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FORE WORD 

This volume, edited by Dr. Peter Edmonds, is the first of the Methods 
to be devoted to acoustics. Future volumes will deal with the more 
classical aspects of acoustics, a field that has been adopted by our col- 
leagues in engineering as well. 

Ultrasonics plays many roles, ranging from physical and bioengineering 
applications to the study of the fundamental properties of materials. Dr. 
Edmonds and his contributors cover these areas in a manner that should 
make this volume a definitive reference work on the subject. We expect 
that researchers in a given specialization will find much useful information 
and have their imaginations stimulated by going through the book as a 
whole. 

L. MARTON 
C. MARTON 
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PREFACE 

This volume offers detailed and comprehensive treatments of a number 
of important topics in the broad field of ultrasonics. It is intended to 
serve the needs of graduate students and also of specialists in other fields 
who may desire an assessment of the capabilities of ultrasonics as a tech- 
nique with the potential for solving specific problems. 

Ultrasonics interfaces with many fields, including optics, low tempera- 
ture and solid state physics, chemical kinetics, cavitation, viscoelasticity, 
lubrication, nondestructive evaluation, medical diagnostic imaging, signal 
processing, and materials processing. The authors of one or more of the 
following parts discuss these fields. However, other important topics 
have been omitted, e.g., ultrasonics in gaseous media, plasma- and 
magneto-acoustics, and phonon phenomena in general. Ultrasonic scatter- 
ing in noncrystalline media proved to be insufficiently developed for treat- 
ment in this treatise. (Seekers of information on these topics should 
consult the excellent treatise “Physical Acoustics,” edited by W. P. 
Mason and R. N. Thurston, published by Academic Press.) 

I wish to thank all authors for their cooperation and hard work in writ- 
ing and many supplementary tasks. The essential contributions made by 
the secretarial assistants to the authors and by their institutions are also 
acknowledged. 

I am grateful to several anonymous reviewers of parts of this volume, 
whose excellent advice has been freely given and usually heeded. Valu- 
able support provided by the management and staff of SRI International 
is acknowledged with thanks. 

All who have contributed to this volume profoundly regret that one of 
its editors-in-chief, Dr. Ladislaus Marton, did not live to see its publica- 
tion. In his absence, the functions of editor-in-chief have been admirably 
fulfilled by Mrs. Claire Marton. 

PETER D. EDMONDS 
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0. INTRODUCTION: PHYSICAL 
DESCRIPTION OF ULTRASONIC FIELDS? 

By Peter D. Edmonds and F. Dunn 

List of Symbols 

a 
A 

B 

subscript denoting amplitude 
magnitude of a/f contributed by a relaxation process (except 

magnitude of a/y contributed by the viscosity relaxation process 

specific heat of medium at constant pressure 
specific heat per unit mass of medium at constant pressure 
specific heat of medium at constant volume 
logarithmic decrement 
acoustic energy density = energy stored per unit volume 
energy loss per cycle due to absorption 
frequency 
relaxation frequency for viscosity 
distribution function for relaxation times 
shear modulus of elasticity 
complex shear modulus of elasticity 
real and imaginary parts of G* 
infinite frequency asymptote of G' 
intensity 
intensities of incident, reflected, and transmitted waves 

wave vector 
magnitude of k 
bulk modulus of elasticity 
integer 
acoustic pressure 
amplitude of p 
ambient pressure 

viscosity) at f << fi 

at f << f v  

A 

t Portions of this introduction have been adapted with permission from W. J. Fry and F. 
Dunn, Ultrasound: Analysis and experimental methods in biological research, in "Physical 
Techniques in Biological Research," (W. L. Nastuk, ed.), Vol. 4, pp. 265-275. Academic 
Press, New York, 1962; and from F. Dunn, P. D. Edmonds, and W. J. Fry, Absorption and 
dispersion of ultrasound in biological media, in "Biological Engineering" (H. P. Schwan, 
ed.), pp. 207-233. McGraw-Hill, New York, 1969. 
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2 0. PHYSICAL DESCRIPTION OF ULTRASONIC FIELDS 

1 p + ,  P- 
pi+, PI- 7 P*+ , Pr- 

see Table IV 

general field variable 
amplitude of q 
quality factor = T / D  
general spatial coordinate 

1 
] see Table IV 

amplitude reflection coefficient 
intensity reflection coefficient 
condensation = ( p  - po)/po 
amplitude of condensation; entropy (as subscript) 
standing wave ratio 
time 
decay time of field amplitude parameter in an absorbing medium 
absolute temperature 
shear stress 
initial value of shear stress 
asymptotic final value of shear stress 
amplitude of sinusoidal shear stress 
amplitude of asymptotic final value of shear stress 
amplitude transmission coefficient 
intensity transmission coefficient 
wave propagation velocity; sound speed 
limiting sound speed at zero frequency (compressional wave) 
compressional wave speed 
limiting shear wave speed at zero frequency 

] see Table IV 

velocity dispersion 
spatial coordinate 
see Table IV 
characteristic acoustic impedance 
amplitude absorption coefficient 
generalized relaxational contribution to a 
contribution to a from viscosity 
adiabatic compressibility 
isothermal compressibility 
ratio of specific heats = CJCV 
phase lag between acoustic pressure and particle velocity in an ab- 

shear viscosity coefficient 
limiting shear viscosity as frequency tends to zero 
complex shear viscosity 
real part of q* 
isobaric thermal expansion coefficient 
see Table IV 

sorbing medium 
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i 
3 
P 
Po 
P1 I P ,  1 pa 
7 

703 Tb 

T V  

Y 
Q 
@ * 
(dot over symbol) 
0 

amplitude of temperature peturbation 
wavelength 
see Table IV 
“particle” (elemental volume) displacement 
particle displacement in x direction 
particle velocity 
particle velocity in x direction 
particle acceleration in x direction 
amplitudes of particle displacement for waves in the positive and 

amplitude of particle velocity 
amplitude of particle acceleration 
density 
mean density 
see Table IV 
relaxation time 
limits of relaxation time distribution 
relaxation time for viscosity 
instantaneous temperature increment in medium 
scalar displacement potential (irrotational) 
vector displacement potential (rotational) 
scalar velocity potential 
angular frequency 
differentiation with respect to time 

negative directions 

0.1. Development of Propagation Relations 

The propagation of an acoustic disturbance or the presence of an 
acoustic field in an elastic medium is characterized by changes in a 
number of the physical variables that describe the state of the system or 
medium. Examples of these variables are pressure, temperature, and 
density. 

For a traveling, sinusoidal, plane wave propagating in the positive 
direction of the x axis (when no attenuation of the waves occurs because 
we assume absorption of energy by the medium is absent), the changes 
in the physical variables can each be expressed in the form of Eq. (0.1.11, 
provided that the medium responds linearly to the stresses imposed upon 
it, 

q = Q cos o(t - x / v )  or q = Re{Q e x p b d t  - x / v ) ] } .  (0.1.11 

In this equation q designates any one of the variables that undergoes sinu- 
soidal change owing to the presence of the disturbance in the medium and 
Q designates the amplitude of the cyclic change in that variable; t and x 
are the time and space coordinates, respectively, o is the angular fre- 
quency (O = 2 ~ f ) , f t h e  frequency, and v the free-field sound speed, i.e., 
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the propagation speed of a plane wave traveling through a liquid medium 
of infinite extent. Equation (0.1.1) is one solution, namely, that repre- 
senting a wave traveling in the positive x direction, of the one-dimensional 
elastic wave equation as it applies to an ideal, linear, homogenous, per- 
fectly elastic (dissipationless), fluid medium 

a2q/at2 = ( l / v 2 )  a2q/ax2. (0.1.2) 

In this equation 4 could represent the instantaneous displacement 5 of an 
element of volume of the medium. This approximation to the more gen- 
eral hydrodynamical equation is valid under conditions that permit lin- 
earization, that is, when the velocity amplitude 5 = (@/at),, ,  of the ele- 
mentary volume is small in comparison with the speed of sound v and 
when the adiabatic compressibility ps , which is the reciprocal of the adia- 
batic elastic bulk modulus K ,  is not significantly dependent on pressure 
over the range of pressure variations present in the acoustic field. 

Since sound propagation is very close to an adiabatic process at most 
frequencies of interest, the adiabatic compressibility is a significant 
parameter in the description of sound propagation. It is related to the 
free-field sound speed for compressional waves as follows: 

(0.1.3) 

where ps is the adiabatic compressibility of the medium and po the mean 
density of the medium. The sound speed can be expressed, as indicated 
in Eq. (0.1.3), in terms of the isothermal compressibility pT by introducing 
the ratio of specific heats y = C,/Cv, where Cp and C, are the specific 
heats of the medium at constant pressure and constant volume, respec- 
tively. Clearly, a measurement of the speed of a plane compressional 
wave can be interpreted immediately to yield the adiabatic compress- 
ibility of the medium if the density is known; and if the value of y is also 
known, the isothermal compressibility can be determined. 

Equation (0.1.2) is a special case of the more general wave equation 
that is applicable to three-dimensional propagation: 

(0.1.4) 

Solutions of Eq. (0.1.4) include not only waves propagating in the positive 
r direction away from the origin but also those propagating in the negative 
r direction toward the origin. All are represented when the ? sign is 
placed in the exponent for one-dimensional propagation, e.g. , 

5 = &(r) exp[j(ot k k r)]. (0.1.5) 
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The wave vector k that appears in the solution is related to the angular fre- 
quency and the sound speed as 

k = Xn; X =  - o / v  = 27r/h; v = fh. (0.1.6) 

Equation (0.1.4) is itself a specialization, applicable to fluids of the type 
indicated, of the following wave equation describing propagation of dis- 
turbances in a dissipationless, isotropic, elastic solid: 

G vv - g - - v x v x g, a2g K + 4G/3 - -  - 
at* Po Po 

(0.1.7) 

where K and G are, respectively, the bulk and shear moduli of elasticity of 
the medium. 

It is possible to express the displacement vector as the sum of terms in- 
volving a scalar potential 4 and a vector potential @ as 

g = v4 + v x (0.1.8) 

For irrotational motion, such as in a spherical wave, the vector potential 
CD = 0 and only the scalar displacement potential 4 remains; that is, 

g = v4. (0.1.9a) 

The time derivative of the displacement potential is the velocity potential 

a+/at = JI;  & = VJI. (0.1.9b) 
These potentials are fundamental functions (analogous to electric field po- 
tentials) in terms of which acoustic field parameters may be expressed. 
The specialization of Eq. (0.1.7) for fluids is obtained when the modulus 
of shear rigidity G is set equal to zero, which is true for lossless fluids, 
since the latter are characterized by an inability to support an elastic shear 
strain, and 9 = 0. 

Returning to a consideration of the simple plane wave propagating in an 
ideal isotropic elastic medium in the positive x direction, we can express 
the sinusoidally varying acoustic parameters in terms of the displacement 
potential or velocity potential and in terms of one another. 

I), i.e., 

P = -p0 aqiw L = (VJIL, (0.1.10) 

Y = ( w p o c ; ) p  = (Y - wps/e)p, 
= ( P  - Po)/Po = PSP, (0.1.11) 

(0.1.12) 

where s is the condensation or the fractional change in density, p the 
instantaneous density, Y the instantaneous temperature increment re- 
sulting from adiabatic compression of the medium, T the absolute temper- 
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TABLE I. 
~~ ~~~ ~ 

Parameter Amplitude 
Parameter symbol q symbol Q P S 

Pressure P P - ?p0vZ 

Condensation s 

f 
Particle dis- 

placement 

Particle 
velocity 

Particle ac- 
celeration 

Temperature 

i 

k 

Y 

S 

e 

1 +- 
- P 0 V Z  

Sjov 

Multiply expression in the table by the column heading to obtain the relations equal to 
the amplitude quantities tabulated in the amplitude symbol column. Note that j = fi. 
The relations apply to plane waves traveling in either direction. The upper sign applies to 
waves traveling in the positive direction and the lower sign to the negative direction [see Eq. 
(0.1.31. The amplitude of a change in any one physical parameter is equal to the amplitude 
of the change in any other physical parameter multiplied by the absolute value of the ap- 
propriate quantity in the table. A self-consistent set of units is used throughout the table 
(e.g., mks or cgs). 

ature of the medium, 8 the isobaric thermal expansion coefficient, and C;  
the heat capacity at constant pressure per unit mass. The interrelation of 
the acoustic field parameters is shown in Table I. 

The method of detection and description of the field, in any specific 
case, may depend on the measurement of one or several of these parame- 
ters. The quantity p0u, the product of density and sound speed, which ap- 
pears in many relations in the table, is known as the characteristic 
acoustic impedance of the medium Z,; that is, 

2, = pov. (0.1.1 3) 

For plane traveling waves, 2, is numerically equal to the specific acoustic 
impedance, which is defined as the ratio of the pressure p to the particle 
velocity j at any point in the field. For other field configurations, in- 
cluding plane standing waves, the specific acoustic impedance differs nu- 
merically from pov and is, in general, a function of position. It should 
also be noted that the characteristic acoustic impedance is dependent on 
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Relations between Amplitudes of the Various Physical Parameters" 

3 s e 

?jopou 

+jo +- 

POU 

1 
$- 

I 
$-- 
jo 

the type of wave that is propagating, since the speed of shear waves is dif- 
ferent from that of compressional waves. 

The intensity I of the sound wave is defined as the time average of the 
rate of propagation of energy through unit area normal to the direction of 
propagation; for plane traveling waves, I is related to field-parameter am- 
plitudes by 

I = F / 2 Z o  = PSI2 = zo3/2. (0.1.14) 

The energy density E,, of the wave motion at a specific position in the 
field is the sum of the kinetic energy per unit volume of the moving vol- 
ume element and the potential energy per unit volume of compression (or 
expansion) of the element. For plane traveling waves, it is equal to the 
ratio of the intensity to the sound speed, i.e., 

Eo = p 0 @ / 2  = I / v .  (0.1.15) 

Root mean square (rms) quantities are not employed in the majority of 
publications in acoustics, and consequently the symbols in Eqs. (0.1.14) 
and (0.1.15) are the amplitudes of the acoustic field parameters. If rms 
values had been used, the factors 2 would have been eliminated from the 
equations. 

As stated previously, linearizing of the hydrodynamical equations de- 
pends on two assumptions which can now be expressed symbolically as 

ci 
E / V  << 1; [(ps>p0+p - (ps)~~-p]/(p~)p~ << 1, (0.1.16) 



TABLE 11. Numerical Example of Physical Parameters for Water 

- L M 8 Blv Material f T  PO I P S - 
To obtain results in: MHz "C atm W / c d  atm cm cm/sec cm/sec2 "C 
Multiply figures in table by: 1 1 1 1 1 10-5 104 1 l@ 10-4 10-5 
To obtain results in: N/mzn W/mZ N/mza m m/s m/s2 
Multiply figures in table by: 1.013 X 1oJ 10' 1.013 X 1oJ 10-8 10' 104 

- I 

Water 0.01 0.171 0.762 0.183 1.15 7.22 3.82 0.762 
degassed and distilled 1 30 1 1 1.71 7.62 1.83 11.5 72.2 38.2 7.62 

100 17.1 76.2 18.3 115 722 382 76.2 
~~ ~ 

N/mz = Pascal (Pa). 
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where Po represents the ambient pressure in the absence of a sound wave. 
Nonlinear or second-order effects still may be of importance for values of 
s / u  smaller, for example, than 0.01, but the linearized equations consti- 
tute a good first approximation for calculating values of the physical 
parameters when this numerical limit is placed on the interpretation of the 
symbol << 1. 

Table I1 shows values of the numerical magnitudes of the acoustic field 
parameters for a plane traveling wave, when the propagation medium is 
water, for representative intensity values of the wave spanning four 
orders of magnitude. It may be noted in particular that the temperature 
excursion in water is small and that this parameter is entirely unrelated to 
the monotonic rise in temperature of the specimen that occurs when en- 
ergy is absorbed by the specimen. However, even for low-amplitude ul- 
trasonic waves, which may be used as a probe to measure the response of 
a system to an extremely small perturbation, the pressure amplitude may 
be comparable to one atmosphere, and the amplitude of the particle ac- 
celeration can be exceedingly high and give rise to significant local 
stresses. 

Table I11 lists values for the various characteristic constants of a 
number of materials of general utility. These data may be used in con- 
nection with the relations appearing in Table I to obtain numerical values 
of field parameters such as those listed in Table 11. It is usually conve- 
nient to express the intensity in watts per square centimeter and the 
acoustic pressure amplitude in atmospheres. However, for calculations 
using the expressions of Table I, the intensity should be expressed in ergs 
per square centimeter per second and the pressure amplitude in dynes per 
square centimeter if the other parameters are expressed in the indicated 
units. Equivalent mks units may also be used. 

0.2. Reflection and Refraction 

Reflection and refraction of acoustic waves occur in a manner analo- 
gous to that for electromagnetic waves, and many of the concepts that 
arise in the theory of transmission lines are applicable in “one- 
dimensional” situations. The formulas listed in Table IV are for media 
within which no acoustic absorption occurs and for which the normals to 
the planar wave fronts and the normals to the interfaces lie in the same 
plane. 

Case I .  Reflection and transmission occur at a single interface between 
two media. The reflection coefficient sat the transmission coefficient 
Ta, and the standing wave ratio (SWR) for waves incident on the interface 



TABLE IIIA. Physical Constants of Various Materials 

Material T PO Po 0 P O U  c ~ / c v  PT e a 

Multiply figures in table by: 1 1 1 1W 105 1 lo-’* lo* 1 
To obtain results in: N/mza kg/m3 m/s kg/(mz s) mz/Na NP/m 
Multiply figures in table by: 1.013 X 105 1W 103 108 10-11 105 

To obtain results in: “C atm g/cm3 cm/sec g/(cm* sec) cmz/d (“C)-l Np/cm 

Water 
Degassed, distilled 0 1 0.999841 1.4027 1.4025 1.000583 50.86 -5.89 
a proportional to f * 10 1 0.999701 1.4476 1.4472 1.001085 47.79 +9.45 

20 I 0.998207 1.4827 1.4800 1.00656 45.86 21.19 25 X 

30 1 0.995651 1.5094 1.5028 1.01526 44.76 30.75 
40 1 0.992220 1.5292 1.5173 1.02575 44.20 38.93 
0 136 0.9941 1.4245 1.4161 1.00012 49.58 2.01 

10 136 0.9946 1.4700 1.4621 1.00356 46.69 15.09 
20 136 0.9961 1.5057 1.4998 1.01041 44.74 25.10 
30 136 09986 1.5329 1.5308 1.01827 43.40 34.05 
40 136 1.0019 1.5531 1.5560 1.02672 42.48 40.92 

Water Solutions 
0.9% normal salinec 
a proportional t o p  

0 1 1.00668 1.4134 1.4228 
10 1 1.00631 1.4582 1.4674 
20 1 1.00460 1.4932 1.5001 
30 1 1.00189 1.5198 1.5268 
40 1 0.99837 1.5394 1.5369 

1.98 
8.46 

23.89 25 X 10” 
29.94 
40.07 



oils 
Castor, at 30°C 
a proportional to f"'3 bJ 

Phenylated silicone 

a proportional to f to -20 MHi+ 
Dow-Coming NO. 710 

Aluminum (rolled) 
Ceramics (approximate range) 
Glasses 

Borate crown (light) 
Pyrex (702) 
Silicate flint (heavy) 

Silica (fused) 
Stainless steel (347) 

0 
10 
20 
30 
40 
0 

10 
20 
30 
40 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.972 
0.960 
0.952 
0.946 
0.941 
1.124 
1.112 
1.102 
1.095 
1.089 
2.70 
2.5-3.4 

2.24 
2.32 
3.88 
2.2 
7.91 

1.580 1.536 
1.536 1.474 
1.494 1.422 
1.452 1.374 
1.411 1.328 
1.446 1.625 
1.409 1.567 
1.378 1.518 
1.349 1.477 
1.321 1.438 
6.42 17.3 
4.6-6.8 12-18 

5.10 11.4 
5.64 13.1 
3.98 15.4 
5.97 13.1 
5.79 45.8 

0.26 
0.16 
0.096 
0.057 
0.037 

0.135 
0.070 
0.040 
0.024 



TABLE IIIB. Physical Constants of Biological Media' 

To obtain results in: 
Multiply figures in table by: 
To obtain results in: 
Multiply figures in table by: 

Central nervous systed-' 

Soft parenchymal tissues, 

Muscle (skeletaI)ba*A 
F a F  
Bone 

Brain (average) 

e.g., liver, kidney (average) 

Skull (human)' 
Frequency (MHz) 0.6 

0.8 
1.2 
1.6 
1.8 
2.25 
3.5 

"C atm 
1 1 

N/mz a 
1.013 X 105 

37 1 

37 I 
37 1 
37 1 

37 1 
1 
1 
1 
1 
1 
1 
1 

1.03 

1.05 
1.07 
0.97 

1.7 

cm/sec 
105 

m/sec 
103 

1.51 

1.56 
1.57 
1.44 

3.36 

g/(cmz sec) 
105 

kg/(m* sec) 
106 

1.56 

1.64 
1.68 
1.40 

6.0 

See Table IIIC 

0.13 
0.05 

0.4 
0.9 
1.7 
3.2 
4.2 
5.3 
7.8 


