

 Software Development for Embedded
Multi-core Systems

This page intentionally left blank

 Software Development for Embedded
Multi-core Systems

 A Practical Guide Using Embedded
Intel ® Architecture

 Max Domeika

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Cover image by iStockphoto
 Newnes is an imprint of Elsevier
 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
 Linacre House, Jordan Hill, Oxford OX2 8DP, UK

 Copyright © 2008, Elsevier Inc. All rights reserved.
 Intel® and Pentium® are registered trademarks of Intel Corporation.
*Other names and brands may be the property of others.

 The author is not speaking for Intel Corporation. This book represents the opinions of author.

 Performance tests and ratings are measured using specifi c computer systems and/or components and refl ect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or software
design or confi guration may affect actual performance. Buyers should consult other sources of information to evaluate the
performance of systems or components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, visit Intel Performance Benchmark Limitations.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

 Permissions may be sought directly from Elsevier ’ s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: http://www.permissions@elsevier.com . You may
also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “ Support &
Contact ” then “ Copyright and Permission ” and then “ Obtaining Permissions. ”

Library of Congress Cataloging-in-Publication Data
 Domeika, Max.
 Software development for embedded multi-core systems : a practical guide using embedded

Intel architecture / Max Domeika.
 p. cm.
 ISBN 978-0-7506-8539-9
 1. Multiprocessors. 2. Embedded computer systems. 3. Electronic data processing—

Distributed processing. 4. Computer software—Development. I. Title.
 QA76.5.D638 2008
 004 � .35—dc22 2008006618

British Library Cataloguing-in-Publication Data
 A catalogue record for this book is available from the British Library.

 ISBN: 978-0-7506-8539-9

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India
www.charontec.com

 Printed in the United States of America
 08 09 10 11 10 9 8 7 6 5 4 3 2 1

 For information on all Newnes publications
visit our Web site at www.books.elsevier.com

www.newnespress.com

 Contents

Preface .. ix

Acknowledgments ... xiii

Chapter 1: Introduction ...1
 1.1 Motivation ..3
 1.2 The Advent of Multi-core Processors ...4
 1.3 Multiprocessor Systems Are Not New ...4
 1.4 Applications Will Need to be Multi-threaded ..6
 1.5 Software Burden or Opportunity ..8
 1.6 What is Embedded? ..10
 1.7 What is Unique About Embedded? ..13
 Chapter Summary ..14

Chapter 2: Basic System and Processor Architecture ...17
 Key Points ..17
 2.1 Performance ..19
 2.2 Brief History of Embedded Intel ® Architecture Processors 20
 2.3 Embedded Trends and Near Term Processor Impact ...37
 2.4 Tutorial on x86 Assembly Language ..39
 Chapter Summary ..53
 Related Reading ..54

Chapter 3: Multi-core Processors and Embedded ..55
 Key Points ..55
 3.1 Motivation for Multi-core Processors ...56
 3.2 Multi-core Processor Architecture ...57
 3.3 Benefi ts of Multi-core Processors in Embedded ..62
 3.4 Embedded Market Segments and Multi-core Processors ... 63

 3.5 Evaluating Performance of Multi-core Processors ...69
 Chapter Summary ..87
 Related Reading ..88

Chapter 4: Moving to Multi-core Intel Architecture ...89
 Key Points ..89
 4.1 Migrating to Intel Architecture ...91
 4.2 Enabling an SMP OS ..111
 4.3 Tools for Multi-Core Processor Development ..117
 Chapter Summary ..136
 Related Reading ..137

Chapter 5: Scalar Optimization and Usability ..139
 Key Points ..139
 5.1 Compiler Optimizations ...143
 5.2 Optimization Process ..153
 5.3 Usability ...161
 Chapter Summary ..170
 Related Reading ..170

Chapter 6: Parallel Optimization Using Threads ..173
 Key Points ..173
 6.1 Parallelism Primer ..175
 6.2 Threading Development Cycle ...184
 Chapter Summary ..206
 Related Reading ..207

Chapter 7: Case Study: Data Decomposition ..209
 Key Points ..209
 7.1 A Medical Imaging Data Examiner ..209
 Chapter Summary ..245

Chapter 8: Case Study: Functional Decomposition ..247
 Key Points ..247
 8.1 Snort ...248

vi

www.newnespress.com

Contents

www.newnespress.com

vii

 8.2 Analysis ..251
 8.3 Design and Implement ..258
 8.4 Snort Debug ..280
 8.5 Tune ..282
 Chapter Summary ..286

Chapter 9: Virtualization and Partitioning ..287
 Key Points ..287
 9.1 Overview ..287
 9.2 Virtualization and Partitioning ...290
 9.3 Techniques and Design Considerations ..304
 9.4 Telecom Use Case of Virtualization ...322
 Chapter Summary ..342
 Related Reading ..344

Chapter 10: Getting Ready for Low Power Intel Architecture 347
 Key Points .. 347
 10.1 Architecture ..349
 10.2 Debugging Embedded Systems ..362
 Chapter Summary ..382

Chapter 11: Summary, Trends, and Conclusions ...385
 11.1 Trends ...387
 11.2 Conclusions ..392

Appendix A ..393

Glossary ...394

Index ...411

Contents

This page intentionally left blank

www.newnespress.com

 Preface

 At the Fall 2006 Embedded Systems Conference, I was asked by Tiffany Gasbarrini,
Acquisitions Editor of Elsevier Technology and Books if I would be interested in writing
a book on embedded multi-core. I had just delivered a talk at the conference entitled,
 “ Development and Optimization Techniques for Multi-core SMP ” and had given other
talks at previous ESCs as well as writing articles on a wide variety of software topics.
Write a book – this is certainly a much larger commitment than a presentation or
technical article. Needless to say, I accepted the offer and the result is the book that you,
the reader, are holding in your hands. My sincere hope is that you will fi nd value in the
following pages.

 Why This Book?

 Embedded multi-core software development is the grand theme of this book and certainly
played the largest role during content development. That said, the advent of multi-core
is not occurring in a vacuum; the embedded landscape is changing as other technologies
intermingle and create new opportunities. For example, the intermingling of multi-core
and virtualization enable the running of multiple operating systems on one system at
the same time and the ability for each operating system to potentially have full access to
all processor cores with minimal drop off in performance. The increase in the number
of transistors available in a given processor package is leading to integration the likes
of which have not been seen previously; converged architectures and low power multi-
core processors combining cores of different functionality are increasing in number. It
is important to start thinking now about what future opportunities exist as technology
evolves. For this reason, this book also covers emerging trends in the embedded market
segments outside of pure multi-core processors.

 When approaching topics, I am a believer in fundamentals. There are two reasons. First,
it is very diffi cult to understand advanced topics without having a fi rm grounding in
the basics. Second, advanced topics apply to decreasing numbers of people. I was at

x

www.newnespress.com

Preface

an instrumentation device company discussing multi-core development tools and the
topic turned to 8-bit code optimization. I mentioned a processor issue termed partial
register stalls and then found myself discussing in detail how the problem occurs and
the innermost workings of the cause inside the processor (register renaming to eliminate
false dependencies, lack of hardware mechanisms to track renamed values contained in
different partial registers). I then realized while the person to whom I was discussing was
thoroughly interested, the rest of the people in the room were lost and no longer paying
attention. It would have been better to say that partial register stalls could be an issue in
8-bit code. Details on the problem can be found in the optimization guide.

 My book will therefore tend to focus on fundamentals and the old KISS 1 principle:

● What are the high level details of X?

● What is the process for performing Y?

 Thanks. Now show me a step-by-step example to apply the knowledge that I can reapply
to my particular development problem.

 That is the simple formula for this book:

 1. Provide suffi cient information, no more and no less.

 2. Frame the information within a process for applying the information.

 3. Discuss a case study that provides practical step-by-step instructions to help with
your embedded multi-core projects.

 Intended Audience

 The intended audience includes employees at companies working in the embedded
market segments who are grappling with how to take advantage of multi-core processors
for their respective products. The intended audience is predominately embedded software
development engineers; however, the information is approachable enough for less day-to-
day technical embedded engineers such as those in marketing and management.

1 KISS � Keep It Simple, Stupid.

www.newnespress.com

xiPreface

 Readers of all experience and technical levels should derive the following benefi ts from
the information in this book:

● A broad understanding of multi-core processors and the challenges and
opportunities faced in the embedded market segments.

● A comprehensive glossary of relevant multi-core and architecture terms.

 Technical engineers should derive the following additional benefi ts:

● A good understanding of the optimization process of single processors and multi-
core processors.

● Detailed case studies showing practical step-by-step advice on how to leverage
multi-core processors for your embedded applications.

● References to more detailed documentation for leveraging multi-core processors
specifi c to the task at hand. For example, if I were doing a virtualization
project, what are the steps and what specifi c manuals do I need for the detailed
information?

 The book focuses on practical advice at the expense of theoretical knowledge. This means
that if a large amount of theoretical knowledge is required to discuss an area or a large
number of facts are needed then this book will provide a brief discussion of the area and
provide references to the books that provide more detailed knowledge. This book strives
to cover the key material that will get developers to the root of the problem, which is
taking advantage of multi-core processors.

This page intentionally left blank

www.newnespress.com

 Acknowledgments

 There are many individuals to acknowledge. First, I ’ d like to thank Rachel Roumeliotis
for her work as editor.

 I also need to acknowledge and thank the following contributors to this work:

● Jamel Tayeb for authoring Chapter 9 – Virtualization and Partitioning. Your
expertise on partitioning is very much appreciated.

● Arun Raghunath for authoring Chapter 8 – Case Study: Functional
Decomposition. Thank you for fi guring out how to perform fl ow pinning and the
detailed analysis performed using Intel ® Thread Checker. Thanks also to Shwetha
Doss for contributions to the chapter.

● Markus Levy, Shay Gal-On, and Jeff Biers for input on the benchmark section of
Chapter 3.

● Lori Matassa for contributions to big endian and little endian issues and OS
migration challenges in Chapter 4.

● Clay Breshears for his contribution of the tools overview in Chapter 4.

● Harry Singh for co-writing the MySQL case study that appears in Chapter 5.

● Bob Chesebrough for his contribution on the Usability section in Chapter 5.

● Lerie Kane for her contributions to Chapter 6.

● Rajshree Chabukswar for her contributions of miscellaneous power utilization
techniques appearing in Chapter 10.

● Rob Mueller for his contributions of embedded debugging in Chapter 10.

● Lee Van Gundy for help in proofreading, his many suggestions to make the
reading more understandable, and for the BLTK case study.

● Charles Roberson and Shay Gal-On for a detailed technical review of several
chapters.

● David Kreitzer, David Kanter, Jeff Meisel, Kerry Johnson, and Stephen
Blair-chappell for review and input on various subsections of the book.

 Thank you, Joe Wolf, for supporting my work on this project. It has been a pleasure
working on your team for the past 4 years.

 This book is in large part a representation of my experiences over the past 20 years in the
industry so I would be remiss to not acknowledge and thank my mentors throughout my
career – Dr. Jerry Kerrick, Mark DeVries, Dr. Edward Page, Dr. Gene Tagliarini,
Dr. Mark Smotherman, and Andy Glew.

 I especially appreciate the patience, support, and love of my wife, Michelle, and my
kids, James, Caleb, and Max Jr. I owe them a vacation somewhere after allowing me the
sacrifi ce of my time while writing many nights and many weekends.

xiv

www.newnespress.com

Acknowledgments

www.newnespress.com

 Introduction
CHAPTER 1

 The proceeding conversation is a characterization of many discussions I ’ ve had with
engineers over the past couple of years as I ’ ve attempted to communicate the value of
multi-core processors and the tools that enable them. This conversation also serves as
motivation for the rest of this chapter.

 A software engineer at a print imaging company asked me, “ What can customers do with
quad-core processors? ” At fi rst I grappled with the question thinking to a time where I
did not have an answer. “ I don ’ t know, ” was my fi rst impulse, but I held that comment to
myself. I quickly collected my thoughts and recalled a time when I sought an answer to
this very question:

● Multiple processors have been available on computer systems for years.

● Multi-core processors enable the same benefi t as multiprocessors except at a
reduced cost.

 I remembered my graduate school days in the lab when banks of machines were fully
utilized for the graphics students ’ ray-tracing project. I replied back, “ Well, many
applications can benefi t from the horsepower made available through multi-core
processors. A simple example is image processing where the work can be split between
the different cores. ”

 The engineer then stated, “ Yeah, I can see some applications that would benefi t, but aren ’ t
there just a limited few? ”

2

www.newnespress.com

Chapter 1

 My thoughts went to swarms of typical computer users running word processors or
browsing the internet and not in immediate need of multi-core processors let alone the
fastest single core processors available. I then thought the following:

● Who was it that said 640 kilobytes of computer memory is all anyone would ever
need?

● Systems with multiple central processing units (CPUs) have not been targeted
to the mass market before so developers have not had time to really develop
applications that can benefi t.

 I said, “ This is a classic chicken-and-egg problem. Engineers tend to be creative in
fi nding ways to use the extra horsepower given to them. Microprocessor vendors want
customers to see value from multi-core because value equates to price. I ’ m sure there will
be some iteration as developers learn and apply more, tools mature and make it easier,
and over time a greater number of cores become available on a given system. We will all
push the envelope and discover just which applications will be able to take advantage of
multi-core processors and how much. ”

 The engineer next commented, “ You mentioned ‘ developers learn. ’ What would I need to
learn – as if I ’ m not overloaded already? ”

 At this point, I certainly didn ’ t want to discourage the engineer, but also wanted to be
direct and honest so ran through in my mind the list of things to say:

● Parallel programming will become mainstream and require software engineers to
be fl uent in the design and development of multi-threaded programs.

● Parallel programming places more of the stability and performance burden on
the software and the software engineer who must coordinate communication and
control of the processor cores.

 “ Many of the benefi ts to be derived from multi-core processors require software changes.
The developers making the changes need to understand potential problem areas when it
comes to parallel programming. ”

 “ Like what? ” the overworked engineer asked knowing full well that he would not like the
answer.

 “ Things like data races, synchronization and the challenges involved with it, workload
balance, etc. These are topics for another day, ” I suggested.

www.newnespress.com

3Introduction

 Having satisfi ed this line of questioning, my software engineering colleague looked at
me and asked, “ Well what about embedded? I can see where multi-core processing can
help in server farms rendering movies or serving web queries, but how can embedded
applications take advantage of multi-core? ”

 Whenever someone mentions embedded, my fi rst wonder is – what does he or she mean
by “ embedded ” ? Here ’ s why:

● Embedded has connotations of “ dumb ” devices needing only legacy technology
performing simple functions not much more complicated than those performed by
a pocket calculator.

● The two applications could be considered embedded. The machines doing the actual
work may look like standard personal computers, but they are fi xed in function.

 I responded, “ One defi nition of embedded is fi xed function which describes the
machines running the two applications you mention. Regardless, besides the data parallel
applications you mention, there are other techniques to parallelize work common in
embedded applications. Functional decomposition is one technique or you can partition
cores in an asymmetric fashion. ”

 “ Huh? ” the software engineer asked.

 At this point, I realized that continuing the discussion would require detail and time that
neither of us really wanted to spend at this point so I quickly brought up a different topic.
 “ Let ’ s not talk too much shop today. How are the kids? ” I asked.

 1.1 Motivation

 The questions raised in the previous conversation include:

● What are multi-core processors and what benefi ts do they provide?

● What applications can benefi t from multi-core processors and how do you derive
the benefi t?

● What are the challenges when applying multi-core processors? How do you
overcome them?

● What is unique about the embedded market segments with regard to multi-core
processors?

4

www.newnespress.com

Chapter 1

 Many of the terms used in the conversation may not be familiar to the reader and this is
intentional. The reader is encouraged to look up any unfamiliar term in the glossary or
hold off until the terms are introduced and explained in detail in later portions of the book.
The rest of this chapter looks at each of the key points mentioned in the conversation
and provides a little more detail as well as setting the tone for the rest of the book. The
following chapters expound on the questions and answers in even greater detail.

 1.2 The Advent of Multi-core Processors

 A multi-core processor consists of multiple central processing units (CPUs) residing in
one physical package and interfaced to a motherboard. Multi-core processors have been
introduced by semiconductor manufacturers across multiple market segments. The basic
motivation is performance – using multi-core processors can result in faster execution time,
increased throughput, and lower power usage for embedded applications . The expectation
is that the ratio of multi-core processors sold to single core processors sold will trend even
higher over time as the technical needs and economics make sense in increasing numbers
of market segments. For example, in late 2006 a barrier was crossed when Intel ® began
selling more multi-core processors than single core processors in the desktop and server
market segments. Single core processors still have a place where absolute cost is prioritized
over performance, but again the expectation is that the continuing march of technology will
enable multi-core processors to meet the needs of currently out-of-reach market segments.

 1.3 Multiprocessor Systems Are Not New

 A multiprocessor system consists of multiple processors residing within one system.
The processors that make up a multiprocessor system may be single core or multi-core
processors. Figure 1.1 shows three different system layouts, a single core/single processor
system, a multiprocessor system, and a multiprocessor/multi-core system.

Multiprocessor systems , which are systems containing multiple processors, have been
available for many years. For example, pick up just about any book on the history of
computers and you can read about the early Cray [1] machines or the Illiac IV [2] . The fi rst
widely available multiprocessor systems employing x86 processors were the Intel iPSC
systems of the late 1980s, which confi gured a set of Intel ® i386 ™ processors in a cube
formation. The challenge in programming these systems was how to effi ciently split the
work between multiple processors each with its own memory. The same challenge exists in

www.newnespress.com

5Introduction

today ’ s multi-core systems confi gured in an asymmetric layout where each processor has
a different view of the system. The fi rst widely available dual processor IA-32 architecture
system where memory is shared was based upon the Pentium ® processor launched in 1994.
One of the main challenges in programming these systems was the coordination of access
to shared data by the multiple processors. The same challenge exists in today ’ s multi-core
processor systems when running under a shared memory environment.

 Increased performance was the motivation for developing multiprocessor systems in the
past and the same reason multi-core systems are being developed today. The same relative
benefi ts of past multiprocessor systems are seen in today ’ s multi-core systems. These
benefi ts are summarized as:

● Faster execution time

● Increased throughput

 In the early 1990s, a group of thirty 60 Megahertz (MHz) Pentium processors with
each processor computing approximately 5 million fl oating-point operations a second
(MFLOPS) amounted in total to about 150 MFLOPS of processing power. The
processing power of this pool of machines could be tied together using an Application
Programming Interface (API) such as Parallel Virtual Machine [3] (PVM) to complete
complicated ray-tracing algorithms.

 Today, a single Intel ® Core ™ 2 Quad processor delivers on the order of 30,000 MFLOPS
and a single Intel ® Core ™ 2 Duo processor delivers on the order of 15,000 MFLOPS.
These machines are tied together using PVM or Message Passing Interface [4] (MPI) and
complete the same ray-tracing algorithms working on larger problem sizes and fi nishing
them in faster times than single core/single processor systems.

Single processor/
Single core

CPU

Multiprocessor

CPUCPU

Multiprocessor/
Multi-core

CPU CPU

CPU CPU

CPU CPU

CPU CPU

 Figure 1.1 : Three system confi gurations

6

www.newnespress.com

Chapter 1

 The Dual-Core Intel ® Xeon ® Processor 5100 series is an example of a multi-core/
multi-processor that features two dual-core Core ™ processors in one system. Figure 1.2
is a sample embedded platform that employs this particular dual-core dual processor.

 1.4 Applications Will Need to be Multi-threaded

 Paul Otellini, CEO of Intel Corporation, stated the following at the Fall 2003 Intel
Developer Forum:

 We will go from putting Hyper-threading Technology in our products to bringing
dual-core capability in our mainstream client microprocessors over time. For the
software developers out there, you need to assume that threading is pervasive.

 This forward-looking statement serves as encouragement and a warning that to take
maximum advantage of the performance benefi ts of future processors you will need to
take action. There are three options to choose from when considering what to do with
multi-core processors:

 1. Do nothing

 2. Multi-task or Partition

 3. Multi-thread

 Figure 1.2 : Intel NetStructure ® MPCBL0050 single board computer

www.newnespress.com

7Introduction

 The fi rst option, “ Do nothing, ” maintains the same legacy software with no changes to
accommodate multi-core processors. This option will result in minimal performance increases
because the code will not take advantage of the multiple cores and only take advantage
of the incremental increases in performance offered through successive generations of
improvements to the microarchitecture and the software tools that optimize for them.

 The second option is to multi-task or partition. Multi-tasking is the ability to run multiple
processes at the same time. Partitioning is the activity of assigning cores to run specifi c
operating systems (OSes). Multi-tasking and partitioning reap performance benefi ts from
multi-core processors. For embedded applications, partitioning is a key technique that can
lead to substantial improvements in performance or reductions in cost.

 The fi nal option is to multi-thread your application. Multi-threading is one of the main routes
to acquiring the performance benefi ts of multi-core processors. Multi-threading requires
designing applications in such a way that the work can be completed by independent
workers functioning in the same sandbox. In multi-threaded applications, the workers are the
individual processor cores and the sandbox represents the application data and memory.

 Figure 1.3 is a scenario showing two classes of software developers responding to the
shift to multi-core processors and their obtained application performance over time. The
x -axis represents time, and the y -axis represents application performance. The top line
labeled “ Platform Potential ” represents the uppermost bound for performance of a given
platform and is the ceiling for application performance. In general, it is impossible to
perfectly optimize your code for a given processor and so the middle line represents the
attained performance for developers who invest resources in optimizing. The bottom

P
er

fo
rm

an
ce

GHz Era

Time

Multi-core Era

Uncompetitive
Active Engineer

Passive Engineer
Platform Potential Growing gap!

Fixed gap

Highly
competitive

 Figure 1.3 : Taking advantage of multi-core processors

