WIRELESS SENSOR AND ACTUATOR NETWORKS Technologies, Analysis

Roberto Verdone Davide Dardari Gianluca Mazzini Andrea Conti

and Design

WIRELESS SENSOR AND ACTUATOR NETWORKS

This page intentionally left blank

Wireless Sensor and Actuator Networks

Technologies, Analysis and Design

Roberto Verdone, Davide Dardari Gianluca Mazzini and Andrea Conti

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 84 Theobald's Road, London WC1X 8RR, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

Copyright © 2008, Roberto Verdone, Davide Dardari, Gianluca Mazzini and Andrea Conti. Published by Elsevier Ltd. All rights reserved

The right of Roberto Verdone, Davide Dardari, Gianluca Mazzini and Andrea Conti to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-372539-4

For information on all Academic Press publications visit our website at books.elsevier.com

Printed and bound in Great Britain

 $08 \ 09 \ 10 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1$

Contents

List of figures	Х
List of tables	xviii
Preface	xix
About the authors	xxiv
List of acronyms	XXV

1	Intr	roduction 1		
	1.1	Introduction		
	1.2	What is a WSAN?		
		1.2.1 Single-sink single-hop wireless sensor network (WSN)2		
		1.2.2 Single-sink multi-hop WSN		
		1.2.3 Multi-sink multi-hop WSN		
		1.2.4 The presence of actuators		
		1.2.5 The nodes' architecture		
	1.3	Main features of WSANs		
	1.4	Practical issues of WSANs related to energy management		
	1.5	Current and future research on WSANs9		

Part 1 Fundamentals of WSANs Design

2	App	lication	ns of WSANs	15
	2.1	Applic	cation areas and scenarios	16
		2.1.1	Environmental monitoring	16
		2.1.2	Health care	19
		2.1.3	Mood-based services	21
		2.1.4	Positioning and animals tracking	24
		2.1.5	Entertainment.	25
		2.1.6	Logistics	26
		2.1.7	Transportation	28
		2.1.8	Homes and office	29
		2.1.9	Industrial applications	30
	2.2	Event	detection and spatial and time random process estimation	32
		2.2.1	Environmental monitoring	34
		2.2.2	Healthcare	35
		2.2.3	Mood-based services	35
		2.2.4	Positioning and animal tracking.	35

13

		2.2.5 Entertainment	36
		2.2.6 Logistics	
		2.2.7 Transportation	
		2.2.8 Homes and office	
		2.2.9 Industrial applications	37
	23	The hybrid hierarchical architecture	37
	2.5	2.3.1 Categorization of the application scenarios according to the HH	A 40
3	Cha 2 1	nnel Modelling	44
	3.1	Introduction	
	3.2	Basics of electromagnetic propagation	45
	2.2	3.2.1 Narrowband channel models	46
	3.3	Experimental activity aimed at modelling the wireless channel	40
		at 2.4 GHz for WSANs.	48
		3.3.1 Measurements over the grass	
		3.3.2 Measurements over asphalt	
		3.3.3 Measurements on grass	52
		3.3.4 Measurements over ground at different heights	52
		3.3.5 Measurements in a parking lot	53
		3.3.6 Measurements in indoor environments	56
		3.3.7 Conclusions: A narrowband channel model for WSANs	58
	3.4	Ultrawide bandwidth channel models	59
		3.4.1 Path loss	62
		3.4.2 Multipath characterization	63
4	Con	nectivity and Coverage	65
	4.1	Introduction	65
	4.2	Connectivity in wireless ad hoc and sensor networks	65
	4.3	Link connectivity	67
		4.3.1 Deterministic model: Disk model	68
		4.3.2 Statistical model: Log-normal shadowing	68
		4.3.3 Probability of link connection	69
	4.4	Single-hop link connectivity in WSNs.	69
	4.5	Multi-hop link connectivity in WSNs	71
		4.5.1 Characterization of the number of connected nodes	71
		4.5.2 Characterization of the connected nodes positions	72
	4.6	Characterization of the interference.	76
		4.6.1 Channel gain characterization	78
		4.6.2 Interference power characterization	81
	4.7	Network connectivity	84
		4.7.1 Elements of graph theory	85
		4.7.2 Communication graph and critical transmission range	86
		4.7.3 The giant component	90
		4.7.4 Probability of node isolation and connectivity	91
		4.7.5 Probability of node isolation based on nodes degree	98
	4.8	Network connectivity for WSANs	101

	49	Alternate models for network connectivity	107			
		4.9.1 An information-theoretic view of connectivity	108			
		4.9.1 Reachability	108			
		4.9.2 Global connectivity from local constraints	100			
	4 10	4.5.5 Global connectivity from local constraints	109			
	4.10		112			
	4.11	Further reading.	113			
5	Netv	vork Lifetime	114			
	5.1	Definition of node lifetime.	114			
	5.2	Definitions of network lifetime	115			
	5.3	Communication protocols and network lifetime: How to choose	117			
	5.4	Some numerical examples	117			
6	Technologies for WSANs 1					
	6.1	ZigBee technology	125			
		6.1.1 Introduction to ZigBee Characteristics: IEEE 802.15.4	126			
	62	Ultrawide bandwidth technology	135			
	0.2	6.2.1 Introduction	135			
		6.2.2.1 Impulse radio LIWB	137			
		6.2.2 Impulse radio 0 w D	1/1			
		6.2.4 LIWD standards for WSNs: the IEEE 902 15 to DUV	141			
	()	0.2.4 UWB standards for WSINS: the IEEE 802.13.4a PH I	142			
	6.3	Bluetooth technology				
		6.3.1 Introduction to Bluetooth characteristics	143			
		6.3.2 Bluetooth physical layer performance	146			
	6.4	Comparison among technologies	158			

Part 2 Communication protocols, localization and signal processing techniques for WSANs

7	Con	ommunication Protocols for WSANs 163		
	7.1 Introduction			163
	7.2	MAC p	protocols	163
		7.2.1	Scheduled protocols	164
		7.2.2	LEACH protocol	164
		7.2.3	Guo protocol	166
		7.2.4	TRAMA protocol	167
		7.2.5	Contention-based protocols	168
		7.2.6	Zhong protocol	168
		7.2.7	DMAC protocol	169
		7.2.8	PAMAS protocol	170
		7.2.9	SMAC protocol	172
	7.3	Routing	g protocols	173
		7.3.1	Flat routing	174
		7.3.2	Flooding and gossiping	174
		7.3.3	SPIN protocol.	175

161

		7.3.4	Directed diffusion protocol	
		7.3.5	Rumor routing	179
		7.3.6	Gradient-based routing.	180
		7.3.7	Hierarchical routing	180
		7.3.8	LEACH protocol	181
		7.3.9	PEGASIS protocol	182
		7.3.10	TEEN protocol	184
		7.3.11	MECN protocol	185
		7.3.12	SPAN protocol	185
		7.3.13	Location-based routing protocols	186
		7.3.14	GAF protocol	187
		7.3.15	GEAR protocol	188
		7.3.16	GeRaF protocol	190
		7.3.17	Rugin protocol	192
8	Loc	alizatior	and Time Synchronization Techniques for WSANs	194
	8.1	Introdu	uction	194
	8.2	Time n	neasurements	195
	8.3	Distance	ce measurements (ranging)	196
		8.3.1	ToA detection and estimation	
	8.4	Positio	n estimation	
		8.4.1	Single-hop localization	
		8.4.2	Multihop localization	
		8.4.3	Range-free localization	221
	8.5	Anchor	r-free localization	222
	8.6	Positio	n tracking	
	8.7	Time s	vnchronization	225
		8.7.1	Network time synchronization	
9	Sign	al Proc	essing and Data Fusion Techniques for WSANs	231
	9.1	Distrib	uted detection	232
		9.1.1	The sensing model	234
		9.1.2	Parallel fusion architecture.	235
		9.1.3	Cooperative fusion architecture	238
		9.1.4	Energy efficiency analysis	240
		9.1.5	Performance comparison between PFA and CFA	242
	9.2	Distrib	uted scalar field estimation	243
		9.2.1	Sampling the target process	243
		9.2.2	Building the process estimate	
		9.2.3	Mathematical derivation of the estimation error	247
		9.2.4	The self-organizing distributed WSN	
		9.2.5	Physical connectivity between nodes	250
		9.2.6	Information routing through a clustered architecture	
		9.2.7	Communication protocol	252
		9.2.8	Medium access control	254

	9.2.9	Energy budget	255
	9.2.10	Cross-layer design	257
9.3	Compre	ession techniques for WSNs	264
	9.3.1	Coding by ordering	264
	9.3.2	Pipelined in-network compression	266
	9.3.3	Distributed compression	266
9.4	A possi	ble classification of signal processing techniques for WSNs	268
	9.4.1	Classifying signal processing techniques.	268
	9.4.2	Scanning the literature	269
	9.4.3	International projects on WSNs and signal processing (SP)	
		for WSNs: some examples	274

Part 3 From theory to practice: case studies

277

10	From	theory	to practice: case studies	279
	10.1	The EY	/ES project	279
		10.1.1	EYES hardware description	280
		10.1.2	Demo and measure	284
	10.2	The am	bient network project	289
		10.2.1	Ambient network demo	290
	10.3	Wireles	ss lamp control system	293
		10.3.1	Architecture definition	293
		10.3.2	Coverage prevision mechanisms	294
		10.3.3	Sample results	294
	10.4	Experii	mental multiuser indoor localization platform based on WSN?	295
		10.4.1	Infrastructure and communication protocol	297
		10.4.2	Localization algorithms	298
		10.4.3	The context-aware platform	300
		10.4.4	WSN configuration and deployment.	302
	10.5	A posit	ioning test-bed using UWB devices	309
		10.5.1	The scenario considered	309
		10.5.2	Position estimation without priori information	312
		10.5.3	Positioning with priori information	313
	10.6	Develo	pment of a multi-hop IEEE 802.15.4 network	314
		10.6.1	Tracking and communication system (TCS) application	
			scenario: Description and requirements	314
		10.6.2	TCS application scenario: tests.	315
		10.6.3	TCS application scenario: mobility test	316
		10.6.4	TCS application scenario: tests with interference	320
		10.6.5	TCS application scenario: throughput test with multiple hops	322
		10.6.6	TCS with IEEE 802.15.4: selection of the transmission modes	323
		10.6.7	TCS with IEEE 802.15.4: system design	327
Bib	liogran	ohv		334

Bibliography

List of figures

Traditional single-sink WSN
Multi-sink WSN
Typical WSAN
Architecture of a sensor node
The HHA
The 16 frequency carriers used in each experiment
Measurement scenario over the grass
PER as a function of the 16 channels over the grass
Average received power as a function of the 16 channels over the grass50
Measurement scenario over aspahlt
PER as a function of the 16 channels over asphalt
Average received power as a function of the 16 channels over asphalt52
Measurement scenario on grass
PER as a function of the 16 channels on grass
Average received power as a function of the 16 channels on grass
Average received power over grass at different height
Average received power over asphalt at different height
Node placement for urban environment characterization
Node placement for measurements in a parking lot
Average received power with antenna at 6 cm
Average received power with antenna at 80 cm
Average received power with antenna at 180 cm
Map of the indoor environment
Receiving position points
Average received power for the different positions
The scenario considered for UWB measurements at WiLAB,
University of Bologna, Italy
Example of measured multipath profile at receiving location 1.
(LOS condition) Sampling interval 41.3 ps
Example of measured multipath profile at receiving location 10.
(NLOS condition) Sampling interval 41.3 ps
Poisson Point Process in a finite area A
Link connectivity with or without shadowing effects
Example of nodes connection after two hops

4.4	Connected nodes position distribution for different
	shadowing conditions. Maximum number of hops
	$h = 4, \rho = 0.0925$ nodes/m
4.5	Probability of coverage for different number of hops h and
	shadowing conditions σ
4.6	Coverage distance vs node density ρ for different number
	of hops <i>h</i> . Target coverage probability 0.1, $\sigma = 4$
4.7	Coverage distance vs node density ρ for different number of hops
	<i>h</i> and shadowing conditions σ . Target coverage probability 0.5
4.8	p.d.f. of G for different values of $r_{\rm T}$
4.9	p.d.f. of γ for different values of $r_{\rm T}$
4.10	p.d.f. of γ for different values of σ
4.11	$\mu_{\rm I}$ as a function of σ for different values of the nodes' density
4.12	CTR for connectivity. Labels report the Euclidean distances
	between nodes
4.13	Percentage of connected graphs as a function of the
	transmission range for $n = 100 \dots 88$
4.14	Percentage of connected graphs as a function of the transmission
	range for different values of <i>n</i>
4.15	Giant component in the case $n = 50 \dots 91$
4.16	Giant component in the case $n = 100 \dots 91$
4.17	Giant component in the case $n = 200 \dots 92$
4.18	Average percentage of isolated nodes as a function of
	the transmission range for different values of <i>n</i>
4.19	Rates of isolated nodes by simulation and by theoretical
	analysis: the effective rate is larger because of border effects
4.20	Rates of non-isolated nodes by simulation and by theoretical analysis:
	the effective rate is lower because of border effects
4.21	Rate of graphs with no isolated nodes obtained by simulation
	and the probability of obtaining a network with no isolated
	nodes calculated as $[1 - (rate of isolated node)]^N \dots 95$
4.22	Comparison between the simulated rate of fully connected
	graphs and the simulated rate of graphs with no isolated nodes
4.23	Reference scenario considered in the simulations
4.24	Probability that there are no isolated nodes as a function of
	nodes' density, for different values of σ
4.25	Rate of graphs with no isolated nodes and probability that there
	are no isolated nodes in the absence of shadowing
4.26	Rate of graphs without isolated nodes and probability that
	there are no isolated nodes in the case $\sigma = 5$
4.27	Partitioning the square into eight regions
4.28	Probability that a randomly chosen sensor node
	will not be isolated
4.29	Probability Z that the network is fully connected

4.30	Probability Z for different values of the densities ρ and $\rho_s \dots \dots$
4.31	Probability Z vs the standard deviation σ of the channel fluctuations107
4.32	Outage probability vs the link margin for $n = 0, 1, 2$ hops,
	$\alpha = 3.5 \text{ and } \sigma = 3 \dots \dots$
5.1	Network lifetime according to definition 1, with square side
	set to 50 m and 100 nodes
5.2	Network lifetime according to definition 2, with square side
	set to 50 m and 100 nodes
5.3	Network lifetime according to definition 3, with square side
5 4	set to 50 m and 100 nodes
5.4	Network lifetime according to definition 3/enhanced, with
55	Square side set to 50 m and 100 nodes
5.5	set to 50 m and 500 nodes
56	Network lifetime according to definition 2 with square side
5.0	set to 50 m and 500 nodes
57	Network lifetime according to definition 3 with square side
0.1	set to 50 m and 500 nodes
5.8	Network lifetime according to definition 3/enhanced, with
	square side set to 50 m and 500 nodes
5.9	Network lifetime according to definition 1, with square side
	set to 100 m and 100 nodes
5.10	Network lifetime according to definition 2, with square side
	set to 100 m and 100 nodes
5.11	Network lifetime according to definition 3, with square side
	set to 100 m and 100 nodes
5.12	Network lifetime according to definition 3/enhanced, with
	square side set to 100 m and 100 nodes
6.1	ZigBee protocol stack
6.2	Channelization at the 868/915 MHz bands and at the 2.4 GHz band 127
6.3	Beacon frame structure
6.4	Data frame structure
6.5	Acknowledgement frame structure
6.6	MAC command frame structure
6.7	The two IEEE 802.15.4-compliant network topologies:
	star and peer-to-peer topology
6.8	ZigBee-compliant tree network topology131
6.9	Superframe structure
6.10	Communication from a network device to the PAN in a
	beacon-enabled network
6.11	Communication from the PAN to a network device in a
	beacon-enabled network

List	of figures
------	------------

6.12	Communication from a network device to the PAN in a
	non-beacon-enabled network
6.13	Communication from the PAN to a network device in a
	non-beacon-enabled network
6.14	A detailed overview of ZigBee stack architecture
6.15	FCC and EU spectral masks, respectively, for indoor commercial
	systems in the absence of appropriate mitigation techniques
6.16	Example of 6th derivative of the Gaussian pulse with $\tau_p = 0.192$ ns 138
6.17	Example of 6th derivative of the Gaussian pulse spectrum
	with $\tau_{\rm p} = 0.192 \text{ ns} \dots 138$
6.18	Example of UWB time-hopping frame structure
6.19	Performance of a UWB received based on matched filter
	in AWGN for different pulses
6.20	Transmitted reference receiver scheme
6.21	Average bit error probability of the AcR for three channel models
6.22	Analytical BEP and simulative BER vs the instantaneous SNR
	(a) Non-coherent schemes with different values of $f_d T$
	(b) Coherent scheme with $f_d T = 0.165 \dots 149$
6.23	Asymptotical mean <i>PEP</i> vs $\overline{C}/\overline{I}$ in Rayleigh fading channel adopting
	a SD receiver varying the number of branches N for
	DM1 and DH1 BT packets type155
6.24	$\overline{PEP}_{m}^{(I)}/L_{wl}$ vs $\overline{C}/\overline{I}$ for DM1 packets varying the number of
	antennas and $\overline{\gamma}$; SD receiver
6 25	$P_{\rm even}$ vs $\overline{PEP}_{\rm m}^{(I)*}$ when $\overline{v} = \infty$ for $d_{\rm H} = 8$ m $L_{\rm rel} = 1$ and $P_{\rm H} = 20$ dBm
0.20	varying the diversity order: SD receiver 157
6.26	P_{reg} giving asymptotical (i.e., high SNR) $\overline{PEP}_m^{(I)}/L_{rel} = 10^{-2}$ vs. d_I varying
0.20	the diversity order and the transmitting power level when $d_{U} = 2$ m for a SD
	receiver in Rayleigh fading: SD receiver
6 27	$P_{\rm err}$ vs $d_t/d_{\rm H}$ giving $\overline{PEP_{\nu}^{(I)^*}} = 10^{-2}$ when $\bar{\nu} = 20$ dB and $L_{\rm rel} = 0.5$
0.27	varying the diversity order and the useful power level when $d_{\rm ex} = 2$ m
	SD receiver 158
7 1	
7.1	TDMA schedules of the LEACH protocol
7.2	The two-hop graph colouring solution proposed by Guo et al
7.3	The node randomly selects a channel. If all channels are busy, the node
	sets a random timer for each of them and backs off. It will use the channel
	whose timer expires first and clear the timers for all other channels
1.4	wake-up schedule proposed in DMAC
7.5	State diagram of the protocol PAMAS
7.6	In S-MAC each node independently chooses its own listen/sleep schedule
	periodically and broadcasts it in a SYNC packet. If a node wants to
	send a packet to a node that follows a different schedule, it just waits
	until the other node is listening

7.7	Flooding and gossiping. The black lines represent the wireless
	links of the nodes in reciprocal coverage radio, while the coloured
	lines show the data packets' forwarding process
7.8	The negotiation procedure of the SPIN protocol
7.9	Directed diffusion
7.10	When a node generates a query, instead of flooding it, it can directly route
	the query to the event, in case a path to the event has been discovered179
7.11	Gradient setup phase: the gradient in each link is calculated as
	the difference between the heights of the nodes in that link
7.12	LEACH routing protocol: the two examples evidence the rotation
	of cluster heads among nodes in each cluster
7.13	PEGASIS: the two examples evidence the rotation of leaders
/.10	among the nodes composing the chain 183
7 14	Sensors in each cluster switch on and send their data to the cluster head
/.1 /	only when collected values are greater than a predefined threshold 184
7 15	The relay region of the MFCN protocol consists of nodes in a
7.15	surrounding area where transmitting through those nodes is more
	energy efficient than direct transmission 185
7 16	Coordinators forming the backbone in SPAN 186
7.17	GAF: nodes inside the same square zone are equivalent for routing
/.1/	metrics: only one node at a time needs to be awake in each square
	zone all the others can be put in a sleep state 187
7 18	GEAR protocol: mechanism of query packet forwarding. From the
/.10	sink to the target region they are forwarded minimizing a defined
	link cost <i>h</i> : inside the target region flooding is used
7 1 9	Priority regions of the GeRaE protocol
7.20	Data routing in the Rugin protocol
1.20	
81	Relationship between the estimated time and actual time
82	Two way ranging between two nodes
83	Ranging error in two-way ranging due to relative clock drifts
0.5	$\delta_{\rm r} = 10^{-5} \tau_{\rm r} = 100 \rm ns$
8 /	$v_A = 10^{\circ}$, $v_p = 100^{\circ}$ ns
85	TDoA scheme 2 200
8.6	CRI B and 77I B as a function of the SNR for different order
0.0	derivative of the Gaussian pulse $\tau = 1$ ns 203
87	Threshold-based ToA estimator with ME 204
8.8	Threshold-based ToA estimator with FD 204
8.9	RMSE vs TNR (dB) for different SNR values 205
8 10	PMSE vs the SNP using ontimum values of <i>n</i>
0.10	Comparison with the CRLB 206
8 1 1	Energy matrix for a system with $T = 120$ ns and $\tau = 2$ ns
0.11	affected by NBI 200
812	Energy matrix for a system with $T = 120$ ns and $\tau = 2$ ns
0.12	Energy matrix for a system with $T = 120$ its and $t_s = 2$ its, affected by WBI
	ance de by w D1

List	of figures
------	------------

8.13	Threshold-based ToA estimator with 2D filtering to mitigate the NBL and WBL 200
8 1/	Performance of the threshold-based estimator with $N = 400$
0.14	and different 2D filtering techniques in the presence of both NBI
	interference-to-noise ratio INR = 35 dB and WBL SIR = -15 dB 210
8 1 5	Example of multilateration 212
8 16	Example of Min Max multilatoration 212
8.17	Contour map of PEB when 5 LOS beacons are placed at the vertices
	of a polygon with $R = 25$ m, $\alpha = 3$, $\sigma_0^2 = 0.001$ m ²
8.18	Performance comparison between multihop positioning algorithms
	(Langendoen & Reijers, 2003)
8.19	Performance comparison between iterative multihop
	positioning algorithms
8.20	Proximity-based positioning
8.21	The feasible region of solutions for the unknown node position
	(white node) as the number of anchor nodes (black nodes) increases 222
8.22	Anchor-free positioning as spring embedder system
8.23	A schematic representation of Bayesian filtering for position tracking 224
8.24	Sources of error in the packet delivery delay
8.25	Basic time synchronization procedure: two-way message exchange
	between a pair of nodes
8.26	The basic principle of the RBS scheme
8.27	An example of the hierarchial topology created by the TSPN229
9.1	Example of distributed detection scenario
9.2	Parallel fusion architecture
9.3	Cooperative fusion architecture
9.4	Effect of PoI intensity through λ_d/λ_t and flooding energy on energy
	efficiency of CFA when $P_{e} = 1 \times 10^{-4}$ and $\lambda_{t} = 500$. The flooding
	protocol parameter set used is $(T_h, \lambda_h, D_r) = (3, 11, 0.9) \dots 242$
9.5	Example of distributed scalar field estimation scenario for
	environmental monitoring
9.6	Scenario considered and main quantities involved in the
	process estimation
9.7	Transmission flow with the clustered algorithm. Rectangle: supervisor;
	filled circle: CHs; circle: non-CH nodes
9.8	Mean cluster size as a function of density for different values
	of parameters x and α
9.9	Probability of sample loss as a function of density for different
	values of parameters x , α and c
9.10	MSE with and without DDSP as a function of nodes density for
	different values of μ for $\alpha = 0.1$ and $x = 0.001$ in the
	three different cases for linear interpolator
9.11	MSE with and without DDSP, as a function of density for different
	values of <i>α</i> and <i>x</i>

9.12	Mean node life duration (in terms of number of rounds as a function of	
	density for different values of parameters x and α without DDSP)	. 262
9.13	Mean node life duration (in terms of number of rounds as a function of	
	density for different values of parameters x and α with DDSP)	. 263
10.1	Wireless sensor and actor node architecture	. 280
10.2	Infineon eyesIFX mote	. 281
10.3	NEDAP mote	. 281
10.4	Routing paths during 100 packets test	. 285
10.5	Data collector software	. 286
10.6	Position estimated compared to real position	. 286
10.7	Ranging function estimation based on network measures	. 288
10.8	AN demo structures	. 291
10.9	AN demo setup.	. 292
10.10	Lamp radio coverage prevision	. 295
10.11	(a) Example of localization through Min-Max algorithm;	
	(b) and (c) visual representation of the mobility and perception	
	probability maps for Bayesian algorithm	. 299
10.12	Context-aware platform structure organized in three levels	. 301
10.13	Maps of the environments where the on-field measurements were	
	conducted: (a) Ambient I; (b) Ambient II; (c) Ambient III; (d) Ambient I	V.
	The round dots represent the WSN anchor nodes deployed in the	
	indoor environment	. 303
10.14	(a) Example of 3D electromagnetic field distribution obtained through	
	ray tracing; (b) channel characterization at 433 MHz; (c) channel	
	modelling coefficients for indoor environments	. 305
10.15	Accuracy vs precision for Min-Max algorithm with different channel	
	coefficients in Ambient III	. 306
10.16	Accuracy vs precision for Min-Max and Bayesian filter algorithms	
	in Ambient IV.	. 307
10.17	Accuracy vs precision for Min-Max and Bayesian filter algorithms	
	in Ambient I	. 307
10.18	Accuracy vs precision for Bayesian filter algorithm with different	
	channel coefficients in Ambient II	. 308
10.19	The scenario considered for measurements at the WiLAB laboratory of	
	the University of Bologna. Coordinates are expressed in millimeters	. 309
10.20	The layouts considered for DP extra delay characterization. (a) one wall	
	with thickness $d_{\rm W} = 15$ cm (layout 1) and $d_{\rm W} = 30$ cm (layout 2);	
	(b) two walls with thickness $15 + 30$ cm (layout 3)	. 311
10.21	RMSE as the function of target position in absence of	
	priori information	. 312
10.22	RMSE as the function of target position in the presence of	
	priori information	. 313
10.23	PAN coordinator C and device D	.317

10.24	Field trial geometry	317
10.25	Association time measured at different speeds	318
10.26	Throughput measured at different speeds	319
10.27	Amount of data successfully transmitted at different speeds	319
10.28	Throughput measured in ideal conditions, as a function of	
	the payload size	320
10.29	Field trial geometry	321
10.30	IEEE 802.15.4 and IEEE 802.11 carriers	322
10.31	Packet error rate measured over the IEEE 802.15.4 link	322
10.32	Throughput measured with one, two or three routers	323
10.33	SIR over 200 m of perimeter, case with single frequency	325
10.34	SIR over 200 m of perimeter, case with two frequencies	326
10.35	SIR over 200 m of perimeter, case with four frequencies	326
10.36	PAN coordinator C and device D, second test phase	329
10.37	First test scenario	330
10.38	Second test scenario	330
10.39	Third test scenario	330
10.40	De-association time for different Leaky Bucket thresholds	332
10.41	Re-association time for different Leaky Bucket thresholds	332
10.42	Throughput for different scenarios and Leaky Bucket thresholds	333
10.43	PER for different scenarios and Leaky Bucket thresholds	333

List of tables

2.1	Four levels of node features
2.2	Three levels of node features
4.1	Comparison of the values of r_c obtained from the Penrose
	theorem and through simulations with the 99% of confidence,
	for different values of <i>n</i>
4.2	Boundary values of <i>r</i> in the eight regions
4.3	Boundary values to the angle θ as functions of r in the eight regions104
6.1	IEEE 802.15.4a PHY layer frequency bands
9.1	Values adopted for propagation, process, system and project
	parameters if not otherwise specified258
10.1	Bias and standard deviation for different wall thickness

Preface

Aim of this book

Wireless sensor and actuator networks (WSANs) are among the most addressed research fields in the area of information and communication technologies (ICT) these days, in the US, Europe and Asia. WSANs are composed of possibly a large number of tiny, autonomous sensor devices and actuators equipped with wireless communication capabilities. One of the most relevant aspects of this research field stands in its multidisciplinarity and the broad range of skills that are needed to approach their design. Theory of control systems is involved, networking, middleware, application layer issues are relevant, joint consideration of hardware and software aspects is needed, and their use can range from biomedical to industrial or automotive applications, from military to civil environments, etc.

This book mainly covers wireless networking and design issues of WSANs with applications.

This research field attracted enormous and ever increasing attention in the past years. However, by looking, for example, at the IEEE literature, the first paper having 'wireless sensor network' in the title in the online IEEE database of scientific papers Xplore, dates back to the year 2000. A query on the ACM database brings us to the same outcome. So, this is a new research field that only very recently attracted the interest of many scientists worldwide. On the other hand, the number of papers in the open literature increased exponentially after the year 2000 (e.g. with a similar query IEEE Xplore shows 3 papers for 2000, 20 in 2001, 34 in 2002, 98 in 2003, 289 in 2004, 622 in 2005, 952 in 2006): this clearly testifies to the relevance of the research field on the one hand; on the other, owing to the chaotic distribution of effort provided by thousands of separate research groups worldwide, a consensus on major design rules of WSANs is still lacking, and it is not unusual to find recent papers using model assumptions which have been proven to be not realistic by others. This book also aims at defining some general design rules for WSANs and a common set of model assumptions that are real-world-proof. Some myths will be destroyed.

Why a new book on WSANs

As anticipated by the title, this book covers aspects of WSANs, ranging from channel modelling, transmission techniques, communication protocols, localization and signal processing issues. Some of these aspects have already been covered by previously published books, by this and other publishers. The rationale for providing a new book on WSANs is the following. The majority of available books provide extensive descriptions