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Preface 

This work is intended to serve as a reference to the theory of right 
processes, a very general class of right continuous strong Markov processes. 
The use of the term general theory is meant to suggest both the absence of 
hypotheses of special type other than those for right processes, and the co- 
ordination of the methods with those of the general theory of processes, as 
exposed in the first two volumes of Probabilith et Potentiel by Dellacherie 
and Meyer. We do provide in the appendix a fairly extensive discussion 
and summary of the general techniques needed in the text, with hopes that 
it may lead the reader to a fuller appreciation of the Dellacherie-Meyer 
volumes. 

The original definition of right process (processus droit) was set down 
twenty years ago by Meyer as an abstraction of certain properties possessed 
by standard Markov processes, which had been up to that time the largest 
class of strong Markov processes that could be shown to have an intimate 
connection with abstract potential theory. The hypotheses of Meyer were 
weakened in the subsequent lecture notes of Getoor (1975). Right pro- 
cesses in the sense of Meyer or Getoor do form a class large enough to 
encompass most right continuous Markov processes of practical interest 
such as Brownian motion, diffusions, LQvy processes (processes with sta- 
tionary independent increments), Feller processes and so on, constructed 
from reasonable transition semigroups. However, the form of hypotheses 
discussed by Meyer and Getoor contains a serious flaw, in that their hy- 
potheses are not invariant under the classical transformations of Markov 
processes such as killing, time-change, mappings of the state space, and 
Doob's h-transforms. Motivated by the wish to have a setting which is 
preserved by essentially all these transformations, we propose hypotheses 
for right processes weaker than those of either Meyer or Getoor, but which 
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remain strong enough to guarantee a rich theory of sample path behavior 
and close links with potential theory. 

The point of view of the book is chiefly to study the probabilistic struc- 
ture of a given right process as expressed through such objects as its ho- 
mogeneous functionals, its additive and multiplicative functionals, its as- 
sociated stochastic calculus, and to consider the transformations of right 
processes that yield other right processes. It has been a constant goal to 
avoid imposing secondary hypotheses which would limit the domain of ap- 
plicability. There is only one section concerning the construction of a right 
process from a nice (Ray) semigroup, and while adequate for constructing 
some classical examples, it is not of great generality. There is no discus- 
sion of construction of Markov processes by solving Stroock-Varadhan type 
martingale problems. The recent book of Ethier-Kurtz (1986) has much on 
these matters. 

Explicit examples of right processes are discussed principally in the 
exercises. The connections between right processes and abstract potential 
theory are discussed though not always in full detail. For example, though 
there is a discussion of the Hunt-Shih identification of hitting operators 
and reduite of an excessive function on a set, we do not present a complete 
proof. The reader interested in questions of more direct potential theoretic 
type is referred to volumes I11 and IV of Dellacherie-Meyer. 

The sections on multiplicative functionals and homogeneous random 
measures, the latter a generalization of additive functionals, bring up to 
date the older books of Meyer and Blumenthal-Getoor. Especially in the 
sections on LCvy systems and exit systems, there is a penalty to be paid 
for the breadth of the hypotheses, requiring us to construct kernels on 
spaces larger than the state space so that the statements of the results will 
look a bit unusual to experts familiar with their forms under restrictive 
measurability conditions. However, the applications of these constructions 
do not appear to be affected in any essential way by this complication. 

It is a pleasure to thank those individuals whose comments on earlier 
versions have eliminated many inaccuracies, inconsistencies and irrelevan- 
cies. Marti Bachman, Ron Getoor, Joe Glover, Bernard Maisonneuve, 
Joanna Mitro, Wenchuan Mo, Art Pittenger, Phil Protter, Tom Salisbury 
and Michel Weil provided me with valuable feedback for which I am very 
grateful. Thanks are also due to Neola Crimmins, whose expert entry of 
part of the first draft simplified the task of assembling the final document 
in Tj$ format. 

La Jolla, 1988. 
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1 Fundamental Hypotheses 

1. Markov Property, Transition Functions and Entrance Laws 

A stochastic process indexed by a subset of the real line has the Markov 
property if, roughly speaking, the past and future are conditionally in- 
dependent given the present, for every possible value of the present. See 
(1.1) below for the precise specification. In this definition, the state space 
is required to have only measurable structure-no algebra or topology is 
involved. Nevertheless, because of applications to special examples and 
our focus on path regularizations which would otherwise take a different 
form, we shall work exclusively with topological state spaces. The minimal 
hypothesis on every state space E shall be that E is a Radon topologi- 
cal space. See SAl. This is not a burdensome restriction. Every Polish 
(:=complete, separable, metrizable) space and every locally compact Haus- 
dorff space with countable base (LCCB) is Radonian. 

The notation B ( E )  stands for the Borel a-algebra on E ,  but we shall use 
the simpler notation E in its place unless clarity dictates otherwise. The 
notation E" will, following the pattern described in the Appendix, denote 
the a-algebra of universally measurable subsets of E.  Other a-algebras 
intermediate to E and E" will be introduced later. We shall always denote 
a generic such a-algebra by E' with the superscript usually being one 
of O , T , ~ ,  referring to the a-algebras on E generated by the Borel, Ray 
and excessive functions respectively. Thus €O is just another name for E.  
See $10. In later sections, we shall make a distinction between Eo and E ,  
identifying E with E' instead of Eo. This will require minor reinterpretation 
of some of the constructs in this chapter, but to do otherwise would lead 
to serious notational complications later. 



2 Markov Processes 

The reader is now assumed to be familiar with the terminology estab- 
lished in the Appendix, especially in AO-A3. In particular, given a u- 
algebra M on a space M ,  b M  (resp., p M )  stands for the class of bounded 
(resp., positive) M-measurable functions on M. (Positive always refers to 
values in [O,oo], rather than the positive reals). 

Let (R, 9, P) be a probability space, I be an index set contained in the 
real line R, and let X = ( X t ) $ , = ~  be a stochastic process indexed by I, 
with values in E. That is, (X t ) tEI  is a collection of measurable maps of 
(R, 9) into (E, E ) .  In order to emphasize the dependence here on E ,  we call 
X an €-stochastic process. Similar definitions will apply when E is replaced 
with a larger u-algebra E'. It is, of course, a more demanding condition 
for X to be an €'-stochastic process, as it is required in this case that for 
every t E I, {Xt E F }  := {w E R : X t ( w )  E F} be in B for every set F in 
E m  rather than for every F in E .  

Corresponding to a fixed a-algebra E' on E and a fixed €'-stochastic 
process X on R, the natural a-algebra 3& ( or, more simply, F:) is defined 
as u { f ( X , )  : r E I , r  5 t , f  E E m } .  Asimilar definition specifies the u- 
algebra 3:t of the future from t. Thus, for example, (resp., F )  denotes 
the u-alge%ra generated by the maps f(X,) with T 5 t and f in Eo(:= E )  
(resp., f in E") .  

The process X has the Em-Markov property if the a-algebras F&, 
3:t are conditionally independent given Xt, for every t E I. That is, For 
t I, A f 3& and B E 3&, - - 

(1.1) P{A fl B I X t }  = P{A I Xt} P { B  I X t } .  

The need for the prefix E' is only temporary, as we shall see after the 
discussion of augmentation procedures in 56. Under the condition (l.l), one 
may compute, using the well known properties of conditional expectations, 

P{ A n B } = P{ P{A n B 1 Xt} } 
= p{ P{A I X t }  P{B I X t }  } 
= P{ P{B I Xt} ; A } .  

As A E F: is arbitrary, it follows that (1.1) implies 

for every B E 3;t, t E I. That is, prediction of future behavior of X based 
on the entire past is only as valuable as the predictor based on the present 
value Xt alone. Conversely, the condition (1.2) implies (1.1) by similar 
manipulations, and consequently (1.2) is also referred to as the Em-Markov 



I: Fundamental Hypotheses 3 

property of X. In many respects, (1.2) is more convenient to manipulate 
and generalize. In the first place, it is reasonable and useful to replace 
the filtration (F:) with a more general filtration ( G t )  to which ( X t )  is &'- 
adapted. This leads us to say that (Xt) is €'-Markovian with respect to 
( G t )  if X is €'-adapted to (Gt ) ,  and if, for all t E I and all B E F;t, - 

In applications, (1.3) has a more convenient form 

(1.4) P{H I G t }  = P{H I X t ) ,  H € P 5 t .  

Formula (1.4) is an immediate consequence of (1.3), starting with the case 
H = lg, B E F&, and making use of the Monotone Class Theorem (AO.l). 

The definition above is too crude to be useful except when I is a discrete 
subset of R. We bring more precision to bear by introduction of the notion 
of a transition function (P,,t) for X. 

(1.5) DEFINITION. A family of Markov kernels on ( E , € * )  indexed 
by pairs s, t E I with s 5 t is a transition function on ( E ,  E') if, for all 
T I s 5 t in I and all x E E ,  B E E' 

p r , t ( x ,  B )  = J, p r , s ( x ,  dy)  ~ , , t ( y ,  B). 

In accordance with the discussion of kernels in A3, P,,t(x, dy) is a kernel 
on (E,E') provided that, for all x E E ,  P,,t(x,dy) is a positive measure 
on (E,E'), and for every B E E', x -, P,,t(x, B )  is E' measurable. In 
addition, P,,t(x,dy) is a Markov kernel if P,,t(z, E )  = 1 for all z E E. 
The equation in (1.5) is called the Chapman-Kolmogorov equation. 

Define the action of the Markov kernel P,,t on bE' (resp., pE') by 

P,,tf := J P,,t(z, 4) fb), f E PE' u bE', 

so that P,,t f E bE' (resp., pE'.) See sA3. We say that a transition function 
(P8,t) on (E, €') is the transition function for a process (Xt)tE~ with values 
in E ,  and satisfying the Markov property (1.4) relative to ( G t )  in case 

(1.6) P { f  (Xt) I G,} = P,,tf (XS), s I t E 1, f E bE'. 

(1.7) THEOREM. Let ( X t ) t E ~  be €'-adapted to (&), and suppose that 
is a transition function on (E,E') such that (1.6) holds for every 

s 5 t E I and every f E bE'. Then X has the Markovproperty (1.4). 

PROOF: The class IH of random variables in bF,t for which (1.4) holds is 
clearly an MVS (see AO) because of monotonicity properties of conditional 
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expectations. By hypothesis, 'H contains every H of the form f ( X t )  with 
f E bE'. AS bF>, is generated by the multiplicative class V = UnVn, 
where V ,  is the calection of products FlF2 . . S F ,  with Fj = f j ( X t j ) ,  t 5 
t l  5 t 2  5 5 t n ,  fj E bE', it suffices by the Monotone Class Theorem to 
verify that V C 'H. Proceed by induction on n to get U, c 'H for all n 2 1. 
By our first remarks above, V1 C 3-1. Suppose, inductively, that V ,  C 'H 
and let G = F1. .  . F,+1 E Vn+l . Compute P { G  I G t }  by first conditioning 
relative to Gt,, so that 

However, the random variable being conditioned in the last term is clearly 
in V,,  and thus, by inductive hypothesis, Gt may be replaced by X t .  The 
same calculation with Gt replaced throughout by Xt completes the induc- 
tive step by proving P { G  I G t }  = P { G  I X t } ,  which finishes the proof. 

We shall be interested primarily in the case I = R+ := [O,m[ though 
the cases 10, m[, ] - m, m[ and 30,1[ also arise frequently in practice. 

A family (Pt)t>0 of Markov kernels on ( E ,  E ' )  is called a Markov tran- 
sition semigroup or simply a transition semigroup in case 

A transition function (P,,t) indexed by s 5 t E R+ is called temporally 
homogeneous if there is a transition semigroup (Pt)  with P,,t = Pt-, for 
all s 5 t. Starting with a transition semigroup (Pt) ,  P,,t := Pt-, defines a 
temporally homogeneous transition function. 

A Markov process X satisfying (1.6) with a homogeneous transition 
function (P,) has the characteristic property 

This is the simple Markov property of X relative to (Pi). 
The Markov processes considered here will be temporally homogeneous 

for the most part. See however exercise (1.15), which deals with the so- 
called space-time process connected with a general Markov process. 

Suppose now that (Xt)t>o has the Markov property (1.8) relative to 
(Q, 9, Gt ,  P ) ,  with transition-semigroup (Pt). The distribution po of Xo is 
called the initial law of X ,  and the distribution pt of Xt then satisfies 
pt = p0Pt for all t 2 0. That is, for f E bE', 
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If the index set for X were instead 10, m[, there would be no initial law PO 
definable as above. However, the pt would obviously satisfy the identities 

(1.9) Pt+e = Pt ps, t ,  s > 0. 

A family (pt)t>o of positive measures on ( E ,  E’) satisfying (1.9) is called an 
entrance law for the semigroup (Pt). It is called finite in case p t ( E )  < m 
V t  > 0 ,  bounded if sup,pt(E) < m, probabiZity if p t ( E )  = 1 for all t. If 
there is a measure PO such that pt = popt for all t > 0, then PO is said to 
close the entrance law (pt) t>o.  A probability entrance law (,ut)t>o need 
not have a closing element PO. For example, let E be the open right half line 
R++ and let Pt(x ,  dy) := ~,+t(dy) -unit mass a location x + t. Then, for 
t > 0, pt(dy) := c t (dy)  defines a probability entrance law for (Pt) without 
a closing element. See Chapter V for the compactification theory needed to 
permit the representation of a closing element for an arbitrary probability 
entrance law. 

A (temporally homogeneous) Markov process (Xt)t>o satifying (1.8) 
and having initial law PO necessarily satisfies the more general identities 

(1.10) P { f l ( X t l ) f 2 ( X t , )  . * * . f n ( X t , ) }  

= p o ( P t ,  ( f l 4 , - t ,  (fz-.-(ft, *Pt,-tn-lfn)*-.)))9 

for 0 5 tl 5 t z  5 - .  - 5 t,, f l  , . . - , fn E bE’. This is a simple consequence 
of (1.8) via an induction argument. The last formula is perhaps more intu- 
itive in its differential version, which states that under the same conditions 
as above, 

(1.11) P(X0 E dx0,Xt1 E d21,... ,xin E dxn}  

= Po(dxo)Pt, ( 2 0 ,  dx1) * * .  Pt,-tn4 (xn-1, d 4 -  

In this form, the Markov property corresponds to the Huygens principle 
in wave propagation-in order to compute P { X t  E dx},  one may imagine 
interposing a barrier at time tl < t and, knowing the position Xt ,  , perform 
calculations supposing that the process starts afresh at Xi, .  The integral 
version (1.10) asserts that the total probability that X t  E dx is obtained 
by adding the above probabilities over all possible positions Xi, ,  weighted 
by the probabilities of reaching the points Xi, in the first place. 

(1.12) EXERCISE. Formulate the appropriate versions of (1.10) and (1.11) 
in the case where X is homogeneous Markov with time parameter set 10, m[. 

The next pair of exercises is designed to give the reader a little practice 
with arguments involving completions. This kind of ‘‘sandwiching” will be 
used repeatedly in later sections. Exercise (1.14) will show that there is no 
need to maintain any distinction between different €‘-Markov properties, 
provided the filtration is sufficiently rich. 
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(1.13) EXERCISE. Let (Pt)  preserve each of the a-algebras E', E l ,  with 
E C E' C E' C E". Let ( X t ) t > ~  be defined on (R, Q, Bt ,  P) with X satisfying 
(1.8) for all t ,  s 1 0, f E b&'r Assume that X is €'-adapted to (Qt) .  Prove 
that (1.8) holds then for f E bE'. (Hint: choose fi 5 f 5 f 2  with f 1 ,  f2 E 
E' and f 2  - f 1  null for the measure g -t Pg(Xt+s)  = P P,g(Xt)  ( g  E bE'). 
Remember that a conditional expectation is an equivalence class of random 
variables.) 

(1.14) EXERCISE. Let E' C E' be a-algebras preserved by (Pt), and as- 
sume that X satisfies (1.8) for every f E bE'. Prove that for all f E bE', 

(Hint: by (1.13), one may reduce to the case f E bE'. Show usingmonotone 
classes that, for every H E b3;, there exist H1 5 H 5 H2 with H I ,  HZ E 
b3: and H2 - H I  null for the measure G + P G  (G E b3:).) 

(1.15) EXERCISE. Let ( X t ) t > ~  be Markov with transition function (Pa,t). 
Suppose also that (P8,t) satisfies the measurability condition 

(s, t , x )  + Ps,t(z,  B)l{,st) is in B(R) @ B(R) 8 E' VB E E' 

Show that, with E ,  denoting unit mass at u E E ,  

defines a Markov transition semigroup on (R x E ,  B(R) 8 E')  and the 
space-time process Xt  := ( t , X t )  has the Markov property relative to 
(fz,G, Gt, P), with transition semigroup (p,). 
(1.16) EXERCISE. Verify, using the Kolmogorov existence theorem, that if 
(Pt) is a Markov transition semigroup on the Radon space E ,  and if(pt)t>o 
is an arbitrary probability entrance law for (Pt), then there exists a unique 
probability measure P on the product space R = Elo@[ with product u- 
algebra Q so that the coordinate maps Xt form a Markov process with 
transition function (P,) and entrance law (p t ) .  Formulate and check the 
temporally inhomogeneous version of this result. 

(1.17) EXERCISE. Let X t  be a process with (not necessarily stationary) 
independent increments in Rd. Show that X is Markovian and satisfies 
(1.6) for some transition function (Pa,,). 
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2. The First Regularity Hypothesis 

A stochastic process (Xt)tEf defined on (Q, 0, P) and having values in a 
topological space E is right continuous in case every sample path t + 

X t ( w )  is a right continuous map of I into E. The following hypothesis 
is essentially the first of Meyer's hypotheses droites, which is to say in 
rough English translation, the regularity hypotheses for right processes. 
It is formulated as a condition on the transition semigroup rather than on 
the stochastic process. 

(2.1) DEFINITION (HD1). A Markov semigroup (P,) on a Radon space 
E is said to satisfy HD1 if, given an arbitrary probability law p on E, 
there exists a 0-algebra E' with E c E' C E" and Pt(bE') c bE', and an 
E-valued right continuous €'-process (Xt)t>O on some filtered probability 
space ( f l , G , G t , P )  so that X = (R,G,Gt,P,Xt) is (temporally homoge- 
neous) Markov with transition semigroup (Pt ) and initial law p. 

It is implicit in (2.1) that Xt  is €'-adapted to ( G t )  and that (1.8) is 
verified. Obviously, under the conditions of (2.1), one may replace (Gt) by 
(F:) without affecting anything. Notice that exercise (1.14) shows that if 
X satisfies all the conditions described in (2.1), and if ( X t )  is €"-adapted 
to (Gt)  then X also satisfies (2.1) with E' replaced everywhere with E". 
That is, (2.1) does not really depend on the particular E'. 

The Markov property in the form (1.4) is rather awkward to manage, 
and in order to facilitate compututions, we shall make use of Dynkin's set- 
up for Markov processes, which brings in a family of measures governing a 
Markov process-one for each initial value x E E-rather than one fixed 
measure P. Loosely speaking, we shall work with a fixed collection of 
random variables Xt defined on some probability space, and a collection 
P" of measures specified in such a way that P"(X0 = x}, and, under every 
P", Xt is Markov with semigroup (Pt). The P" may be thought of as the 
conditional distributions for P, given X O  = x. (There is much of interest to 
be said in connection with Markov processes run under one distinguished 
measure P, especially in case P is not necessarily a finite measure and 
the time-parameter set is the entire real line. We shall not go into such 
matters.) 

(2.2) DEFINITION. Let E be a Radon space, (Pt) a Markov semigroup 
on (E,E') preserving E'. The collection X = (Q,G,Gt,Xt,Ot,P") is a 
right continuous simple E'-Markov process with state space E and 
transition semigroup (Pt ) in case X satisfies conditions (2.3-5) below: 

(2.3) (R, G, G t )  is a filtered measurable space, and Xt is an E-valued 
right continuous process €'-adapted to (Gt ) ;  
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(2.4) (@t)t>o is a collection of shift operators for X, viz, maps of R 
into itself satisfying, identically for t ,  s 2 0, 

(2.5) For every x E E ,  P"(X0 = x} = 1, and the process (Xt)t>o has 
the Markov property (1.8) with transition semigroup (Pt ) relative 
to (0, G, Gt, P"). 

The condition P"(X0 = z} = 1 in (2.5) is not always built into the 
definition of a simple Markov process. Markov processes enjoying this 
property are usually called normal. All Markov processes here will be 
assumed normal, unless explicit mention is made to the contrary. Note 
that (2.3) imposes the requirement that Gt 3 F; for every t 2 0. 

(2.6) LEMMA. Given a collection (R,G,Gt,Xt,Ot,Pz) as above, then for 
every H f bF', x -, P" H is €'-measurable. 

PROOF: The formula (1.10) and the fact that the initial law for P" is c z ,  
the unit mass at z, shows that P"{f~ (Xt , ) . . . f~ (Xtn)}  is in €' when- 
ever f l , .  . . , fn € b&', 0 < t l  < t z  5 - - .  < t ,  . An application of the MCT 
completes the proof. 

Let (R, 8, Gt,  Xt, 8t, P") satisfy (2.2). Given an arbitrary probability 
law p on E ,  define P" on (R,F') by P"(H) := p(dx) P"(H) , H E b P .  
It is a routine exercise to verify that (Xi) continues to have the Markov 
property relative to (R, G, Gt, P"), with transition function (Pt) and initial 
law p. 

One says that the collection X = (R, 9, Gt, X t ,  &, P") satisfying (2.2) is 
a realization of the semigroup (Pt). The idea here is that (Pt)  may be the 
prime object of study, and all information about (Pt) is embodied in X, 
which may then be studied by the methods of stochastic processes rather 
than those of functional analysis. 

Under HD1, there is a realization of (P,) which is in some respects 
canonical. 

(2.7) THEOREM. Let (Pt) be a Markov transition semigroup on E satisfy- 
ing HD1. Then (Pt) has a right continuous realization (st, 6, &, X t ,  &, P"). 

PROOF: Let x E E .  According to (2.1), there is a process (K)t>o on a 
filtered probability space (W, %, Hi , P) and a a-algebra €' on E preserved 
by (Pt) such that Y is right continuous, €'-adapted to (Xt), and satisfies 
(1.1) and (1.8) with initial law ez, so that P(Y0 = z} = 1. Let R denote the 
space of all right continuous maps of Rf into E. Let X t ( w )  := w ( t )  denote 
the coordinate variables on R and let 6' := c ( f ( X t )  : t 2 0,f E bE'}, 
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Q: := a{f(Xs) : 0 5 s 5 t , f  E b&'}. The map @ : W ---$ Cl defined 
by @(w) := w ,  where W ( S )  := Ys(w) for all s 2 0, is characterized by the 
formulas Y, X,o@, s 2 0. It follows trivially that @ E Z/Q'. Let P" 
be the image of P under the map @ so that P"F = P { F o @ }  for every 
F E bQ'. This means that for 0 5 tl 5 t z  5 . . . 5 tn and f1, . . . , fn E b&', 

The result now follows from (1.14), taking 9 := Gu. 

(2.8) PROPOSITION. Let (0, Q, Qt, Xt, Bt,  P") be a right continuous simple 
&'-Markov process as defined in (2.2). For every F E bF* and all t 2 0, 
F o e t  E b3', and 

P ' L { F O B t  I Qt} = PX'{F}. 

(More precisely, PXt {F} means f(Xt), where f(x) := P"F. This notation, 
which looks rather confusing at first, will be used consistently.) Since 
Qt 3 3:, Qt may be replaced by 3: in the above conditional expectation. 

PROOF: The map x -+ P"F is in &' by (2.6). Thus, PXt{F} E bFF C Qt. 

For F of the form F = fl(Xtl)..-fn(Xt,) with fl, ...,fn E b&' and 
0 5 tl 5 t 2  5 ... 5 tn , the sought identity follows at once from the proof 
of (1.7), and the general case is completed by an appeal to the MCT. 

The inexperienced reader is cautioned that HD1 (2.1) is a very sub- 
stantial hypothesis whose verification seems possible only in very special 
situations, such as under strong analytic conditions on (Pt).  See 59 for one 
such result. Another approach to HD1 is to start with a process known 
to satisfy HD1 and deform it in some probabilistic manner, verifying that 
the new process thus obtained continues to satisfy HD1. Examples of this 
type will be given in the course of the next few chapters, particularly in 
Chapter 11. The examples will also illustrate why it is desirable to avoid 
hypotheses that would mandate that (Pt) preserve Bore1 functions. A third 
avenue to HD1 is to take a Markov process not necessarily satisfying HD1 
and regularize it in some manner so that the new semigroup satisfies HD1. 
Part of the theory of Ray-Knight completions deals with this matter. 

It should be mentioned that the definitions given in this section dif- 
fer slightly from those in the earlier work of Blumenthal-Getoor [BG68]. 
The requirements imposed on (Qt) in this section involve only that the 
conditional expectations of the H E b F  relative to Qk be the same as 
the conditional expectations relative to FT. If one wishes to condition 
Q-measurable random variables, further measurability conditions must be 
imposed on (Qt) .  We take up this issue in $6. 


