary. Such systems arise in  many problems of mathema- 
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tical physics, a typical example being Maxwell's system in electrodynamics. 

We apply an adaption of Enss' method proposed by Georgiev and Stefanov 

[I] and developed by Vodev [3]. The existence of zero speeds as well as 

the lack of smoothness of the characteristic roots lead t o  some difficulties 

in the construction of a suitable Enss' decomposition. We treat dissipative 

boundary conditions and short range perturbations. 

For some dissipative systems it is possible t o  construct a solution V( t ) f  

with f # 0 which vanishes for t 2 To. Such solutions are called disappearing 

and they might perturb the inverse scattering problem and the controllability 

of the system. Moreover, if there exists an f E H with t h e  mentioned 

property, we can find an infinite dimensional space of initial data with the 

same property. In Chapter IV we study this phenomenon and obtain a link 

between the existence of a disappearing solution and the controllability of the 

system. The systems described by unitary grouips do not admit disappearing 

solutions and such solutions are typical for dissipative systems. 

In Chapter V we begin the examination of time-dependent perturbations. 

Here we study the equation ( U + q ( t , x ) ) u  = 0 with a potential q ( t , x )  which 

is periodic in time. Assuming the global energy is bounded as t + 00, we 

obtain a decay of the  local energy for initial data f orthogonal t o  a space 

Hb generated by the eigenfunctions of the adjoint operator V' of V with 

eigenvalues on the unit circle S'. If the dimension is odd and the  data f have 

compact support, we establish an exponential rate of the  local energy decay 

and show that Hb is finite dimensional. We discuss the case when the global 

energy is not bounded and describe the spectrum of the monodromy operator 

V .  In this analysis the local evolution operator ZQ(t,O) = P;U(t,O)P! 
plays an essential role. Here Pz denote the orthogonal projections on the 

orthogonal complements of the spaces DZ. Finally, the results of  this chapter 

are applied to  stationary potentials. 

In Chapter VI we examine the inverse scattering problem for time-de- 

pendent potentials and define the generalized scattering kernel I<#. We 

prove the uniqueness of the inverse scattering problem showing that, if the 

kernels I<?, i = 1,2, related t o  the potentials q , ( t , x ) ,  i = 1,2,  coincide, 

then the potentials q1 and q2 coincide, too. Moreover, we find a procedure 
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for recovering a stationary potential. In the exposition we follow a time- 

dependent approach developed by Stefanov [8]. 

Chapter VII is devoted to  the scattering for the  wave equation in the 

exterior of  a moving obstacle which may change i t s  form and position with a 

speed less than the propagation speed of  the solutions of  the wave equations. 

Supposing t h a t  the global energy is bounded as t + 00, we obtain the 

existence of the operators W-, W ,  assuming a decay of  t h e  local energy. 

For periodically moving non-trapping obstacles we establish such a local 

energy decay by using the propagation of the singularities of  the  solutions 

of the wave equation along the  generalized bicharacteristics. We also treat 

some generalizations concerning Neumann and Robin boundary conditions. 

In Chapter Vl l l  we investigate an inverse scattering problem related to  

the leading singularity of  the generalized scattering kernel I@. After a 

localization of  this singularity we construct a microlocal parametrix in a 

domain sufficiently close t o  the place and the time of  the first reflection of 

a plane wave with incident direction w. We cover both the generic and the 

non-generic cases using a result of Soga [4] for the  asymptotics of  oscillatory 

integrals with degenerate phase functions. For completeness we discuss this 

result in Appendix I I .  Finally, in this chapter we show that for all t E R the 

convex hull of  the  obstacle K ( t )  can be recovered from the  back scattering 

data related to  the singularities of  I<#. 

In the exposition we assume some knowledge of the  theory of  contrac- 

tion semigroups and some background in partial differential equations and 

functional analysis in Hilbert spaces. Furthermore, we use some standard 

notations and facts from microlocal analysis. However, in Sections 7.4 and 

8.3 we need a deep result of  Melrose and Sjostrand [l]. The reader may 

choose to  admit this result and go with the arguments in these sections. 

In the l is t  of  references at the end we have tried t o  be complete with 

respect t o  recent publications on scattering theory for dissipative systems 

and time-dependent perturbations, but we have made no efforts to  include 

an exhaustive coverage of the immense literature in all aspects of  scattering 

theory. 

Some chapters of  this book have been exposed in two courses on scat- 
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tering theory given by the author a t  the Federal University of Pernambuco 
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University of Pernambuco in 1987. 

In the preparation of the book I have profited from numerous discussions 

with my colleagues V. Georgiev, G. Popov, Tz. Rangelov, PI. Stefanov 

and G. Vodev in Sofia. They gave permission t o  include some of their 
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CHAPTER I 
CONTRACTION SEMIGROUPS AND POWER BOUNDED OPE- 

RATORS 

In this chapter we collect some facts f rom functional analysis which are 

important for the present monograph. In Section 1.1 we prove a theorem 

characterizing the generators o f  contraction semigroups and we establish 

some technical lemmas. Section 1.2 is devoted t o  t h e  so-called RAGE type 

theorem for contraction semigroups. In Section 1.3 we deal wi th power boun- 

ded operators V defined by the property that  sup IIV”’II I Co. We obtain 

a representation of V including a partial isometry. We apply this result in 

Section 1.4 t o  establish a RAGE type theorem for power bounded operators. 

The RAGE type theorems play an essential role in  the analysis o f  the decay 

of local energy discussed in Chapters I l l ,  V, VII. 

mEN 

1.1. Contraction semigroups 

Let H be a Hilbert space with inner product ( , ) and norm 1 1  . 1 1 .  
Also the norm of the bounded operators in  H will be denoted by 1 1  . I ( .  A 

one-parameter family { V ( t )  : t 2 0} o f  operators in  H wil l  be called a 

contraction semigroup if V(t) satisfy the following properties: 

(i) V(0)  = Id ,  

(ii) V(t + s) = V( t )V( s )  for all t , s  2 0 ,  

(iii) For all f E H t h e  function t + V(t)f is continuous on H I  

(iv) IlV(t)ll 5 1 for all t 2 0. 

The basic properties o f  contraction semigroups can be found in  Hille and 

Phillips [l]. We discuss here only the properties which are necessary for our 

exposition. 
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For every contraction semigroup there exists a closed linear operator G 

with dense domain D ( G )  c H such that 

for al l  f E D ( G )  and all t 2 0. The operator G is called the generator of 

V ( t )  and so we write V ( t )  = elG. For R e X  > 0 consider the  operator 

Rxf = -  7 e-XtetGf dt . 
0 

We have 

(9) (R’f) = k$! Jm e-’tetGfdt + 
0 

h 

+ h-le’h J e-xtetGfdt  . 
0 

Letting h t 0, the right-hand side tends to  XRxf + f, hence Rx f E D(G)  

and ( G  - X)Rxf = f. On the other hand, for f E D ( G )  we obtain 
03 

G Jm e-’tetG f dt = J e-XtGetG f dt = 
0 0 

= 7 e-’le“Gf dt 
0 

Thus for f E D(G) we have (G - X)Rxf = RA(G - A) f = f and we obtain 

the resolvent formula 

(1.1.1) 

Moreover, it is clear that 

00 

(G - X)- l f  = - J e-’tetGfdt,  ReX > O . 
0 

ll(G - X)-’II 5 1 / X ,  X > 0 

A sufficient condition for a closed operator t o  be a generator of a con- 

traction semigroup is given by the following. 

Theorem 1.1.1 (HiIIe-Yosida). 

A linear densely defined closed operator G generates a contraction semigroup 

in H if and only if 
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(1) (0, c P(G) 1 

(2) ll(G - X)- l I I  5 1 / X  for all X > 0, 

p(G) being the resolvent set of G. 

We refer to Hille and Phillips [l] for t h e  proof of this theorem. 

If V ( t )  is a contraction semigroup, the family of  adjoint operators 

{V*( t )  : t 2 0) is again a contraction semigroup. Denoting by J the 

generator of V*( t ) ,  we obtain from (1.1.1) the  equality 
03 

[ ( J  - 1)-1]* = - J  e --t  e dt = (G- l)-' 
0 

yielding J = G*. 

For applications it is important t o  have a simple condition on G which 

guarantees that G generates a contraction semigroup. For this purpose we 

introduce the notion of  accretive operator. 

Definition 1.1.2. 

An operator A with dense domain D(A)  c H is called accretive if for al l  

f E D(A)  we have 

(1.1.2) Re(Af , f )  I 0  . 

The operator A is called maximal accretive if A is accretive and there are 

no proper accretive extentions of  A. 
The following theorem explains the role of  the accretive operators. 

Theorem 1.1.3. 

A closed operator G in H is the  generator of a contraction semigroup if and 

only if G is accretive and Ran(G - Xo) = H for some Xo > 0. 

Proof. Assume V ( t )  = etG is a contraction semigroup. Then for f E D ( G )  
we have 
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On the other hand, 

and 

leads to  (1.1.2). Therefore, it follows from condition (1) of Theorem 1.1.1 

tha t  Ran(G - A,) = H .  

Now le t  G be an accretive closed operator with Ran(G - A,) = H for 
A. > 0. For f E D(G) and A > 0 we obtain 

(1.1,3) Allf1I2 5 Allf1I2 - Re(Gf,f) = Re((A - G)f,f)  i 

5 ll(G - A)f l l  l l f l l  . 

Consequently, Ran(G - A) is closed and (G - A ) - l  is defined and bounded 

on Ran(G - A) with norm less or equal t o  A - I .  It remains t o  show tha t  

Ran(G - A)  is dense in H .  Since 

(1.1.4) [Ran(G - A)]" = Ker(G' - A)  , 

it is sufficient t o  prove that d imKer(G* - A) is locally constant. Indeed, 

then Ker(G' - A,) = (0) implies Ran(G - A) = H .  
Take 17 E C, 171 small enough, and assume 

G'u = ( A  + 17). , 1 1 ~ 1 1  = 1 ,  u E D(G*)  . 

Assuming u E [Ker(G* - A)]', by (1.1.4) we get u E Ran(G - A), tha t  is 

u = (G - A)f with some f E D(G).  Therefore 

0 = ((G* - ( A  + v))., f) = ( u ,  (G - A)f) - 17(U, f) = 

= 11412 - 17(% f) . 

On the other hand, from (1.1.3) we deduce l l f l l  5 Ilull/A. So for 1171 < X 
we obtain a contradiction and there are no elements u E I<er(G* - ( A  + 17)) 

which are in [Ker(G* - A)]'. This implies easily 

dim I<er( G' - ( A  + 17)) 5 dim K e r (  G' - A)  . 
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Repeating th is  argument, we get  for 1171 < X t h e  inequali ty 

dim I<er( G' - A) 5 dim Ker( G' - ( A  + 17)) . 

Finally, d imI<er(G* - A)  is locally constant and t h e  proof  of Theorem 1.1.3 

is complete. 

0 

Corollary 1.1.4. 

Let G be a closed operator in H .  If both G and i t s  ad jo in t  G' are accretive, 

then G generates a contraction semigroup. 

Proof. Assume there exists g E H ,  g # 0 such tha t  

((G - l)f,g) = 0 for all f E D(G) . 

Then  g E D ( G * ) ,  G'g = g and Re(G'g,g) = 1)g112 which contradicts the 

assumption t h a t  G *  is accretive. Th is  shows t h a t  Ran(G - 1) is dense. As 
in  t h e  proof  of Theorem 1.1.3, R a n ( G -  1) is closed. Then  Ran(G - 1) = H 
and we apply Theorem 1.1.3. 
0 

If G is a generator of a contraction semigroup, then G is maximal  accre- 

t ive. In  fact ,  let G be an accretive extension of G. For each f E D ( G )  we 

can f ind g E D(G) such t h a t  

(G - 1)f = (G - 1)s = (G - l ) g  . 

Apply ing to  both sides (G - l)-', we obta in  f = g and D(G) = D(G). T h e  

converse assertion is also true: every maximal  accretive operator generates 

a contract ion semigroup. Here we do n o t  apply th is  result. 

Nex t  we prove some technical lemmas concerning generators G of con- 

t ract ion semigroups V ( t ) .  First, notice t h a t  if X is an eigenvalue of G, then 

ext is an eigenvalue of V ( t )  for  al l  t 2 0. Indeed, consider t h e  equation 


