

 The Art of Designing Embedded Systems

This page intentionally left blank

The Art of Designing Embedded Systems

Second Edition

 Jack Ganssle

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Cover image courtesy of iStockphoto

Newnes is an imprint of Elsevier
 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
 Linacre House, Jordan Hill, Oxford OX2 8DP, UK

 Copyright © 2008, Elsevier Inc. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

 Permissions may be sought directly from Elsevier ’ s Science & Technology Rights
 Department in Oxford, UK: phone: (� 44) 1865 843830, fax: (� 44) 1865 853333,
 E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “ Support & Contact ”
then “ Copyright and Permission ” and then “ Obtaining Permissions. ”

 Library of Congress Cataloging-in-Publication Data

Ganssle, Jack G.
 The art of designing embedded systems / Jack Ganssle. — 2nd ed.
 p. cm.
 ISBN 978-0-7506-8644-0
 1. Embedded computer systems—Design and construction. I. Title.

TK7895.E42G36 2008
004.16--dc22

 2008012453

 British Library Cataloguing-in-Publication Data
 A catalogue record for this book is available from the British Library.

 08 09 10 11 10 9 8 7 6 5 4 3 2 1

 Printed in the United States of America

 For information on all Newnes publications
visit our Web site at www.books.elsevier.com

To my family, Marybeth, Nat, Graham, and Kristy.

This page intentionally left blank

Contents

Acknowledgments . ix

Chapter 1: Introduction . 1

Chapter 2: The Project . 7
 2.1 Partitioning . 7
 2.2 Scheduling . 33

Chapter 3: The Code . 43
 3.1 Firmware Standards . 43
 3.2 Code Inspections . 54
 3.3 Design by Contract ™ . 62
 3.4 Other Ways to Insure Quality Code . 75
 3.5 Encapsulation . 83

Chapter 4: Real Time . 89
 4.1 Real Time Means Right Now . 89
 4.2 Reentrancy . 108
 4.3 eXtreme Instrumenting . 126
 4.4 Floating Point Approximations . 140

Chapter 5: The Real World . 183
 5.1 Electromagnetics for Firmware People . 183
 5.2 Debouncing . 189

Chapter 6: Disciplined Development . 215
 6.1 Disciplined Development . 215
 6.2 The Seven Step Plan . 222
 6.3 The Postmortem . 237

www.newnespress.com

viii

www.newnespress.com

Appendix A: A Firmware Standard . 245
 A.1 Scope . 245
 A.2 Projects . 246
 A.3 Modules . 251
 A.4 Variables . 254
 A.5 Functions . 256
 A.6 Interrupt Service Routines . 257
 A.7 Comments . 258
 A.8 Coding Conventions . 260

Appendix B: A Simple Drawing System . 265
 B.1 Scope . 265
 B.2 Drawings and Drawing Storage . 266
 B.3 Master Drawing Book . 268
 B.4 Confi guration Drawings . 269
 B.5 Bills of Materials . 270
 B.6 ROMs and PALs . 274
 B.7 ROM and PAL File Names . 275
 B.8 Engineering Change Orders . 276
 B.9 Responsibilities . 279

Appendix C: A Boss ’ s Guide to Process Improvement . 281
 C.1 Version Control . 282
 C.2 Firmware Standards . 283
 C.3 Code Inspections . 285
 C.4 Chuck Bad Code . 287
 C.5 Tools . 288
 C.6 Peopleware . 289
 C.7 Other Tidbits . 291

Index . 295

Contents

www.newnespress.com

 Acknowledgments

 Over almost 20 years writing columns about embedded systems I ’ ve corresponded with
thousands of engineers all over the world. Some send jokes, others requests for help,
some pass along ideas and stories. Thanks to all of you for your thoughts and insights,
for challenging my writing and making me refi ne my thinking.

This page intentionally left blank

www.newnespress.com

 Introduction
CHAPTER 1

 For tens of thousands of years the human race used their muscles and the labor of animals
to build a world that differed little from that known by all their ancestors. But in 1776
James Watt installed the fi rst of his improved steam engines in a commercial enterprise,
kicking off the industrial revolution.

 The 1800s were known as “ the great age of the engineer. ” Engineers were viewed as the
celebrities of the age, as the architects of tomorrow, the great hope for civilization. (For a
wonderful description of these times read Isamard Kingdom Brunel , by L.T.C. Rolt.) Yet
during that century, one of every four bridges failed. Tunnels routinely fl ooded.

 How things have changed!

 Our successes at transforming the world brought stink and smog, factories weeping
poisons, and landfi lls overfl owing with products made obsolete in the course of months.
The Challenger explosion destroyed many people ’ s faith in complex technology (which
shows just how little understanding Americans have of complexity). An odd resurgence
of the worship of the primitive is directly at odds with the profession we embrace.
Declining test scores and an urge to make a lot of money now have caused drastic
declines in US engineering enrollments.

 To paraphrase Rodney Dangerfi eld: “ We just can ’ t get no respect. ”

 It ’ s my belief that this attitude stems from a fundamental misunderstanding of what an
engineer is. We ’ re not scientists, trying to gain a new understanding of the nature of the
universe. Engineers are the world ’ s problem solvers. We convert dreams to reality. We
bridge the gap between pure researchers and consumers.

2

www.newnespress.com

Chapter 1

 Problem solving is surely a noble profession, something of importance and fundamental
to the future viability of a complex society. Suppose our leaders were as single-
mindedly dedicated to problem solving as is any engineer: we ’ d have effective schools,
low taxation, and cities of light and growth rather than decay. Perhaps too many of us
engineers lack the social nuances to effectively orchestrate political change, but there ’ s
no doubt that our training in problem solving is ultimately the only hope for dealing with
the ecological, fi nancial, and political cris es coming in the next generation.

 My background is in the embedded tool business. For two decades I designed, built, sold,
and supported development tools, working with thousands of companies, all of which
were struggling to get an embedded product out the door, on-time, and on-budget. Few
succeeded. In almost all cases, when the widget was fi nally complete (more or less;
maintenance seems to go on forever due to poor quality), months or even years late, the
engineers took maybe 5 seconds to catch their breath and then started on yet another
project. Rare was the individual who, after a year on a project, sat and thought about what
went right and wrong on the project. Even rarer were the people who engaged in any sort
of process improvement, of learning new engineering techniques and applying them to
their efforts. Sure, everyone learns new tools (say, for ASIC and FPGA design), but few
understood that it ’ s just as important to build an effective way to design products as it is
to build the product. We ’ re not applying our problem-solving skills to the way we work.

 In the tool business I discovered a surprising fact: most embedded developers work more
or less in isolation. They may be loners designing all of the products for a company,
or members of a company ’ s design team. The loner and the team are removed from
others in the industry and so develop their own generally dysfunctional habits that go
forever uncorrected. Few developers or teams ever participate in industry-wide events or
communicate with the rest of the industry. We, who invented the communications age,
seem to be incapable of using it!

 One effect of this isolation is a hardening of the development arteries: we are unable to
benefi t from others ’ experiences, so work ever harder without getting smarter. Another is a
feeling of frustration, of thinking “ what is wrong with us; why are our projects so much more
a problem than anyone else ’ s? ” In fact, most embedded developers are in the same boat.

 This book comes from seeing how we all share the same problems while not fi nding
solutions. Never forget that engineering is about solving problems … including the ones
that plague the way we engineer!

www.newnespress.com

3Introduction

 Engineering is the process of making choices; make sure yours refl ect simplicity,
common sense, and a structure with growth, elegance, and fl exibility, with debugging
opportunities built in.

 How many of us designing microprocessor-based products can explain our jobs at a
cocktail party? To the average consumer the word “ computer ” conjures up images of
mainframes or PCs. He blithely disregards or is perhaps unaware of the tremendous
number of little processors that are such an important part of everyone ’ s daily lives. He
wakes up to the sound of a computer-generated alarm, eats a breakfast prepared with a
digital microwave, and drives to work in a car with a virtual dashboard. Perhaps a bit
fearful of new technology, he ’ ll tell anyone who cares to listen that a pencil is just fi ne
for writing, thank you; computers are just too complicated.

 So many products that we take for granted simply couldn ’ t exist without an embedded
computer! Thousands owe their lives to sophisticated biomedical instruments like CAT
scanners, implanted heart monitors, and sonograms. Ships as well as pleasure vessels
navigate by GPS that torturously iterate non-linear position equations. State-of-the-art
DSP chips in traffi c radar detectors attempt to thwart the police, playing a high tech
cat and mouse game with the computer in the authority ’ s radar gun. Compact disc
players give perfect sound reproduction using high integration devices that provide error
correction and accurate track seeking.

 It seems somehow appropriate that, like molecules and bacteria, we disregard computers
in our day-to-day lives. The microprocessor has become part of the underlying fabric
of late 20th century civilization. Our lives are being subtly changed by the incessant
information processing that surrounds us.

 Microprocessors offer far more than minor conveniences like TV remote control. One
ultimately crucial application is reduced consumption of limited natural resources. Smart
furnaces use solar input and varying user demands to effi ciently maintain comfortable
temperatures. Think of it—a fl eck of silicon saving mountains of coal! Inexpensive
programmable sprinklers make off-peak water use convenient, reducing consumption
by turning the faucet off even when forgetful humans are occupied elsewhere. Most
industrial processes rely on some sort of computer control to optimize energy use and to
meet EPA discharge restrictions. Electric motors are estimated to use some 50% of all
electricity produced—cheap motor controllers that net even tiny effi ciency improvements
can yield huge power savings. Short of whole new technologies that don ’ t yet exist,

4

www.newnespress.com

Chapter 1

smart, computationally intense use of resources may offer us the biggest near-term
improvements in the environment.

 What is this technology that so changed the nature of the electronics industry?
Programming the VCR or starting the microwave you invoke the assistance of an
embedded microprocessor—a computer built right into the product.

 Embedded microprocessor applications all share one common trait: the end product is not
a computer. The user may not realize that a computer is included; certainly no 3-year-old
knows or cares that a processor drives Speak and Spell. The teenager watching MTV is
unaware that embedded computers control the cable box and the television. Mrs. Jones,
gossiping long distance, probably made the call with the help of an embedded controller
in her phone. Even the “ power ” computer user may not know that the PC is really a
collection of processors; the keyboard, mouse, and printer each include at least one
embedded microprocessor.

 For the purpose of this book, an embedded system is any application where a dedicated
computer is built right into the system. While this defi nition can apply even to major
weapon systems based on embedded blade servers, here I address the perhaps less
glamorous but certainly much more common applications using 8-, 16-, and 32-bit
processors.

 Although the microprocessor was not explicitly invented to fulfi ll a demand for cheap
general purpose computing, in hindsight it is apparent that an insatiable demand for some
amount of computational power sparked its development. In 1970 the minicomputer was
being harnessed in thousands of applications that needed a digital controller, but its high
cost restricted it to large industrial processes and laboratories. The microprocessor almost
immediately reduced computer costs by a factor of a thousand. Some designers saw an
opportunity to replace complex logic with a cheap 8051 or Z80. Others realized that their
products could perform more complex functions and offer more features with the addition
of these silicon marvels.

 This, then, is the embedded systems industry. In two decades we ’ ve seen the
microprocessor proliferate into virtually every piece of electronic equipment. The
demand for new applications is accelerating.

 The goal of the book is to offer approaches to dealing with common embedded
programming problems. While all college computer science courses teach traditional

www.newnespress.com

programming, few deal with the peculiar problems of embedded systems. As always,
schools simply cannot keep up with the pace of technology. Again and again we see new
programmers totally baffl ed by the interdisciplinary nature of this business. For there
is often no clear distinction between the hardware and software; the software in many
cases is an extension of the hardware; hardware components are replaced by software-
controlled algorithms. Many embedded systems are real time—the software must respond
to an external event in some number of microseconds and no more. We ’ ll address many
design issues that are traditionally considered to be the exclusive domain of hardware
gurus. The software and hardware are so intertwined that the performance of both is
crucial to a useful system; sometimes programming decisions profoundly infl uence
hardware selection.

 Historically, embedded systems were programmed by hardware designers, since only they
understood the detailed bits and bytes of their latest creation. With the paradigm of the
microprocessor as a controller, it was natural for the digital engineer to design as well as
code a simple sequencer. Unfortunately, most hardware people were not trained in design
methodologies, data structures, and structured programming. The result: many early
microprocessor-based products were built on thousands of lines of devilishly complicated
spaghetti code. The systems were un-maintainable, sometimes driving companies out of
business.

 The increasing complexity of embedded systems implies that we ’ ll see a corresponding
increase in specialization of function in the design team. Perhaps a new class of fi rmware
engineers will fi ll the place between hardware designers and traditional programmers.
Regardless, programmers developing embedded code will always have to have detailed
knowledge of both software and hardware aspects of the system.

Introduction 5

