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Preface

Aim of this book

Wireless sensor and actuator networks (WSANS) are among the most addressed research
fields in the area of information and communication technologies (ICT) these days, in the
US, Europe and Asia. WSANSs are composed of possibly a large number of tiny, autono-
mous sensor devices and actuators equipped with wireless communication capabilities. One
of the most relevant aspects of this research field stands in its multidisciplinarity and the
broad range of skills that are needed to approach their design. Theory of control systems
is involved, networking, middleware, application layer issues are relevant, joint considera-
tion of hardware and software aspects is needed, and their use can range from biomedical
to industrial or automotive applications, from military to civil environments, etc.

This book mainly covers wireless networking and design issues of WSANs with
applications.

This research field attracted enormous and ever increasing attention in the past years.
However, by looking, for example, at the IEEE literature, the first paper having ‘wireless
sensor network’ in the title in the online IEEE database of scientific papers Xplore, dates
back to the year 2000. A query on the ACM database brings us to the same outcome. So,
this is a new research field that only very recently attracted the interest of many scien-
tists worldwide. On the other hand, the number of papers in the open literature increased
exponentially after the year 2000 (e.g. with a similar query IEEE Xplore shows 3 papers
for 2000, 20 in 2001, 34 in 2002, 98 in 2003, 289 in 2004, 622 in 2005, 952 in 2006):
this clearly testifies to the relevance of the research field on the one hand; on the other,
owing to the chaotic distribution of effort provided by thousands of separate research
groups worldwide, a consensus on major design rules of WSANS is still lacking, and it
is not unusual to find recent papers using model assumptions which have been proven to
be not realistic by others. This book also aims at defining some general design rules for
WSANSs and a common set of model assumptions that are real-world-proof. Some myths
will be destroyed.

Why a new book on WSANs

As anticipated by the title, this book covers aspects of WSANS, ranging from channel
modelling, transmission techniques, communication protocols, localization and sig-
nal processing issues. Some of these aspects have already been covered by previously
published books, by this and other publishers. The rationale for providing a new book on
WSANSs is the following. The majority of available books provide extensive descriptions

XiX



