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Preface

Since the publication of the first edition of my book on Nonlinear Fiber Optics in

1989, this field has virtually exploded. During the 1990s, a major factor behind such a

sustained growth was the advent of fiber amplifiers and lasers, made by doping silica

fibers with rare-earth materials such as erbium and ytterbium. Erbium-doped fiber

amplifiers revolutionized the design of fiber-optic communication systems, including

those making use of optical solitons, whose very existence stems from the presence of

nonlinear effects in optical fibers. Optical amplifiers permit propagation of lightwave

signals over thousands of kilometers as they can compensate for all losses encountered

by the signal in the optical domain. At the same time, fiber amplifiers enable the

use of massive wavelength-division multiplexing, a technique that led by 1999 to the

development of lightwave systems with capacities exceeding 1 Tb/s. Nonlinear fiber

optics plays an important role in the design of such high-capacity lightwave systems.

In fact, an understanding of various nonlinear effects occurring inside optical fibers is

almost a prerequisite for a lightwave-system designer.

Starting around 2000, a new development occurred in the field of nonlinear fiber
optics that changed the focus of research and has led to a number of advances and novel

applications in recent years. Several kinds of new fibers, classified as highly nonlinear

fibers, have been developed. They are referred to with names such as microstructured

fibers, holey fibers, or photonic crystal fibers, and share the common property that a

relatively narrow core is surrounded by a cladding containing a large number of air

holes. The nonlinear effects are enhanced dramatically in such fibers. In fact, with a

proper design of microstructured fibers, some nonlinear effects can be observed even

when the fiber is only a few centimeters long. The dispersive properties of such fibers

are also quite different compared with those of conventional fibers, developed mainly

for telecommunication applications. Because of these changes, microstructured fibers

exhibit a variety of novel nonlinear effects that are finding applications in the fields as

diverse as optical coherence tomography and high-precision frequency metrology.

The fourth edition of Nonlinear Fiber Optics, published in 2007, has been updated

to include recent developments related to the advent of highly nonlinear fibers. How-

ever, it deals mostly with the fundamental aspects of this exciting field. Since 2001,

the applications of Nonlinear Fiber Optics have been covered in a companion book that

also required updating. This second edition of Applications of Nonlinear Fiber Optics
fills this need. It has been expanded considerably to include the new research material

published over the last seven years or so. It retains most of the material that appeared

in the first edition.

xiii



xiv Preface

The first three chapters deal with three important fiber-optic components—fiber-

based gratings, couplers, and interferometers—that serve as the building blocks of

lightwave technology. In view of the enormous impact of rare-earth-doped fibers, am-

plifiers and lasers made by using such fibers are covered in Chapters 4 and 5. Chapter 6

deals with the pulse-compression techniques. Chapters 7 and 8 has been revised ex-

tensively to make room for the new material. The former is devoted to fiber-optic

communication systems, but Chapter 8 now focuses on the ultrafast signal processing

techniques that make use of nonlinear phenomena in optical fibers. Last two chap-

ters, Chapters 9 and 10, are entirely new. Chapter 9 focuses on the applications of

highly nonlinear fibers in areas ranging from wavelength laser tuning, nonlinear spec-

troscopy to biomedical imaging and frequency metrology. Chapter 10 is devoted to

the applications of nonlinear fiber optics in the emerging technologies that make use

of quantum-mechanical effects. Examples of such technologies include quantum cryp-

tography, quantum computing, and quantum communications.

This volume should serve well the need of the scientific community interested in

such diverse fields as ultrafast phenomena, high-power fiber amplifiers and lasers, opti-

cal communications, ultrafast signal processing, and quantum information. The poten-

tial readership is likely to consist of senior undergraduate students, graduate students

enrolled in the M.S. and Ph.D. programs, engineers and technicians involved with the

telecommunication and laser industry, and scientists working in the fields of optical

communications and quantum information. Some universities may opt to offer a high-

level graduate course devoted solely to nonlinear fiber optics. The problems provided

at the end of each chapter should be useful to instructors of such a course.

Many individuals have contributed to the completion of this book either directly or

indirectly. I am thankful to all of them, especially to my students, whose curiosity led

to several improvements. Some of my colleagues have also helped me in preparing this

book. I thank Prof. J. H. Eberly, Prof. A. N. Pinto, and Dr. S. Lukishova for reading

the chapter on quantum applications and making helpful suggestions. I am grateful to

many readers for their feedback. Last, but not least, I thank my wife, Anne, and my

daughters, Sipra, Caroline, and Claire, for understanding why I needed to spend many

weekends on the book instead of spending time with them.

Govind P. Agrawal

Rochester, NY

December 2007



Chapter 1

Fiber Gratings

Silica fibers can change their optical properties permanently when they are exposed to

intense radiation from a laser operating in the blue or ultraviolet spectral region. This

photosensitive effect can be used to induce periodic changes in the refractive index

along the fiber length, resulting in the formation of an intracore Bragg grating. Fiber

gratings can be designed to operate over a wide range of wavelengths extending from

the ultraviolet to the infrared region. The wavelength region near 1.5 μm is of par-

ticular interest because of its relevance to fiber-optic communication systems. In this

chapter on fiber gratings, the emphasis is on the role of the nonlinear effects. Sections

1.1 and 1.2 discuss the physical mechanism responsible for photosensitivity and vari-

ous techniques used to make fiber gratings. The coupled-mode theory is described in

Section 1.3, where the concept of the photonic bandgap is also introduced. Section

1.4 is devoted to the nonlinear effects occurring under continuous-wave (CW) condi-

tions. The phenomenon of modulation instability is then discussed in Section 1.5. The

focus of Section 1.6 is on propagation of optical pulses through a fiber grating with

emphasis on optical solitons. The phenomenon of nonlinear switching is also covered

in this section. Section 1.7 is devoted to related fiber-based periodic structures such

as long-period, chirped, sampled, transient, and dynamic gratings together with their

applications.

1.1 Basic Concepts

Diffraction gratings constitute a standard optical component and are used routinely

in various optical instruments such as a spectrometer. The underlying principle was

discovered more than 200 years ago [1]. From a practical standpoint, a diffraction

grating is defined as any optical element capable of imposing a periodic variation in the

amplitude or phase of light incident on it. Clearly, an optical medium whose refractive

index varies periodically acts as a grating since it imposes a periodic variation of phase

when light propagates through it. Such gratings are called index gratings.

1
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Λ

Figure 1.1: Schematic illustration of a fiber grating. Dark and light shaded regions within the

fiber core show periodic variations of the refractive index.

1.1.1 Bragg Diffraction
The diffraction theory of gratings shows that when light is incident at an angle θi (mea-

sured with respect to the planes of constant refractive index), it is diffracted at an angle

θr such that [1]

sinθi sinθr = mλ/(n̄Λ), (1.1.1)

where Λ is the grating period, λ/n̄ is the wavelength of light inside the medium with

an average refractive index n̄, and m is the order of Bragg diffraction. This condition

can be thought of as a phase-matching condition, similar to that occurring in the case

of Brillouin scattering or four-wave mixing [2], and can be written as

ki kd = mkg, (1.1.2)

where ki and kd are the wave vectors associated with the incident and diffracted light.

The grating wave vector kg has magnitude 2π/Λ and points in the direction in which

the refractive index of the medium is changing in a periodic manner.

In the case of single-mode fibers, all three vectors lie along the fiber axis. As a re-

sult, kd = ki and the diffracted light propagates backward. Thus, as shown schemat-

ically in Figure 1.1, a fiber grating acts as a reflector for a specific wavelength of light

for which the phase-matching condition is satisfied. In terms of the angles appearing

in Eq. (1.1.1), θi = π/2 and θr = π/2. If m = 1, the period of the grating is related to

the vacuum wavelength as λ = 2n̄Λ. This condition is known as the Bragg condition,

and gratings satisfying it are referred to as Bragg gratings. Physically, the Bragg con-

dition ensures that weak reflections occurring throughout the grating add up in phase

to produce a strong reflection at the input end. For a fiber grating reflecting light in the

wavelength region near 1.5 μm, the grating period Λ 0.5 μm.

Bragg gratings inside optical fibers were first formed in 1978 by irradiating a

germanium-doped silica fiber for a few minutes with an intense argon-ion laser beam [3].

The grating period was fixed by the argon-ion laser wavelength, and the grating re-

flected light only within a narrow region around that wavelength. It was realized that

the 4% reflection occurring at the two fiber–air interfaces created a standing-wave pat-

tern such that more of the laser light was absorbed in the bright regions. As a result, the

glass structure changed in such a way that the refractive index increased permanently in

the bright regions. Although this phenomenon attracted some attention during the next



1.1. Basic Concepts 3

10 years [4]–[16], it was not until 1989 that fiber gratings became a topic of intense

investigation, fueled partly by the observation of second-harmonic generation in pho-

tosensitive fibers. The impetus for this resurgence of interest was provided by a 1989

paper in which a side-exposed holographic technique was used to make fiber gratings

with controllable period [17].

Because of its relevance to fiber-optic communication systems, the holographic

technique was quickly adopted to produce fiber gratings in the wavelength region near

1.55 μm [18]. Considerable work was done during the early 1990s to understand the

physical mechanism behind photosensitivity of fibers and to develop techniques that

were capable of making large changes in the refractive index [19]–[47]. By 1995, fiber

gratings were available commercially, and by 1997 they became a standard component

of lightwave technology. Soon after, several books devoted entirely to fiber gratings ap-

peared, focusing on applications related to fiber sensors and fiber-optic communication

systems [48]–[50].

1.1.2 Photosensitivity
There is considerable evidence that photosensitivity of optical fibers is due to defect

formation inside the core of Ge-doped silica (SiO2) fibers [29]–[31]. In practice, the

core of a silica fiber is often doped with germania (GeO2) to increase its refractive

index and introduce an index step at the core-cladding interface. The Ge concentration

is typically 3–5% but may exceed 15% in some cases.

The presence of Ge atoms in the fiber core leads to formation of oxygen-deficient

bonds (such as Si–Ge, Si–Si, and Ge–Ge bonds), which act as defects in the silica

matrix [48]. The most common defect is the GeO defect. It forms a defect band with an

energy gap of about 5 eV (energy required to break the bond). Single-photon absorption

of 244-nm radiation from an excimer laser (or two-photon absorption of 488-nm light

from an argon-ion laser) breaks these defect bonds and creates GeE′ centers. Extra

electrons associated with GeE′ centers are free to move within the glass matrix until

they are trapped at hole-defect sites to form the color centers known as Ge(1) and

Ge(2). Such modifications in the glass structure change the absorption spectrum α(ω).
However, changes in the absorption also affect the refractive index since Δα and Δn
are related through the Kramers–Kronig relation [51].

Δn(ω ′) =
c
π

∫ ∞

0

Δα(ω)dω
ω2 ω ′2 . (1.1.3)

Even though absorption modifications occur mainly in the ultraviolet region, the re-

fractive index can change even in the visible or infrared region. Moreover, as index

changes occur only in the regions of fiber core where the ultraviolet light is absorbed, a

periodic intensity pattern is transformed into an index grating. Typically, index change

Δn is 10 4 in the 1.3- to 1.6-μm wavelength range, but can exceed 0.001 in fibers

with high Ge concentration [34].

The presence of GeO defects is crucial for photosensitivity to occur in optical fibers.

However, standard telecommunication fibers rarely have more than 3% of Ge atoms in

their core, resulting in relatively small index changes. The use of other dopants such as

phosphorus, boron, and aluminum can enhance the photosensitivity (and the amount of
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index change) to some extent, but these dopants also tend to increase fiber losses. It was

discovered in the early 1990s that the amount of index change induced by ultraviolet

absorption can be enhanced by two orders of magnitude (Δn > 0.01) by soaking the

fiber in hydrogen gas at high pressures (200 atm) and room temperature [39]. The

density of Ge–Si oxygen-deficient bonds increases in hydrogen-soaked fibers because

hydrogen can recombine with oxygen atoms. Once hydrogenated, the fiber needs to

be stored at low temperature to maintain its photosensitivity. However, gratings made

in such fibers remain intact over relatively long periods of time, if they are stabilized

using a suitable annealing technique [52]–[56]. Hydrogen soaking is commonly used

for making fiber gratings.

Because of the stability issue associated with hydrogen soaking, a technique, known

as ultraviolet (UV) hypersensitization, has been employed in recent years [57]–[59].

An alternative method known as OH flooding is also used for this purpose. In this ap-

proach [60], the hydrogen-soaked fiber is heated rapidly to a temperature near 1000 C

before it is exposed to UV radiation. The resulting out-gassing of hydrogen creates a

flood of OH ions and leads to a considerable increase in the fiber photosensitivity. A

comparative study of different techniques revealed that the UV-induced index changes

were indeed more stable in the hypersensitized and OH-flooded fibers [61]. It should

be stressed that understanding of the exact physical mechanism behind photosensitivity

is far from complete, and more than one mechanism may be involved [57]. Localized

heating can also affect the formation of a grating. For instance, damage tracks were

seen in fibers with a strong grating (index change >0.001) when the grating was ex-

amined under an optical microscope [34]; these tracks were due to localized heating to

several thousand degrees of the core region where ultraviolet light was most strongly

absorbed. At such high temperatures the local structure of amorphous silica can change

considerably because of melting.

1.2 Fabrication Techniques
Fiber gratings can be made by using several different techniques, each having its own

merits [48]–[50]. This section discusses briefly four major techniques, used commonly

for making fiber gratings and known as the single-beam internal technique, the dual-

beam holographic technique, the phase-mask technique, and the point-by-point fabri-

cation technique. The use of ultrashort optical pulses for grating fabrication is covered

in the last subsection.

1.2.1 Single-Beam Internal Technique
In this technique, used in the original 1978 experiment [3], a single laser beam, often

obtained from an argon-ion laser operating in a single mode near 488 nm, is launched

into a germanium-doped silica fiber. The light reflected from the near end of the fiber

is then monitored. The reflectivity is initially about 4%, as expected for a fiber–air

interface. However, it gradually begins to increase with time and can exceed 90% after

a few minutes when the Bragg grating is completely formed [5]. Figure 1.2 shows

the increase in reflectivity with time, observed in the 1978 experiment for a 1-m-long
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Figure 1.2: Increase in reflectivity with time during grating formation. Insets show the reflection

and transmission spectra of the grating. (After Ref. [3]; c 1978 AIP.)

fiber having a numerical aperture of 0.1 and a core diameter of 2.5 μm. Measured

reflectivity of 44% after 8 minutes of exposure implies more than 80% reflectivity of

the Bragg grating when coupling losses are accounted for.

Grating formation is initiated by the light reflected from the far end of the fiber

and propagating in the backward direction. The two counterpropagating waves inter-

fere and create a standing-wave pattern with periodicity λ/2n̄, where λ is the laser

wavelength and n̄ is the mode index at that wavelength. The refractive index of silica

is modified locally in the regions of high intensity, resulting in a periodic index varia-

tion along the fiber length. Even though the index grating is quite weak initially (4%

far-end reflectivity), it reinforces itself through a kind of runaway process. Since the

grating period is exactly the same as the standing-wave period, the Bragg condition is

satisfied for the laser wavelength. As a result, some forward-traveling light is reflected

backward through distributed feedback, which strengthens the grating, which in turn

increases feedback. The process stops when the photoinduced index change saturates.

Optical fibers with an intracore Bragg grating act as a narrowband reflection filter. The

two insets in Figure 1.2 show the measured reflection and transmission spectra of such

a fiber grating. The full width at half maximum (FWHM) of these spectra is only about

200 MHz.

A disadvantage of the single-beam internal method is that the grating can be used

only near the wavelength of the laser used to make it. Since Ge-doped silica fibers

exhibit little photosensitivity at wavelengths longer than 0.5 μm, such gratings cannot

be used in the 1.3- to 1.6-μm wavelength region that is important for optical commu-

nications. A dual-beam holographic technique, discussed next, solves this problem.

1.2.2 Dual-Beam Holographic Technique
The dual-beam holographic technique, shown schematically in Figure 1.3, makes use

of an external interferometric scheme similar to that used for holography. Two optical

beams, obtained from the same laser (operating in the ultraviolet region) and making an

angle 2θ are made to interfere at the exposed core of an optical fiber [17]. A cylindrical
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Figure 1.3: Schematic illustration of the dual-beam holographic technique.

lens is used to expand the beam along the fiber length. Similar to the single-beam

scheme, the interference pattern creates an index grating. However, the grating period

Λ is related to the ultraviolet laser wavelength λuv and the angle 2θ made by the two

interfering beams through the simple relation

Λ = λuv/(2sinθ). (1.2.1)

The most important feature of the holographic technique is that the grating period

Λ can be varied over a wide range by simply adjusting the angle θ (see Figure 1.3).

The wavelength λ at which the grating will reflect light is related to Λ as λ = 2n̄Λ.

Since λ can be significantly larger than λuv, Bragg gratings operating in the visible or

infrared region can be fabricated by the dual-beam holographic method even when λuv

is in the ultraviolet region. In a 1989 experiment, Bragg gratings reflecting 580-nm

light were made by exposing the 4.4-mm-long core region of a photosensitive fiber for

5 minutes with 244-nm ultraviolet radiation [17]. Reflectivity measurements indicated

that the refractive index changes were 10 5 in the bright regions of the interference

pattern. Bragg gratings formed by the dual-beam holographic technique were stable

and remained unchanged even when the fiber was heated to 500 C.

Because of their practical importance, Bragg gratings operating in the 1.55-μm re-

gion were made in 1990 [18]. Since then, several variations of the basic technique

have been used to make such gratings in a practical manner. An inherent problem for

the dual-beam holographic technique is that it requires an ultraviolet laser with excel-

lent temporal and spatial coherence. Excimer lasers commonly used for this purpose

have relatively poor beam quality and require special care to maintain the interference

pattern over the fiber core over a duration of several minutes.

It turns out that high-reflectivity fiber gratings can be written by using a single ex-

cimer laser pulse (with typical duration of 20 ns) if the pulse energy is large enough

[32]–[34]. Extensive measurements on gratings made by this technique indicate a

threshold-like phenomenon near a pulse energy level of about 35 mJ [34]. For lower

pulse energies, the grating is relatively weak since index changes are only about 10 5.

By contrast, index changes of about 10 3 are possible for pulse energies above 40 mJ.

Bragg gratings with nearly 100% reflectivity have been made by using a single 40-mJ



1.2. Fabrication Techniques 7

Figure 1.4: Schematic illustration of a phase-mask interferometer used for making fiber gratings.

(After Ref. [48]; c 1999 Elsevier.)

pulse at the 248-nm wavelength. The gratings remained stable at temperatures as high

as 800 C. A short exposure time has an added advantage. The typical rate at which

a fiber is drawn from a preform is about 1 m/s. Since the fiber moves only 20 nm in

20 ns, and since this displacement is a small fraction of the grating period Λ, a grating

can be written during the drawing stage while the fiber is being pulled and before it is

sleeved [35]. This feature makes the single-pulse holographic technique quite useful

from a practical standpoint.

1.2.3 Phase-Mask Technique
This nonholographic technique uses a photolithographic process commonly employed

for fabrication of integrated electronic circuits. The basic idea is to use a phase mask

with a periodicity related to the grating period [36]. The phase mask acts as a master

grating that is transferred to the fiber using a suitable method. In one realization of this

technique [37], the phase mask was made on a quartz substrate on which a patterned

layer of chromium was deposited using electron-beam lithography in combination with

reactive-ion etching. Phase variations induced in the 242-nm radiation passing through

the phase mask translate into a periodic intensity pattern similar to that produced by the

holographic technique. Photosensitivity of the fiber converts intensity variations into

an index grating of the same periodicity as that of the phase mask.

The chief advantage of the phase-mask method is that the demands on the temporal

and spatial coherence of the ultraviolet beam are much less stringent because of the

noninterferometric nature of the technique. In fact, even a nonlaser source such as an

ultraviolet lamp can be used. Furthermore, the phase-mask technique allows fabrica-

tion of fiber gratings with a variable period (chirped gratings) and can also be used to

tailor the periodic index profile along the grating length. It is also possible to vary the

Bragg wavelength over some range for a fixed mask periodicity by using a converging

or diverging wavefront during the photolithographic process [41]. On the other hand,

the quality of fiber grating (length, uniformity, etc.) depends completely on the mas-

ter phase mask, and all imperfections are reproduced precisely. Nonetheless, gratings

with 5-mm length and 94% reflectivity were made in 1993, showing the potential of

this technique [37].

The phase mask can also be used to form an interferometer using the geometry

shown in Figure 1.4. The ultraviolet laser beam falls normally on the phase mask and
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is diffracted into several beams in the Raman–Nath scattering regime. The zeroth-order

beam (direct transmission) is blocked or canceled by an appropriate technique. The two

first-order diffracted beams interfere on the fiber surface and form a periodic intensity

pattern. The grating period is exactly one-half of the phase-mask period. In effect,

the phase mask produces both the reference and object beams required for holographic

recording.

There are several advantages of using a phase-mask interferometer. It is insensitive

to the lateral translation of the incident laser beam and tolerant of any beam-pointing

instability. Relatively long fiber gratings can be made by moving two side mirrors

while maintaining their mutual separation. In fact, the two mirrors can be replaced

by a single silica block that reflects the two beams internally through total internal

reflection, resulting in a compact and stable interferometer [48]. The length of the

grating formed inside the fiber core is limited by the size and optical quality of the

silica block.

Long gratings can be formed by scanning the phase mask or by translating the opti-

cal fiber itself such that different parts of the optical fiber are exposed to the two inter-

fering beams. In this way, multiple short gratings are formed in succession in the same

fiber. Any discontinuity or overlap between the two neighboring gratings, resulting

from positional inaccuracies, leads to the so-called stitching errors (also called phase

errors) that can affect the quality of the whole grating substantially if left uncontrolled.

Nevertheless, this technique was used in 1993 to produce a 5-cm-long grating [42]. By

1996, gratings longer than 1 meter have been made with success [62] by employing

techniques that minimize phase errors [63].

1.2.4 Point-by-Point Fabrication Technique
This nonholographic scanning technique bypasses the need of a master phase mask and

fabricates the grating directly on the fiber, period by period, by exposing short sections

of width w to a single high-energy pulse [19]. The fiber is translated by a distance

Λ w before the next pulse arrives, resulting in a periodic index pattern such that only

a fraction w/Λ in each period has a higher refractive index. The method is referred to

as point-by-point fabrication since a grating is fabricated period by period even though

the period Λ is typically below 1 μm. The technique works by focusing the spot size of

the ultraviolet laser beam so tightly that only a short section of width w is exposed to it.

Typically, w is chosen to be Λ/2 although it could be a different fraction if so desired.

There are a few practical limitations of this technique. First, only short fiber grat-

ings (< 1 cm) are typically produced because of the time-consuming nature of the

point-to-point fabrication method. Second, it is hard to control the movement of a

translation stage accurately enough to make this scheme practical for long gratings.

Third, it is not easy to focus the laser beam to a small spot size that is only a fraction

of the grating period. Recall that the period of a first-order grating is about 0.5 μm at

1.55 μm and becomes even smaller at shorter wavelengths. For this reason, the tech-

nique was first demonstrated in 1993 by making a 360-μm-long, third-order grating

with a 1.59-μm period [38]. The third-order grating still reflected about 70% of the

incident 1.55-μm light. From a fundamental standpoint, an optical beam can be fo-

cused to a spot size as small as the wavelength. Thus, the 248-nm laser commonly
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used in grating fabrication should be able to provide a first-order grating in the wave-

length range from 1.3 to 1.6 μm with proper focusing optics similar to that used for

fabrication of integrated circuits.

The point-by-point fabrication method is quite suitable for long-period gratings in

which the grating period exceeds 10 μm and even can be longer than 100 μm, de-

pending on the application [64]–[66]. Such gratings can be used for mode conversion

(power transfer from one mode to another) or polarization conversion (power transfer

between two orthogonally polarized modes). Their filtering characteristics have been

used for flattening the gain profile of erbium-doped fiber amplifiers. Long-period grat-

ings are covered in Section 1.7.1.

1.2.5 Technique based on Ultrashort Optical Pulses
In recent years, femtosecond pulses have been used to change the refractive index of

glass locally and to fabricate planar waveguides within a bulk medium [67]–[72]. The

same technique can also be used for making fiber gratings. Femtosecond pulses from a

Ti:sapphire laser operating in the 800-nm regime were used as early as 1999 [73]–[75].

Two distinct mechanisms can lead to index changes when such lasers are used [76]. In

the so-called type-I gratings, index changes are of reversible nature. In contrast, per-

manent index changes occur in type-II gratings because of multiphoton ionization and

plasma formation when the peak power of pulses exceeds the self-focusing threshold.

The second type of gratings can be written using energetic femtosecond pulses that

illuminate an especially made phase mask [74]. They were observed to be stable at

temperatures of up to 1000 C in the sense that the magnitude of index change created

by the 800-nm femtosecond pulses remained unchanged over hundreds of hours [75].

In an alternative approach, infrared radiation is first converted into the UV region

through harmonic generation, before using it for grating fabrication. In this case, pho-

ton energy exceeds 4 eV, and the absorption of single photons can create large index

changes. As a result, the energy fluence required for forming the grating is reduced

considerably [77]–[79]. In practice, one can employ either 264-nm pulses, obtained

from fourth harmonic of a femtosecond Nd:glass laser, or 267-nm pulses using third

harmonic of a Ti:sapphire laser. In both cases, index changes >10 3 have been real-

ized. Figure 1.5 shows the experimental results obtained when 264-nm pulses of 0.2-nJ

energy (pulse width 260 fs) were employed for illuminating a phase mask and form-

ing a 3-mm-long Bragg grating [77]. The left part shows the measured UV-induced

change in the refractive index of fiber core as a function of incident energy fluence for

(a) a hydrogen-soaked fiber and (b) a hydrogen-free fiber. The transmission spectra of

three fiber gratings are also shown for fluence values that correspond to the maximum

fluence level for the three peak intensities. The topmost spectrum implies a peak re-

flectivity level of >99.9% at the Bragg wavelength and corresponds to a UV-induced

change in the refractive index of about 2 10 3. This value was lower for the fiber that

was not soaked in hydrogen, but it could be made to exceed 10 3 by increasing both

the peak-intensity and fluence levels of UV pulses. Similar results were obtained when

267-nm pulses, obtained through third harmonic of a 800-nm Ti:sapphire laser, were

employed [78]. Gratings formed with this method are of type-I type in the sense that

the magnitude of index change decreases with annealing at high temperatures [79].
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Figure 1.5: Left: Index change Δn as a function of incident energy fluence for (a) a hydrogen-

soaked fiber and (b) a hydrogen-free fiber. Right: Transmission spectra of three fiber gratings

for fluence values that correspond to the maximum fluence level at peak intensities of (a) 47

GW/cm2, (b) 31 GW/cm2, and (c) 77 GW/cm2. (After Ref. [77]; c 2003 OSA.)

1.3 Grating Characteristics

Two different approaches have been used to study how a Bragg grating affects wave

propagation in optical fibers. In one approach, Bloch formalism—used commonly for

describing motion of electrons in semiconductors—is applied to Bragg gratings [80].

In another, forward- and backward-propagating waves are treated independently, and

the Bragg grating provides a coupling between them. This method is known as the

coupled-mode theory and has been used with considerable success in several different

contexts. In this section we derive the nonlinear coupled-mode equations and use them

to discuss propagation of low-intensity CW light through a Bragg grating. We also

introduce the concept of photonic bandgap and use it to show that a Bragg grating

introduces a large amount of dispersion.
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1.3.1 Coupled-Mode Equations

Wave propagation in a linear periodic medium has been studied extensively using

coupled-mode theory [81]–[83]. This theory has been applied to distributed-feedback

(DFB) semiconductor lasers [84], among other things. In the case of optical fibers, we

need to include both the nonlinear nature and the periodic variation of the refractive

index by using

ñ(ω,z) = n̄(ω)+n2|E|2 +δng(z), (1.3.1)

where n2 is the nonlinear parameter and δng(z) accounts for periodic index variations

inside the grating. The coupled-mode theory can be generalized to include the fiber

nonlinearity since the nonlinear index change n2|E|2 in Eq. (1.3.1) is so small that it

can be treated as a perturbation [85].

The starting point consists of solving Maxwell’s equations with the refractive index

given in Eq. (1.3.1). However, as discussed in Section 2.3 of Ref. [2], if the nonlin-

ear effects are relatively weak, we can work in the frequency domain and solve the

Helmholtz equation

∇2Ẽ + ñ2(ω,z)ω2/c2Ẽ = 0, (1.3.2)

where Ẽ denotes the Fourier transform of the electric field with respect to time.

Noting that ñ is a periodic function of z, it is useful to expand δn g(z) in a Fourier

series as

δng(z) =
∞

∑
m= ∞

δnm exp[2πim(z/Λ)]. (1.3.3)

Since both the forward- and backward-propagating waves should be included, Ẽ in Eq.

(1.3.2) is of the form

Ẽ(r,ω) = F(x,y)[Ã f (z,ω)exp(iβBz)+ Ãb(z,ω)exp( iβBz)], (1.3.4)

where βB = π/Λ is the Bragg wave number for a first-order grating. It is related to the

Bragg wavelength through the Bragg condition λB = 2n̄Λ and can be used to define

the Bragg frequency as ωB = πc/(n̄Λ). Transverse variations for the two counterprop-

agating waves are governed by the same modal distribution F(x,y) in a single-mode

fiber.

Using Eqs. (1.3.1)–(1.3.4), assuming Ã f and Ãb vary slowly with z, and keeping

only the nearly phase-matched terms, the frequency-domain coupled-mode equations

become [81]–[83]

∂ Ã f

∂ z
= i[δ (ω)+Δβ ]Ã f + iκÃb, (1.3.5)

∂ Ãb

∂ z
= i[δ (ω)+Δβ ]Ãb + iκÃ f , (1.3.6)

where δ is a measure of detuning from the Bragg frequency and is defined as

δ (ω) = (n̄/c)(ω ωB) β (ω) βB. (1.3.7)
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The nonlinear effects in the coupled-mode eqautions are included through Δβ . The

coupling coefficient κ governs the grating-induced coupling between the forward and

backward waves. For a first-order grating, κ is given by

κ =
k0

∫∫ ∞
∞ δn1|F(x,y)|2 dxdy∫∫ ∞
∞ |F(x,y)|2 dxdy

. (1.3.8)

In this general form, κ can include transverse variations of δng occurring when the

photoinduced index change is not uniform over the core area. For a transversely uni-

form grating κ = 2πδn1/λ , as can be inferred from Eq. (1.3.8) by taking δn1 as con-

stant and using k0 = 2π/λ . For a sinusoidal grating of the form δng = na cos(2πz/Λ),
δn1 = na/2 and the coupling coefficient is given by κ = πna/λ .

Equations (1.3.5) and (1.3.6) can be converted to time domain by following the

procedure outlined in Section 2.3 of Ref. [2]. We assume that the total electric field can

be written as

E(r, t) = 1
2 F(x,y)[A f (z, t)eiβBz +Ab(z, t)e iβBz]e iω0t + c.c., (1.3.9)

where ω0 is the frequency at which the pulse spectrum is centered. We expand β (ω)
in Eq. (1.3.7) in a Taylor series as

β (ω) = β0 +(ω ω0)β1 + 1
2 (ω ω0)2β2 + 1

6 (ω ω0)3β3 + (1.3.10)

and retain terms up to second order in ω ω0. The resulting equations are converted

into the time domain by replacing ω ω0 with the differential operator i(∂/∂ t). The

resulting time-domain coupled-mode equations have the form

∂A f

∂ z
+β1

∂A f

∂ t
+

iβ2

2

∂ 2A f

∂ t2
+

α
2

A f = iδA f + iκAb + iγ(|A f |2 +2|Ab|2)A f , (1.3.11)

∂Ab

∂ z
+β1

∂Ab

∂ t
+

iβ2

2

∂ 2Ab

∂ t2
+

α
2

Ab = iδAb + iκA f + iγ(|Ab|2 +2|A f |2)Ab, (1.3.12)

where δ in Eq. (1.3.7) is evaluated at ω = ω0 and becomes δ = (ω0 ωB)/vg. In fact,

the δ term can be eliminated from the coupled-mode equations if ω0 is replaced by

ωB in Eq. (1.3.9). The other parameters have their traditional meaning. Specifically,

β1 1/vg is related inversely to the group velocity, β2 governs the group-velocity

dispersion (GVD), and the nonlinear parameter γ is related to n2 as γ = n2ω0/(cAeff),
where Aeff is the effective mode area (see Ref. [2]).

The nonlinear terms in the time-domain coupled-mode equations contain the con-

tributions of both self-phase modulation (SPM) and cross-phase modulation (XPM).

In fact, the coupled-mode equations are similar to and should be compared with Eqs.

(7.1.15) and (7.1.16) of Ref. [2], which govern the propagation of two copropagating

waves inside optical fibers. The two major differences are: (i) the negative sign ap-

pearing in front of the ∂Ab/∂ z term in Eq. (1.3.11) because of backward propagation

of Ab and (ii) the presence of linear coupling between the counterpropagating waves

governed by the parameter κ . Both of these differences change the character of wave

propagation profoundly. Before discussing the general case, it is instructive to con-

sider the case in which the nonlinear effects are so weak that the fiber acts as a linear

medium.


