ADVANCES IN IMMUNOLOGY VOLUME 23

ADVANCES IN

Immunology

VOLUME 23

CONTRIBUTORS TO THIS VOLUME

BO DUPONT
JOHN A. HANSEN
KIMISHIGE ISHIZAKA
T. P. KING
DONALD M. MARCUS
GERALD A. SCHWARTING
EDMOND J. YUNIS

ADVANCES IN

Immunology

EDITED BY

HENRY G. KUNKEL

The Rockefeller University New York, New York FRANK J. DIXON

Scripps Clinic and Research Foundation La Jolla, California

VOLUME 23

ACADEMIC PRESS New York San Francisco London

A Subsidiary of Harcourt Brace Jovanovich, Publishers

COPYRIGHT © 1976, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 61-17057

ISBN 0-12-022423-2

PRINTED IN THE UNITED STATES OF AMERICA

CONTENTS

List	OF CONTRIBUTORS				vii
Pref/	CCE	•	•	•	ix
Cellu	lar Events in the IgE Antibody Response KIMISHIGE ISHIZAKA				
II.	Introduction	o .			1 3
III.	Immunological Factors Essential for IgE Antibody Response	s.	•		12
	Cellular Basis of IgE Antibody Responses			•	20
V.	Regulation of IgE Antibody Responses		•	•	45
VI.	Discussion and Summary	•	٠	•	67
	References	•	•	•	70
Chem	ical and Biological Properties of Some Atopic Allergens T. P. King				
I.	Introduction				77
II.	Allergen Assay				78
	Chemical and Biological Properties of Some Allergens .				80
IV.	General Observations on Allergens				92
V.	Uses of Purified Allergens			•	96
VI.	Concluding Remarks				100
	References	•	٠	٠	101
	n Mixed-Lymphocyte Culture Reaction: Genetics, ficity, and Biological Implications Bo Dupont, John A. Hansen, and Edmond J. Yunis				
I.	Introduction: Major Histocompatibility System in Man .				108
II.	Serology of Human Leukocyte Alloantigens (HLA-A,B,C)				110
III.	Cell-Mediated Allogeneic Reactions in Vitro				119
IV.	Measurement of Antigenic Differences in Mixed-Lymphocyte				
	Culture Reaction				124
V.	Single-Locus Concept for Mixed-Lymphocyte Culture Stimula				
	(HLA-D Locus)				130

vi CONTENTS

VI. Mixed-Lymphocyte Culture (HLA-D) Specificities Defined															
by HLA-D-Homozygous Typing Cells													135		
VII. Genetic Control of Immune Response Related to Histocompatibility												169			
VIII. Mixed-Lymphocyte Culture As a Histocompatibility Test for															
Clinical Transplantation														177	
IV	Genetic Ma													•	183
													•	•	185
Α.	Conclusions											•	•	•	
	References	•			•	•	•	•	٠	•	•	•	٠	•	187
I. II. III.	nochemical P DONALD M Introduction Glycolipids Phospholipid Concluding References	л. Ма ls . Rema	RCU rks	·	ND GEI	RALI		CHV	· · ·						203 204 229 233 233
Subji	ECT INDEX .				•				•					•	241
Contents of Previous Volumes											243				

LIST OF CONTRIBUTORS

- Numbers in parentheses indicate the pages on which the authors' contributions begin.
- Bo Dupont, Tissue Typing Laboratory, Sloan-Kettering Institute for Cancer Research, New York, New York (107)
- JOHN A. HANSEN, Tissue Typing Laboratory, Sloan-Kettering Institute for Cancer Research, New York, New York (107)
- Kimishige Ishizaka, Department of Medicine, The Johns Hopkins University School of Medicine at the Good Samaritan Hospital, Baltimore, Maryland (1)
- T. P. King, The Rockefeller University, New York, New York (77)
- Donald M. Marcus, Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York (203)
- Gerald A. Schwarting, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York (203)
- Edmond J. Yunis, Department of Pathology and Laboratory Medicine, University of Minnesota Hospitals, Minneapolis, Minnesota (107)

This Page Intentionally Left Blank

PREFACE

The familiar and somewhat tiresome debate over the relative merits of fundamental versus applied research has if anything intensified in the last few years. This has occurred largely as a result of the greatly increased competition for funds that exists today. It has been fostered to a considerable degree by the "somewhat snobbish attitude of many academics to applied research." The distinction is purely arbitrary; scientific knowledge is a continuum in which every component part can and does feed back on every other. Nowhere is this more clearly apparent than in the field of immunology, as exemplified by the articles in Volume 23.

The first paper is by Dr. Kimishige Ishizaka, the individual primarily responsible for the basic work on IgE antibodies and their role in reaginic hypersensitivity. The initial definitive work was carried out in the human system, and the extension to the cellular regulation of IgE antibodies, the main topic of the review, was continued in various experimental animals. The important role of both helper and suppressor T cells in this regulation is quite apparent. It is still uncertain whether the same cells are involved as those defined for the major immunoglobulin classes. Promising approaches to therapy derived from the animal-model work are discussed.

The work of Dr. T. P. King, author of the second article, has centered on the chemistry of the allergens, a subject which has advanced markedly in the last few years, largely through his efforts. Ragweed pollen allergens have received the most attention, and antigen E, the dominant antigen involved in hypersensitivity, has been isolated and characterized in considerable detail. It consists of two non-identical polypeptide chains with molecular weights of approximately 26,000 and 13,000. Additional ragweed allergens have been isolated, but their significance relative to antigen E remains to be defined. Many other types of allergens have been isolated as well. Of special interest is the current active work on the chemical modification of these isolated proteins for possible therapeutic immunization.

The third article is written by Drs. Dupont, Hansen, and Yunis, and deals primarily with the new and exciting developments in MLC typing in human histocompatibility studies. These workers have played a major role in placing this system on a firm scientific basis. The use of homozygous cells from specific individuals has made it possible to delineate at least six different distinct MLC antigens, and there are clearly more. Some of these can also be recognized by B-cell-specific alloantisera and clearly relate to the Ia antigens of the murine system. It is of special

X PREFACE

interest that certain disease associations, as well as the genes involved in certain of the complement components, appear more closely linked to the MLC genes than to the other components of the HLA system.

The last paper covers the somewhat neglected area of the immunology of lipids and glycolipids. The authors, Drs. Marcus and Schwarting, have had wide experience in this field and their contributions have played a major role in current recognition of the significance of these antigens. Suddenly, with the great expansion of interest in cell membranes, the glycolipids have assumed a particular importance and their study by immunological procedures as specific moieties of the cell membrane is receiving great emphasis. Much remains to be learned about the many different types of lipid antigens and their cross reactions, but this review provides the many interested investigators with an up-to-date treatment of the subject.

HENRY G. KUNKEL FRANK J. DIXON

ADVANCES IN

Immunology

VOLUME 23

This Page Intentionally Left Blank

Cellular Events in the IgE Antibody Response¹

KIMISHIGE ISHIZAKA

Department of Medicine, The Johns Hopkins University School of Medicine at the Good Samaritan Hospital, Baltimore, Maryland

I.	Introduction			1
II.	Immunoglobulin E Antibody Formation in Vivo and in Vitro			3
	A. Kinetics of IgE Antibody Responses in Various Animal Spe	ecies		3
	B. Helminth Infection and IgE Responses			6
	C. Distribution of IgE-Forming Cells			9
	D. Immunoglobulin E Antibody Response in Vitro			11
III.	Immunological Factors Essential for IgE Antibody Responses			12
	A. Genetic Control of IgE Responses			12
	B. Adjuvant for IgE Antibody Response			15
	C. Nature and Dose of Antigen			17
IV.	Cellular Basis of IgE Antibody Responses			20
	A. Requirement for T and B Lymphocytes			20
	B. Type B Lymphocytes in IgE Antibody Response			23
	C. Generation of a Helper Function for IgE Antibody Response	onse		28
	D. Mechanisms of T Cell-B Cell Collaboration			36
V.	Regulation of IgE Antibody Responses			45
	A. Suppression by Humoral Antibodies			45
	B. Unresponsiveness in IgE-B Cells			48
	C. Regulation by T Cells			50
	D. Experimental Model for Immunotherapy			62
VI.	Discussion and Summary			67
	References			70

I. Introduction

Since the discovery of IgE in the serum of hay fever patients (45), much progress has been made in the field of reaginic hypersensitivity. It is now established that reaginic hypersensitivity reactions in atopic diseases are mediated by IgE antibody [reviewed by Ishizaka and Ishizaka (53)]. Meanwhile, homocytotropic antibodies, which are similar to human IgE antibodies, were detected in experimental animals. Mota (109) and Binaghi et al. (11) first described production of rat "reaginic" antibodies after immunization with antigen plus Bordetella pertussis vaccine. Subsequently, antibodies that were capable of sensitizing homologous skin

¹ Supported by research grants AI-11202 from the U.S. Public Health Service, GB-41443 from National Science Foundation, and a grant from John A. Hartford Foundation. This is publication No. 223 from the O'Neill Laboratories at the Good Samaritan Hospital.