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PREFACE

In this volume we are interested mainly with topological
vector spaces (over valued division rings) and with some other
algebraic structures equipped with suitable topologies making the
algebraic operations continuous mappings. In the applications of
the general theory, the algebraic structures (vector spaces,
algebras and rings) considered are sets of functions defined on

a topological space X and having values either in a valued di-

vision ring (F, ), or in a topological vector space, algebra

or ring (E,T). This set of functions receives the algebraic
structure given by pointwise operations and, most of the time,
the topology of compact convergence.

In the first chapter we study the properties of valued di-

) that are needed in the subsequent chapters.

vision rings (F,
It presupposes only a basic knowledge of division rings; in fact,
very little besides the actual definition of a division ring or
of a field. After establishing the elementary properties of an
absolute value A = |A|, we present Kaplansky's Lemma (see Lemma
1.23) for non-archimedean valued division rings, which 1is the
main tool for getting Stone-Weierstrass type theorems. The proof
of Kaplansky's Lemma that we have presented is due to Chernoff,
Rasala and Waterhouse [14]. Kaplansky's Lemma appeared in
Kaplansky [38].

The general theory of topological vector spaces, over non-
trivially valued division rings, is the subject of chapter 2.
Three main results are dealt with in this chapter: the closed
graph theorem, the open mapping theorem and the Banach-Steinhaus
theorem. We extend the basic notion of a "string" (see defini-
tion 2.29) of Adasch, Ernst and Keim [1 ] to topological vector

spaces over non-trivially valued division rings. As in the case
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of [1], where the valued fields are IR and € with their usual
absolute values, the importance of strings stems from the fact
that they permit to develop "duality free" arguments to estab-
lish, in a "non convex" setting, two out of the three so-called
"fundamental principles of functional analysis". (The third one,
the Hahn-Banach theorem, will be taken up in chapter 4.) These
theorems are best understood when the classes of spaces for which
they hold true are introduced. We extend Waelbroeck's result
characterizing barrelled spaces as those for which the uniform
boundedness principle, i.e. the Banach-Steinhaus theorem, holds
true. The notion of strings allows a very natural definition of
two other classes of topological vector spaces: the bornological
and the guasi-barrelled ones. It should be remarked that in the
language of the older literature they should be called ultra-
barrelled, ultrabornological and quasi-ultrabarrelled. We have
followed {1 ] by dropping the prefix "ultra".

In chapter 3 we study non-archimedean spaces: those for which
a fundamental system of neighborhoods V of the origin satisfy-
ing V + Vv C V can be found. They are, in a certain sense, the
analogue of the locally convex spaces over IR or €, when the
absolute value of the division ring F of scalars is non-archi-

medean, i.e.
X + u| < max(|r], [u])

for all A, W € F. When (F,

*|) is not trivially valued, the
notions of non-archimedean and locally F-convex spaces coincide.
There is a very extensive literature on the subject of locally
F-convex spaces and we confined our attention only to those re-
sults needed in the application we had in mind (approximation
theory), or to those results not covered in the literature. The
reader will notice that the beautiful "duality theory" of Van Tiel
[92] is absent from our presentation. The reason for this is
twofold. Firstly, it is not needed for Stone-Welerstrass type
results, and secondly, we could not give a better exposition than
that of Van Tiel himself.

In chapter 4 we come to the third basic principle of func-

tional analysis: the Hahn-Banach Theorem. The main result here
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is Ingleton's characterization of those non-trivially valued
non-archimedean division rings for which the Hahn-Banach Theorem
on the extension of linear functionals is true.

In fact, Ingleton's result deals with the problem of charac-
terizing more generally those non-archimedean normed spaces
(E, I -I') which have the "norm-preserving extension property".
The notion of spherical completeness introduced by Ingleton for
this purpose has the character of an intersection property: it
is the analogue, in non-archimedean functional analysis, of the
"binary intersection property" of L. Nachbin. In [60], Nachbin
had characterized those normed spaces (E, [+ll) over the reals
which have the norm-preserving extension property by means of the
binary intersection property: every family of closed balls such
that any two of them meet has non-void intersection.

In chapter 5 we consider the space C((X,E) of all continuous
functions from a topological space X into a topological vector
).

We endow it with the compact-open topology and prove a Stone-

space (E, 1) over a non-archimedean valued division ring (F,

Weierstrass Theorem, i.e. we characterize the closure in the
compact-open topology of a vector subspace M C C(X;E)} which is
an A-module over a subalgebra A C C(X;F) of scalar-valued func-
tions (being an A-module means that fg € M for all £ € A and
g € M). As a Corollary we get Kaplansky's Stone-Weierstrass
Theorem [38] for subalgebras. We emphasize that dealing with
modules over algebras presents no more difficulties than dealing
directly with algebras and presents many advantages in the ap-
plications. In fact, since E has no multiplication, we could
not consider C(X;E) as an algebra and then take subalgebras. But
even in the case E = F, when C(X;F) is naturally an algebra,
the module theorem is extremely useful. Given any vector space
M C C(X;E) there is always a subalgebra A C C(X;F) over which

M is a module: define
A= {f € C(X;F); fg €M for all g € M}.
Consider the partition of X by the sets of constancy for A,

say P. Then it follows from the Stone-Weierstrass Theorem for
modules that, for any f € C(X;E), £ Dbelongs to the closure of
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M if, and only if, its restriction f|y belongs to the closure
of M|y for any y € P.

Now, if E = F and M contains the constants, then A C M.
If, moreover, M 1is an algebra containing the constants, then
A =M and we have recovered the Stone-Weierstrass Theorem for
unitary algebras.

In this chapter we also present another Stone-Weierstrass
Theorem due to Kaplansky: in this case (E,1) 1is a topological
ring with unit having a fundamental system of neighborhoods of
0 which are ideals in E and X is supposed to be a 0-dimensicnal
T,-space. (See Theorem 5.31).

In chapter 6 we restrict our attention to normed spaces
(B, l+1). Now, if X is compact, C(X;E) becomes a normed space
too, and given M and A as in the preceding chapter, we ask for
a formula giving the distance of any f € C(X;E) from M. This

is established in Theorem 6.4:

dist(f;M) = sup dist(f| ;M)

where P is the partition of X by the sets of constancy for A.

The analogue of Bishop's approximation Theorem is also es-
tablished in this chapter, by considering a division subring
G C F and defining (see Definition 6.7) sets of antisymmetry
for A C C(X;F) with respect to G. In Bishop's case, F = C and
G = IR. Our proof is essentially due do S. Machado [48], his
version, and proof, of Bishop's generalized Stone-Weierstrass
is well suited for our purposes, it uses neither measure theory
(our F is not locally compact) nor Krein-Milman's Theorem (no
analogue for extreme points available).

The next topic we take up is the approximation property: over

a spherically complete division ring (F, ), all non-archimedean
normed spaces have the metric approximation property. This re-
sult is due to Monna [58].

Chapter 6 ends with some comments on the equivalence for
a non-archimedean normed space (E, | «ll) between (a) spherical
completeness; (b) norm-preserving extension property;(c) normone

projection property (d) non-archimedean intersection property
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(see Definition 6.29).

In chapter 7 we present some results on topological rings
and algebras of continuous functions. The results 7.11 through
7.25 are all due to I. Kaplansky, with some minor modifications.
Theorem 7.11 characterizes maximal one-sided ideals in C(X;E),
when X is a 0-dimensional compact T;-space and (E,t) is a to-
pological ring with identity e, which is a Q-ring (i.e. the set
of invertible elements is open) and has continuous inverse. Under
this hypothesis, it is proved that every proper one-sided ideal
in C(X;E) is fixed. (An ideal I is fixed if there exists x€X
such that TI(x) is a proper ideal in E).

When (E,T1) is a topological algebra (over a valued division

ring (F, ), and either X or E is 0O-dimensional, theorem 7.30
characterizes those closed (under the compact-open topclogy) one
sided algebra ideals which are C(C(X;F)-modules. This class
includes all regular ideals. Since the kernel of any algebra
homomorphism is a regular ideal, this result is used to charac-—
terize the spectrum of C(X;E). If (E,t) 1is any topological
algebra over (F,|+|) the spectrum of E, denoted by A(E), is
the set of all non-zero continuous algebra homomorphisms of E
onto F, Our main result is Theorem 7.45 establishing a homeo-
morphism between X X A(E) and A(C(X;E)) under very general
hypothesis: X 1is any O-dimensional T;-space and (E, 1) is any
associative topological algebra such that A(E) is locally equi-
continuous when topologized by the relative weak topology. As a
Corollary, any two O-dimensional T;-spaces X and Y are homeo-
morphic if, and only if C(X;F) and C(Y;F) are isomorphic as
topological algebras under their respective compact-open topo-
logies.

In chapter 8 we give an account of some results on the
Banaschewski compactification BOX of a O-dimensional T;-space
X. We begin by recalling some results on ultranormal and ultra-
regular spaces. The space BOX is then shown to be in one-to-one
correspondence with the set of all characters of the algebra
C*(X;F), the set of all continuous functions with relatively
compact range in a non-archimedean valued division ring F (A
character of a linear algebra over F is a non-zero algebra ho-

momorphism into F). The result just mentioned is due to Bachman,
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Beckenstein, Narici and Warner [ 3] . The subset vFX of all
X € BOX such that (Bof)(x) belongs to F for all £ € C(X;F),
is then used to identify the set of all characters of the bigger
algebra C(X;F).

Chapter 8 concludes with some of the elegant results of R.
L. Ellis on the problem of extension of continuous functions.
The main tool in this investigation is Ellis result on the pos-
sibility of extending open partitions of closed subsets of ul-
traparacompact spaces. (See Theorem 8.23). Using this result,
Ellis proved that every (bounded) continuous function £ :A = Y
has a (bounded) continuous extension F :X > Y, if A C X 1is a
closed subset of an ultraparacompact space X and Y is any
complete metric space. (See 8.26). When Y is separable, then X
may be an ultranormal space. (See 8.27). Since every O-dimen-
sional compact T;-space is ultranormal, and the p-adic field is
separable, Ellis theorem generalizes Théoréme 1 of Dieudonné
(18].

The final chapter deals with the problem of best (and best
simul taneous) approximation, for non-archimedean normed spaces.
), GCE, and B CE is
bounded, the relative Chebyshev nadius of B (with respect  to

If (E, I-ll) is a normed space over (F,

G) is the number

radG(B) = inf sup llg - £l .
g€EG feB

The elements of G where the infimum is attained are called
relative Chebyshev centers of B (with respect to G) and their
collection is denoted by centG(B). When G = E we write simply
rad(B) and cent(B). Notice that when B = {f}, rad, (B) =dist(f;G)
and cent.(B) = PG(f), the set of best approximants of £ from
elements of G. The main problems here are the following

(i) given G, determine the largest class B of bounded

subsets of E such that centG(B) # @ for all BE B.

(ii) Given B (e.g. one-point sets, finite sets, precompact
sets, all bounded sets) determine classes of subsets
G ¢ E such that centg(B) #d.

Let us give two examples of solutions to such problems. (i)
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If G CE 1is a spherically complete linear subspace of a non-
archimedean normed space (E, ll+l), then the largest class B of
bounded subsets of E such that centG(B) #g for all B € B
is the class of aff bounded subsets of E. (See Theorem 9.24).
This extends Monna's result (Monna [57]) saying that such a G

is proximinal in E, i.e. that PG(f) # @ for all f € E.

(ii) Let X Dbe a 0-dimensional compact T;-space and let
).

Let B be the class of all bounded eguicontinuous subsets of

(E, =1} be a spherically complete Banach space over (F,

C(X;E) (equipped with the sup-norm). Then every Weierstrass-Stone

subspace w, C C(X;E) is such that centW (B) # @ for all B € B.
T

A Welerstrass-Stone subspace WTT is a closed vector subspace of

C(X;E) of the form

Wﬂ = {fow; £ € C(Y;E)}
where w7 : X > Y 1is a continuous mapping from X onto another
0-dimensional compact T);-space Y. This is a Corollary to Theo-
rem 9.32, since by Theorem 9.24, a spherically complete Banach
space (E, ll+-ll) admits Chebyshev centers, i.e. centE(B) # @ for
all bounded B C E,

The main tool for getting both results above is a selection
theorem due to E. Michael [51].

Some chapters have a section, called "Notes and Remarks"
where we present some results which are natural extensions of
those given in the main text. The proofs of these results are
often omitted and the interesgted reader is referred to the ap-

propriate bibliographical reference.

It is a pleasure to acknowledge My indebtedness to many
friends, colleagues and students. Special thanks are due to Miss

Elda Mortari who typed this volume.

J. B. PROLLA

Campinas, June, 1982.
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