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P R E F A C E 

This Second Course continues the development of the theory and applications 
of stochastic processes as promised in the preface of A First Course. We 
emphasize a careful treatment of basic structures in stochastic processes in 
symbiosis with the analysis of natural classes of stochastic processes arising from 
the biological, physical, and social sciences. 

Apart from expanding on the topics treated in the first edition of this work but 
not incorporated in A First Course, this volume presents an extensive intro­
ductory account of the fundamental concepts and methodology of diffusion 
processes and the closely allied theory of stochastic differential equations and 
stochastic integrals. A multitude of physical, engineering, biological, social, and 
managerial phenomena are either well approximated or reasonably modeled by 
diffusion processes; and modern approaches to diffusion processes and 
stochastic differential equations provide new perspectives and techniques 
impinging on many subfields of pure and applied mathematics, among them 
partial differential equations, dynamical systems, optimal control problems, 
statistical decision procedures, operations research, studies of economic sys­
tems, population genetics, and ecology models. 

A new chapter discusses the elegant and far-reaching distributional formulas 
now available for a wide variety of functional (e.g., first-passage time, 
maximum, order statistics, occupation time) of the process of sums of 
independent random variables. The identities, formulas, and results in this 
chapter have important applications in queueing and renewal theory, for 
statistical decision procedures, and elsewhere. 

ix 



X PREFACE 

The logical dependence of the chapters in A Second Course is shown by the 
diagram below (consult also the preface to .4 First Course on the relationships of 
Chapters 1-9). 

4 7 8 

i \ i i 
13 14 15 16 

i 
18 

The book can be coupled to A First Course in several ways, depending on the 
background and interests of the students. The discussion of Markov chains in A 
First Course can be supplemented with parts of the more advanced Chapters 
10-12, and 14. The material on fluctuation theory of sums of independent 
random variables (Chapters 12 and 17), perhaps supplemented by some parts of 
the chapter on queueing processes (Chapter 18), may be attractive and useful to 
students of operations research and statistics. Chapter 16, on compounding 
stochastic processes, is designed as an enticing introduction to a hierarchy of 
relevant models, including models of multiple species population growth, of 
migration and demographic structures, of point processes, and compositions of 
Poisson processes (Levy processes). 

We strongly recommend devoting a semester to diffusion processes (Chapter 
15). The dependence relationships of the sections of Chapter 15 are diagrammed 
below. Section 1 provides a generalized description of various characterizations 
of diffusion. The examples of Section 2, which need not be absorbed in their 
totality, are intended to hint at the rich diversity of natural models of diffusion 
processes; the emphasis on biological examples reflects the authors' personal 
interests, but diffusion models abound in other sciences as well. Sections 3-5 
point up the utility and tractability of diffusion process analysis. Section 6 takes 
up the boundary classification of one-dimensional diffusion processes; Section 
7, on the same topic, is more technical. Section 8 provides constructions of 
diffusions with different types of boundary behavior. Sections 9 and 10 treat a 
number of topics motivated by problems of population genetics and statistics. 
The formal (general) theory of Markov processes with emphasis on applications 
to diffusions is elaborated in Sections 11 and 12. Section 13 exhibits the spectral 
representations for several classical diffusion models, which are of some interest 
because of their connections with classical special functions. The key concepts, a 
host of examples, and some methods of stochastic differential equations and 
stochastic integrals are introduced in Sections 14-16. 

10 1 

12 

17 



PREFACE XI 

Chapter 15 

As noted in the earlier prefaces, we have drawn freely on the thriving literature 
of applied and theoretical stochastic processes without citing specific articles. A 
few representative books are listed at the end of each chapter and may be 
consulted profitably as a guide to more advanced material. 

We express our gratitude to Stanford University, the Weizmann Institute of 
Science in Israel, and Cornell University for providing a rich intellectual 
environment and facilities indispensable for the writing of this text. The first 
author is grateful for the continuing grant support provided by the National 
Science Foundation and the National Institutes of Health that permitted an 
unencumbered concentration on a number of the concepts of this book and on 
its various drafts. We are also happy to acknowledge our indebtedness to many 
colleagues who have offered constructive criticisms, among them Professor M. 
Taqqu of Cornell, Dr. S. Tavare of the University of Utah, Professors D. 
Iglehart and M. Harrison of Stanford, and Professor J. Kingman of Oxford. 
Finally, we thank our students P. Glynn, E. Cameron, J. Raper, R. Smith, L. 
Tierney, and P. Williams for their assistance in checking the problems, and for 
their helpful reactions to early versions of Chapter 15. 



P R E F A C E T O A FIRST COURSE 

The purposes, level, and style of this new edition conform to the tenets set 
forth in the original preface. We continue with our tack of developing 
simultaneously theory and applications, intertwined so that they refurbish and 
elucidate each other. 

We have made three main kinds of changes. First, we have enlarged on the 
topics treated in the first edition. Second, we have added many exercises and 
problems at the end of each chapter. Third, and most important, we have 
supplied, in new chapters, broad introductory discussions of several classes of 
stochastic processes not dealt with in the first edition, notably martingales, 
renewal and fluctuation phenomena associated with random sums, stationary 
stochastic processes, and diffusion theory. 

Martingale concepts and methodology have provided a far-reaching ap­
paratus vital to the analysis of all kinds of functional of stochastic processes. In 
particular, martingale constructions serve decisively in the investigation of 
stochastic models of diffusion type. Renewal phenomena are almost equally 
important in the engineering and managerial sciences especially with reference 
to examples in reliability, queueing, and inventory systems. We discuss renewal 
theory systematically in an extended chapter. Another new chapter explores the 
theory of stationary processes and its applications to certain classes of 
engineering and econometric problems. Still other new chapters develop the 
structure and use of diffusion processes for describing certain biological and 
physical systems and fluctuation properties of sums of independent random 
variables useful in the analyses of queueing systems and other facets of 
operations research. 

xii 



PREFACE TO A FIRST COURSE xiii 

The logical dependence of chapters is shown by the diagram below. Section 1 
of Chapter 1 can be reviewed without worrying about details. Only Sections 5 
and 7 of Chapter 7 depend on Chapter 6. Only Section 9 of Chapter 9 depends on 
Chapter 5. 

1 

I 
2 

i A\ 
4 5 6 

i i i 
8 9 7 

An easy one-semester course adapted to the junior-senior level could consist 
of Chapter 1, Sections 2 and 3 preceded by a cursory review of Section 1, 
Chapter 2 in its entirety, Chapter 3 excluding Sections 5 and/ or 6, and Chapter 4 
excluding Sections 3, 7, and 8. The content of the last part of the course is left to 
the discretion of the lecturer. An option of material from the early sections of 
any or all of Chapters 5-9 would be suitable. 

The problems at the end of each chapter are divided into two groups: the first, 
more or less elementary; the second, more difficult and subtle. 

The scope of the book is quite extensive, and on this account, it has been 
divided into two volumes. We view the first volume as embracing the main 
categories of stochastic processes underlying the theory and most relevant for 
applications. In A Second Course we introduce additional topics and applica­
tions and delve more deeply into some of the issues of A First Course. We have 
organized the edition to attract a wide spectrum of readers, including theorists 
and practitioners of stochastic analysis pertaining to the mathematical, eng­
ineering, physical, biological, social, and managerial sciences. 

The second volume of this work, A Second Course in Stochastic Processes, 
will include the following chapters: (10) Algebraic Methods in Markov Chains; 
(11) Ratio Theorems of Transition Probabilities and Applications; (12) Sums of 
Independent Random Variables as a Markov Chain; (13) Order Statistics, 
Poisson Processes, and Applications; (14) Continuous Time Markov Chains; 
(15) Diffusion Processes; (16) Compounding Stochastic Processes; (17) Fluctu­
ation Theory of Partial Sums of Independent Identically Distributed Random 
Variables; (18) Queueing Processes. 

As noted in the first preface, we have drawn freely on the thriving literature of 
applied and theoretical stochastic processes. A few representative references are 
included at the end of each chapter; these may be profitably consulted for more 
advanced material. 



xiv PREFACE TO A FIRST COURSE 

We express our gratitude to the Weizmann Institute of Science, Stanford 
University, and Cornell University for providing a rich intellectual environment 
and facilities indispensable for the writing of this text. The first author is grateful 
for the continuing grant support provided by the Office of Naval Research that 
permitted an unencumbered concentration on a number of the concepts and 
drafts of this book. We are also happy to acknowledge our indebtedness to many 
colleagues who have offered a variety of constructive criticisms. Among others, 
these include Professors P. Brockwell of La Trobe, J. Kingman of Oxford, D. 
Iglehart and S. Ghurye of Stanford, and K. Ito and S. Stidham, Jr. of Cornell. 
We also thank our students M. Nedzela and C. Macken for their assistance in 
checking the problems and help in reading proofs. 

SAMUEL KARLIN 
HOWARD M. TAYLOR 



P R E F A C E T O F I R S T E D I T I O N 

Stochastic processes concern sequences of events governed by probabilistic 
laws. Many applications of stochastic processes occur in physics, engineering, 
biology, medicine, psychology, and other disciplines, as well as in other branches 
of mathematical analysis. The purpose of this book is to provide an introduction 
to the many specialized treatises on stochastic processes. Specifically, I have 
endeavored to achieve three objectives: (1) to present a systematic introductory 
account of several principal areas in stochastic processes, (2) to attract and 
interest students of pure mathematics in the rich diversity of applications of 
stochastic processes, and (3) to make the student who is more concerned with 
application aware of the relevance and importance of the mathematical subleties 
underlying stochastic processes. 

The examples in this book are drawn mainly from biology and engineering but 
there is an emphasis on stochastic structures that are of mathematical interest or 
of importance in more than one discipline. A number of concepts and problems 
that are currently prominent in probability research are discussed and illustrated. 

Since it is not possible to discuss all aspects of this field in an elementary text, 
some important topics have been omitted, notably stationary stochastic 
processes and martingales. Nor is the book intended in any sense as an 
authoritative work in the areas it does cover. On the contrary, its primary aim is 
simply to bridge the gap between an elementary probability course and the many 
excellent advanced works on stochastic processes. 

Readers of this book are assumed to be familiar with the elementary theory of 
probability as presented in the first half of Feller's classic Introduction to 

XV 



xvi PREFACE TO FIRST EDITION 

Probability Theory and Its Applications. In Section 1, Chapter 1 of my book the 
necessary background material is presented and the terminology and notation of 
the book established. Discussions in small print can be skipped on first reading. 
Excercises are provided at the close of each chapter to help illuminate and 
expand on the theory. 

This book can serve for either a one-semester or a two-semester course, 
depending on the extent of coverage desired. 

In writing this book, I have drawn on the vast literature on stochastic 
processes. Each chapter ends with citations of books that may profitably be 
consulted for further information, including in many cases bibliographical 
listings. 

I am grateful to Stanford University and to the U.S. Office of Naval Research 
for providing facilities, intellectual stimulation, and financial support for the 
writing of this text. Among my academic colleagues I am grateful to Professor 
K. L. Chung and Professor J. McGregor of Stanford for their constant 
encouragement and helpful comments; to Professor J. Lamperti of Dartmouth, 
Professor J. Kiefer of Cornell, and Professor P. Ney of Wisconsin for offering a 
variety of constructive criticisms; to Dr. A. Feinstein for his detailed checking of 
substantial sections of the manuscript, and to my students P. Milch, B. Singer, 
M. Feldman, and B. Krishnamoorthi for their helpful suggestions and their 
assistance in organizing the exercises. Finally, I am indebted to Gail Lemmond 
and Rosemarie Stampfel for their superb technical typing and all-around 
administrative care. 

SAMUEL KARLIN 
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Chapter 10 

A L G E B R A I C M E T H O D S I N M A R K O V 
C H A I N S 

Many important results concerning Markov chains can be obtained by using either 
purely algebraic methods or a combination of probabilistic and algebraic techniques. 
We will develop a number of these techniques in the present chapter. In order not to 
disrupt the continuity of presentation, we present here only a brief summary of some 
basic facts of matrix theory needed immediately. A fairly complete discussion of 
these results is given in the Appendix to A First Course. 

1: Preliminaries 

Of fundamental importance in considerations of Markov chains is the computa­
tion of the rc-step transition probabilities. (Special methods are developed in 
Sections 4-6 applicable in the case where the Markov chain is a random walk.) 
To this end, we develop the necessary machinery involving the theory of eigen­
values and eigenvectors.1" 

(a) Spectral Representation 

Let A be an n x n matrix. A nonzero rc-dimensional vector x which satisfies the 
relation Ax = Ax for some number A is called a right eigenvector of A, with 
corresponding eigenvalue A. If xA = Ax, we call x a left eigenvector of A. If there 
exists a complete linearly independent family x(1), . . . , x{n) of right (or, alter­
natively, left) eigenvectors of A, then there exists a linearly independent family 
<|)(1), . . . , tyn) of right eigenvectors of A and a linearly independent family 
\ |/ (1 ) , . . . , \|/(n) of left eigenvectors of A which are biorthogonal. This means that 

fc=l I 

0 if i*j, 
if i = 7, 

f The reader unfamiliar with the basic theory of eigenvalues and eigenvectors of matrices 
should consult the Appendix of A First Course in Stochastic Processes at this point. 

t (a, b) denotes the inner product of the vectors a and b. 
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where <|)(I) = (cpn, . . . , cpin), \|/(J) = {\jjjx, . . . , {j/jnX and i//jh denotes the complex 
conjugate of ijjjh. In this case, the matrix A is said to be diagonalizable. Let 

o = 

A = 

<Pln " 

Xx 0 
0 A2 

0 0 

<Pnl 

<Pn 

*¥ = 

where Al9 . . . , A„ are the (not necessarily distinct) eigenvalues associated with 
the eigenvectors <|)(1),..., <J)(n). (Notice that we have not labeled the element of <S> 
in the usual order.) Then A possesses a spectral representation as a product of 
three special matrices: 

A = 0>A*F. 

Using the relation (<|)(I), \|/0)) = 5tj, we can verify by direct calculation that 
*F0> = 0>T = I (I = the identity matrix). Then 
and generally 

A2 = OAYOAy = OA2*F 

Am = O A ^ , (1.1) 

where obviously 

Am = 
0 

0 

0 0 

When A is a Markov matrix, formula (1.1) provides a convenient representation 
of the mth-step transition probability matrix. Its effective use requires deter­
mining a complete set of left and right eigenvectors. 

(b) Positive Matrices 

Let A be a real matrix which has at least one positive element and no negative 
elements; we write A > 0 and call A positive. If every element of A is positive, we 
write A >̂ 0 and call A strictly positive. The following results are known. 

To each A > 0 there corresponds a number r(A) > 0, the spectral radius of 
A, which is zero if and only if Am = 0 for some integer m > 0. In any case there 
are positive vectors f, x > 0, such that Ax = r(A)x, fA = r(A)f. If A is any 
eigenvalue of A, then |A| < r(A);if|A| = r(A), then rj = A/r( A) is a root of unity, 
i.e., rf = 1 for some integer /c, and rjmr(A) is an eigenvalue of A for m = 1, 2, 
Finally, suppose that Am >̂ 0 for some m > 0; then x and fare strictly positive 
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vectors and uniquely determined up to a constant factor. Moreover \X\ < r(A) 
if X is an eigenvalue of A different from r(A). 

2: Relations of Eigenvalues and Recurrence Classes 

The foregoing results have immediate application to the study of finite-state 
Markov chains. 

Let P = \\Pij\\, i,j= 1, . •., n, be a matrix of transition probabilities. Evi­
dently P > 0. Let x be any vector satisfying YJ= I xi = 1- Then 

XP= [txiPiu i*iPi2,..-, t*iPin\ 
\ i = 1 i = 1 i = 1 / 

Now 

i (ixlpu) = ix,iptJ=ixl=L en) 
We claim that xP > 2x cannot hold with x > 0 for any value of X > 1, so that 
r(P) < 1. In fact, summing the components of both sides in xP > Xx as in (2.1) 
yields YJ= \*i> ^ YJ = I xt- Since YJ= i x£ > 0, we can cancel this factor, which 
implies that X < 1. 

On the other hand, the vector (1, . . . , 1) is immediately seen to be a right 
eigenvector of P with eigenvalue 1; thus r(P) = 1. 

The property that 1 is an eigenvalue with a corresponding positive left 
eigenvector for any finite Markov matrix can also be deduced from Theorem 1.3 
of Chapter 3.1" We know that in a finite state Markov chain at least one state (and 
therefore at least one class) is positive recurrent. Relabeling the states if necessary, 
we may assume that the states i = 1, . . . , s form a positive recurrent class. 
Therefore Ptj = 0 for any pair ij for which i e { 1 , . . . , s} and) e {s + 1 , . . . , n). 
Thus, P has the form 

P = Pi 0 
B C 

(2.2) 

and Pj forms an s x s Markov matrix. Now the basic limit theorem of Markov 
chains (see Theorem 1.3 of Chapter 3) asserts the existence of nu..., ns such that 
nt > 0, 

; = i 

and 

t Chapters 1-9 are in A First Course in Stochastic Processes (Second Edition, 1975). 
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Let x° = (nu . . . , 7rs, 0, . . . , 0); we may verify at once because of the special 
structure of P as displayed in (2.2) that x°P = x°. A slightly more detailed 
analysis yields the following: 

Theorem 2.1. IfP is a finite Markov matrix, then the multiplicity of the eigen­
value 1 is equal to the number of recurrent classes associated with P. 

Proof We have seen above that if Cx is a recurrent class of states, then there 
exists a left eigenvector x(1) > 0 for the eigenvalue 1 such that xj1* = 0 if i <£ Cv 
Similarly, with each recurrent class C2, C3, . . . there is associated a positive 
eigenvector x(2), x(3), . . . , with eigenvalue 1 such that x\h) = 0 if i$ Ch. Since 
distinct classes are disjoint, it is clear that x(1), x ( 2 ) , . . . are linearly independent 
vectors, and so the multiplicity of the eigenvalue 1 is at least the number of 
distinct recurrent classes. To prove the reverse inequality suppose that xP = x. 
Then xPw = x for m = 1, 2 , . . . , i.e., 

n 

Y, xiP?j = x j i J' = 1> • • • •> n-> W = 1 , 2 , 
i= 1 

But if j is a transient state, we know that limw^00 Pff = 0 for all i. It follows that 
Xj = 0 for every transient state j , and so we can write 

r r 

Z Z xipij = XJ> JE Uc*> 
h = 1 i e Ch ft = 1 

where Cu . . . , Cr are the recurrent classes. Also Pi} = 0 if i and; are in distinct 
recurrent classes; therefore, we have 

X XiPtj = Xj for jeCh, h = 1 , . . . , r. 
ieCh 

If xf # 0 for some / e Q , then by Theorem 1.3 of Chapter 3 there exists a 
constant ah such that 

Xf = a^Xi , i G C^. 

Thus 

x = £«„x<">, 
ft=i 

from which we see that the \{h) form a basis for the manifold of left eigenvectors 
with eigenvalue 1. ■ 

PROBABILISTIC INTERPRETATION OF EIGENVALUES AND EIGENVECTORS 

Let us now consider the manifold of right eigenvectors of P with eigenvalue 1. 
It turns out that there is a basis for this manifold which has a very simple prob­
abilistic interpretation. In fact, if Cu . . . , Cr are the recurrent classes associated 
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with P, we define p\h) to be the probability that starting from i the state of the 
system will eventually lie in Q,, i.e., 

p\h) = Pv{Xn e Ch for some n = 1, 2 , . . . |X0 = *}. 

Clearly 

{h) _ )l for ieCh, 
p{{) (0 for ieCj, j*h, ( Z 3 ) 

since it is not possible to leave a recurrent class. If we define p{h) = (p(i\..., p^}), 
h = 1 , . . . , r, the preceding equations show at once that the vectors p ( 1 ) , . . . , p(r) 

are linearly independent. Furthermore, the p\h) satisfy the equations 

P\h) = Z PijP^ / = 1 , . . . , «, h = 1 , . . . , r, 

[Eq. (3.4) of Chapter 3], which shows that p ( 1 ) , . . . , p(r) are right eigenvectors of 
P with eigenvalue 1. As the p(,) are linearly independent and their number r is 
the multiplicity of the eigenvalue 1, they form a basis for the right eigenmanifold 
corresponding to the eigenvalue 1. Finally, we observe by direct evaluation with 
the aid of (2.3) that 

(0 nOK_ f1 if i=^ (x( I ) ,P0 )) ) n .f . _ [0 if i ^ j 

since the only nonzero components of x(I) are those whose indices are in Ci9 
and their sum is just 1. 

Let us assume now that P has a spectral representation, and that the eigen­
values Al9 X2, . . . , Xn are labeled so that 1 = Xx = • • • = Xr > |Ar + 1 | > |Ar + 2 | 
> • • • and Ar+ j # 1. Then we can take (|)(1) = p(1) , . . . , <t>(r) = p(r) and v|/(1) -
x ( 1 ) , . . . , \|/(r) = x(r) (see Appendix to A First Course). F rom 

P w = <t>Amx¥ 

we obtain 
n — — — n 

PTj = Z <PhiXh$hj = (Pli^lj + ■ ' • + (Pri^rj + Z VhiKtfhy 
h=l h=r+l 

Suppose that P has no eigenvalue, different from 1, whose modulus equals 1; 
then \Xh\ < 1, h = r + 1 , . . . , n, and asm-> oc, 

Z <PkiW$kj^o 
h = r+ 1 

and the rate of convergence is of the order at least \Xr+ x \m. We shall see shortly 
that \Xh\ < 1, h = r + 1 , . . . , n, if and only if P has no periodic recurrent classes 
(Theorem 3.1 below). Assuming that P has no periodic recurrent classes and 
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recalling that x^ = i//hj, h = 1 , . . . , rj = 1 , . . . , n, is different from zero if and 
only if j e Ch, we see that 

<Pu^ij = (Pn^ij = -• = (Pri^rj = 0 for j transient. 

Thus, if j is transient, P™ = Yji = r+ I tPhiK^hj a n d t n i s tends to zero at the rate 
| Ar+! |m as m -> oo. Now if ij e Ch, then among the first r terms in the expression 
for P™ the only non vanishing one is (phiil/hj; but cphi = 1 (recall that cphi = p\h)) 
and {j/hj = it j = l i m ^ ^ P™. We see generally for all states; that n-} — P™ goes 
to zero at least as fast as \kr+ x \m as m -► oo. 

Now let us assume that in addition to | Ar +11 < 1 we have the special situa­
tion that |Ar + 2 | < |Ar+11. Let, as usual, T denote the set of all transient states, 
j , j e T; we wish to find the following limit: 

lim Pr{Xm=j\X0 = i,XmeT}9 
m-+ oo 

i.e., the limiting value (m -► oo) of the probability that starting from state i the 
process is in the transient state j , given that at time m, Xm is in a transient state. 
We have 

pm 
T>r{Xm=j\X0 = i,XmeT} = ij 

Z^JeT *ij 

As we have seen before, for j transient P™ = Yji = r+i (Phitftfihj-
Since \hr+1\ > | Ar+21, we readily find that 

m^ oo ZsJeT *ij l^jeT iPr+\,iY r+\, j l^jeTYr+l,j 

assuming that the denominator does not vanish. If the denominator does 
vanish, we have to examine the terms in Y%=r+i (phiK^hj containing Ar+2 and 
other eigenvalues whose modulus equals | Ar + 2 1 , and so forth. 

3: Periodic Classes 

We wish to give a more complete description of the structure of a periodic chain. 
The simplest class with period d is clearly one in which there are d states 1 , . . . , d 
and 

0 1 0 . . . 0 
0 0 1 ••• 0 

i o o ... o 

P\2 — ^2 3 — • • • — Pd-l,d — Pdl — U P — 

A less trivial example may be formed by replacing the individual states 1 , . . . , d 
by disjoint families C l 5 . . . , Cd of states and defining the P(j in such a way that 
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Pu # Oonly if i e C j , / € C 2 , or / e C 2 , j e C 3 , . . . , or ieCd,jeC1. The matrix P 
then takes the form 

II 0 P ! 0 . . . | 

P= P ° Pl "'■ . 
UP, o o •••I 

At the same time, we can define Ptj so that every two states communicate. 
We will now prove that every periodic class is of this form. Let d be the period of 
the class W and assume that the states are labeled by 1, 2 , . . . , M. Let Cx consist 
of the states of W which can be reached from state 1 in some multiple of d 
transitions; i.e., j e C1 if and only if Pn

xj > 0 for some integer n > 0. For each 
r = 1 , . . . , d — l,we define Cr+1to consist of those states which can be reached 
from state 1 in r plus some multiple of d transitions; i.e., j e C r + 1 if and only if 
P"dj+r > 0 for some integer n > 0. 

First we show that if j e Cx then Ph
n > 0 implies h = md for some m > 0. 

In fact, since 7 e C\ implies that F # > 0 for some n > 0, it follows that Pn^ + h > 
Phj\Pnij > 0 (cf. Chapter 2, Theorem 3.1), and so by the definition of period 
nd + h must be divisible by d\ hence h is. Next we show that if ie Cuj e Cr+l 
then Ph

tj > 0 implies that h = nd + r for some n > 0. In fact, let Ps
n > 0 for 

some s > 0; Pfx > 0 for some q > 0; and P ^ + r > 0 for some m > 0. Thus, if 
w = s + dq + md + r then P ^ > P^rP^Pft > 0, and w is a multiple of d; 
therefore s + r also is a multiple of d. But P)fs > P^P^j > 0, so that h + s is 
divisible by d. Combining these two results, we infer that h — ris divisible by d, 
and therefore, h = nd + r for some rc > 0. 

We leave it to the reader to verify that the above results imply that C l 9 . . . , Cd 
are disjoint and nonempty, that ( J? = : Q = W, and that / e Cr requires Pl7 = 0 
for every; £ C r + 1 where Cd+1 = Cv 

Having thus analyzed the matrix of a periodic class, we can now demonstrate 
an earlier assertion concerning the occurrence of eigenvalues of modulus 1 of a 
Markov transition matrix. 

Theorem 3.1. IfP is the transition matrix of a finite irreducible periodic Markov 
chain with period d, then the dih roots of unity are eigenvalues o /P , each with 
multiplicity 1, and there are no other eigenvalues of modulus 1. 

Proof. Let Du . . . , Dd be the "moving classes" of the process as established 
above, i.e., i e Dr implies Ptj = 0 for every j $ Dr+ lm It is no loss of generality to 
assume that Dl = {1, . . . , n^, D2 = {n1 + 1, . . . , nx + n2}, . . . , Dd = {M — 
nd + 1 , . . . , M}. From the definition of the moving class it follows that 

II Ax 0 ••• 0 || 

0 0 Ad 
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where At is an nt x nt Markov matrix. Furthermore, for each i, A™ >̂ 0 for some 
integer m > 0 (see Problem 5, Chapter 2). Thus, Af has a strictly positive left 
eigenvector \i{i\ with eigenvalue 1, of algebraic multiplicity 1. Owing to the form 
of F*, it is clear that, by adjoining an appropriate number of zeros on one or 
both sides of each \i{l\ we determine linearly independent vectors x(1), . . . , x(d) 

such that 

x(i) = xV)pd9 i = 1, . . . , d. 

Let us consider the vectors y(1) = x(1), y(2) = x(1)P, . . . , y(d) = x ( 1 )Pd - 1 . Since 
the only nonzero components of x(1) are those with indices 1, 2, . . . , nl9 and 
observing that P\f may differ from zero only if the moving class in which i lies 
agrees with that of j after precisely h steps, we see that the only nonzero com­
ponents of y(I) are those with indices {nx + • • • + «f_ x + 1 , . . . , nl + • • • + nt). 
This implies that the vectors y(l) (i = 1 , . . . , d) are linearly independent. Further­
more 

y(i)pd _ x ( l )p i - lpd _ x ( l )pdpi- l _ x(l)p*- 1 _- y(0 

It follows that if we restrict attention to the nrdimensional linear space obtained 
by considering only those components of y(I) whose indices lie in Dt, we obtain a 
left eigenvector with eigenvalue 1 for Af. 

Because the eigenvalue 1 has simple multiplicity for Ah it follows that each 
y(I) is a constant multiple of x(I). Actually, if we normalize each x ( 1 ) , . . . , x(d) by 
the condition £? = x x\h) = l,h= 1 , . . . , d, then, in fact, y{h) = x(h\ h= 1 , . . . , d. 
Accordingly, we may write x(2) = x(1)P, x(3) = x ( 2 ) P , . . . , x(1) = x(d)P. 

Let co = e
2ni/d. Combining the above equations in the indicated manner, 

we obtain 

(x(1) + x(2) + x(3) + • • • + x(d))P 
= x ^ + X<2> + . • . + X(d), 

(x(1) + cox(2) + co2x<3) + • •. + af-Wyp 
= aj-'ix^ + cox<2> + • • • + of-1***), 

(X(1) + C02X<2> + C04X<3> + . . . + C02<d-"xMyP 
= 0J~2(X^ + C02X<2> + . . . + G ) ^ " 1 ^ ) , 

(X(1) + C0(d"1)X(2) + G ) 2 ^ " 1 ^ ^ + • • • + 0)(d"1)2X(d))P 
= OJ-^-'XX^ + co(d-1}x(2> + . . . + co(d"1)2x(d)). 

The linear independence of the x(0 ensures that none of the vectors appearing 
above are zero. These relations exhibit the property that the dth roots of unity 
are all eigenvalues of P. 
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Suppose next that xP = Ax for some nonzero x. Then xPd = Xdx. Looking at 
the contracted vectors z(1) = (xl5 . . . , xni\ z(2) = (x„1 + 1, . . . , xni + n2\ . . . , 
z(d) = (x M _„ d + 1 ? . . . , xM\ we see that 

z^A; = Adz«>, i = 1 , . . . , d. 

Since at least one of the z(l) is nonzero, and for each Af there is an m such that 
A? >0, either Xd = 1 or |/ld| < 1. If Ad = 1, then there are constants cl9...,cd 
such that 

z«> = CiX
(,">, i = l , . . . , d , 

and so we see that x = CiX(1) + • • • + cd\{d). 
Now 

hi = XP = dX ( 2 ) + C2X(3) + • • • + QX(1) 

or 

^ l X ( D + . . . + AcdX(d> = Q X ^ + ClX(2> + • • • + Q_!X<d>. 

Since the x(I) are linearly independent, we have 

ACi = Q , AC2 = Cj, . . . , ZIQ = C^_ i, 

or 

Q- i = Ac, = ( A - 1 ) - " 1 ^ , Q _ 2 = A2cd = (A"1)""2^, 
Cj = A Cd = A Cd 

since Xd = 1, and this means that x is plainly a constant multiple of one of the 
eigenvectors of P already constructed. ■ 

The case of an arbitrary Markov matrix P follows easily from the preceding 
theorem. We have 

Theorem 3.2. IfP is a finite Markov matrix, then any eigenvalue ofP of modulus 
1 is a root of unity. The dth roots of unity are eigenvalues ofP if and only ifP has 
a recurrent class with period d. The multiplicity of each dth root of unity is just 
the number of recurrent classes of period d. 

The proof is essentially identical with that of Theorem 3.1. Since Ax = xP 
implies 

Amx = xPm 

or 
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then, letting m -► oc, we see that Xj = 0 if/ is transient. We may therefore restrict 
attention to the recurrent states, and the theorem immediately reduces to the 
case considered in the previous theorem. 

4: Special Computational Methods in Markov Chains 

Let P be the transition probability matrix of a random walk on the nonnegative 
integers with probability \ of going to each of the two neighboring states from 
state k (k > 1) and with a reflecting barrier at the origin; that is, 

II0 1 0 0 ...|| 
p j p ° * ° ■■■ 

o i o i ... • 

To obtain the probability of reaching state / from state k in n steps we could 
multiply matrix P by itself n times and seek out the element P"u in the /cth row 
and /th column of the matrix P". This method, however, is very cumbersome and 
lengthy in practice. 

A second approach is to attempt to generalize the method of eigenvalues and 
eigenvectors as developed in Section 2. In the case of infinite matrices this 
cannot always be done. However, for matrices of the same form as P above or, 
more generally, transition probability matrices corresponding to random walks, 
there is available an infinite analog to the representation formula (1.1). 

We proceed to obtain P^ in a manner which will illustrate a general method 
applicable to arbitrary random walks. 

Adding the two trigonometric identities 

cos(a ± j8) = cos a cos /? + sin a sin /} 

leads to the identity 

cos a cos P = \ cos(a + /}) + \ cos(a - /}). 

Let a - 6 and p = k6 (k = 1, 2, . . . ) . We get 

cos 9 cos kO = \ cos(/c + 1)9 + \ cos(/c - 1)9. 

Since the elements in the /cth row of matrix P are 

^c ,0 = Pk, 1 — 0, . . . , P k ? f c _ 2 = 0, Pk,k-1 = 2> Pk,k 

Pk, k + 1 ~ I? Pk, k + 2 ~ 0? • • • 5 /C = 2, 3, . . . , 

^ 1 , 0 — "2s ^ 1 , 1 = 0, P\,2 = 2> Pl,3 = 0, . . . , 

^o, o — 0, P0, i = 19 -PQ, 2 = 0 , . . . , 

(*) 

(4.1) 

o, 


