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Retzius väg 8, SE-171 77 Stockholm, Sweden
S. Grossberg, Department of Cognitive and Neural Systems, Center for Adaptive Systems, and Center for

Excellence for Learning in Education, Science and Technology, Boston University, 677 Beacon Street,
Boston, MA 02215, USA

v



J.A. Guest, Biology and Biochemistry, University of Houston, Houston, TX, USA
C. Hart, Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane,

Philadelphia, PA 19129, USA
M. Hawken, Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003,

USA
M.R. Hinder, Perception and Motor Systems Laboratory, School of Human Movement Studies, University

of Queensland, Brisbane, Queensland 4072, Australia
G.E. Hinton, Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto,

M5S 3G4 Canada
A. Ijspeert, School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne

(EPFL), Station 14, CH-1015 Lausanne, Switzerland
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Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
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Preface

In recent years, computational approaches have become an increasingly prominent and influential part of
neuroscience research. From the cellular mechanisms of synaptic transmission and the generation of action
potentials, to interactions among networks of neurons, to the high-level processes of perception and
memory, computational models provide new sources of insight into the complex machinery which underlies
our behaviour. These models are not merely mathematical surrogates for experimental data. More
importantly, they help us to clarify our understanding of a particular nervous system process or function,
and to guide the design of our experiments by obliging us to express our hypotheses in a language of
mathematical formalisms. A mathematical model is an explicit hypothesis, in which we must incorporate all
of our beliefs and assumptions in a rigorous and coherent conceptual framework that is subject to
falsification and modification. Furthermore, a successful computational model is a rich source of
predictions for future experiments. Even a simplified computational model can offer insights that unify
phenomena across different levels of analysis, linking cells to networks and networks to behaviour. Over
the last few decades, more and more experimental data have been interpreted from computational
perspectives, new courses and graduate programs have been developed to teach computational
neuroscience methods and a multitude of interdisciplinary conferences and symposia have been organized
to bring mathematical theorists and experimental neuroscientists together.

This book is the result of one such symposium, held at the Université de Montréal on May 8–9, 2006 (see:
http://www.grsnc.umontreal.ca/XXVIIIs). It was organized by the Groupe de Recherche sur le Système
Nerveux Central (GRSNC) as one of a series of annual international symposia held on a different topic
each year. This was the first symposium in that annual series that focused on computational neuroscience,
and it included presentations by some of the pioneers of computational neuroscience as well as prominent
experimental neuroscientists whose research is increasingly integrated with computational modelling. The
symposium was a resounding success, and it made clear to us that computational models have become a
major and very exciting aspect of neuroscience research. Many of the participants at that meeting have
contributed chapters to this book, including symposium speakers and poster presenters. In addition, we
invited a number of other well-known computational neuroscientists, who could not participate in the
symposium itself, to also submit chapters.

Of course, a collection of 34 chapters cannot cover more than a fraction of the vast range of
computational approaches which exist. We have done our best to include work pertaining to a variety of
neural systems, at many different levels of analysis, from the cellular to the behavioural, from approaches
intimately tied with neural data to more abstract algorithms of machine learning. The result is a collection
which includes models of signal transduction along dendrites, circuit models of visual processing,
computational analyses of vestibular processing, theories of motor control and learning, machine
algorithms for pattern recognition, as well as many other topics. We asked all of our contributors to
address their chapters to a broad audience of neuroscientists, psychologists, and mathematicians, and to
focus on the broad theoretical issues which tie these fields together.

The conference, and this book, would not have been possible without the generous support of the
GRSNC, the Canadian Institute of Advanced Research (CIAR), Institute of Neuroscience, Mental Health
and Addiction (INMHA) of the Canadian Institutes of Health Research (CIHR), the Fonds de la

ix



Recherche en Santé Québec (FRSQ), and the Université de Montréal. We gratefully acknowledge these
sponsors as well as our contributing authors who dedicated their time to present their perspectives on the
computational principles which underlie our sensations, thoughts, and actions.

Paul Cisek

Trevor Drew

John F. Kalaska
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CHAPTER 1

The neuronal transfer function: contributions from
voltage- and time-dependent mechanisms

Erik P. Cook1,�, Aude C. Wilhelm1, Jennifer A. Guest2, Yong Liang2, Nicolas Y. Masse1

and Costa M. Colbert2

1Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, QC H3G 1Y6, Canada
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Abstract: The discovery that an array of voltage- and time-dependent channels is present in both the dend-
rites and soma of neurons has led to a variety of models for single-neuron computation. Most of these
models, however, are based on experimental techniques that use simplified inputs of either single synaptic
events or brief current injections. In this study, we used a more complex time-varying input to mimic the
continuous barrage of synaptic input that neurons are likely to receive in vivo. Using dual whole-cell
recordings of CA1 pyramidal neurons, we injected long-duration white-noise current into the dendrites. The
amplitude variance of this stimulus was adjusted to produce either low subthreshold or high suprathreshold
fluctuations of the somatic membrane potential. Somatic action potentials were produced in the high variance
input condition. Applying a rigorous system-identification approach, we discovered that the neuronal input/
output function was extremely well described by a model containing a linear bandpass filter followed by a
nonlinear static-gain. Using computer models, we found that a range of voltage-dependent channel properties
can readily account for the experimentally observed filtering in the neuronal input/output function. In
addition, the bandpass signal processing of the neuronal input/output function was determined by the time-
dependence of the channels. A simple active channel, however, could not account for the experimentally
observed change in gain. These results suggest that nonlinear voltage- and time-dependent channels con-
tribute to the linear filtering of the neuronal input/output function and that channel kinetics shape temporal
signal processing in dendrites.

Keywords: dendrite; integration; hippocampus; CA1; channel; system-identification; white noise

The neuronal input/output function

What are the rules that single neurons use to
process synaptic input? Put another way, what is
the neuronal input/output function? Revealing the
answer to this question is central to the larger task

of understanding information processing in the
brain. The past two decades of research have
significantly increased our knowledge of how neu-
rons integrate synaptic input, including the finding
that dendrites contain nonlinear voltage- and time-
dependent mechanisms (for review, see Johnston
et al., 1996). However, there is still no consensus
on the precise structure of the rules for synaptic
integration.
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Early theoretical models of neuronal computa-
tion described the neuronal input/output function
as a static summation of the synaptic inputs
(McCulloch and Pitts, 1943). Rall later proposed
that cable theory could account for the passive
electrotonic properties of dendritic processing
(Rall, 1959). This passive theory of dendritic inte-
gration has been extremely useful because it
encompasses both the spatial and temporal aspects
of the neuronal input/output function using a single
quantitative framework. For example, the passive
model predicts that the temporal characteristics of
dendrites are described by a lowpass filter with
a cutoff frequency that is inversely related to the
distance from the soma.

The recent discovery that dendrites contain a rich
collection of time- and voltage-dependent channels
has renewed and intensified the study of dendritic
signal processing at the electrophysiological level
(for reviews, see Hausser et al., 2000; Magee, 2000;
Segev and London, 2000; Reyes, 2001; London and
Hausser, 2005). The central goal of this effort has
been to understand how these active mechanisms
augment the passive properties of dendrites. These
studies, however, have produced somewhat con-
flicting results as to whether dendrites integrate
synaptic inputs in a linear or nonlinear fashion
(Urban and Barrionuevo, 1998; Cash and Yuste,
1999; Nettleton and Spain, 2000; Larkum et al.,
2001; Wei et al., 2001; Tamas et al., 2002; Williams
and Stuart, 2002). The focus of past electrophysi-
ological studies has also been to identify the con-
ditions in which dendrites initiate action potentials
(Stuart et al., 1997; Golding and Spruston, 1998;
Larkum and Zhu, 2002; Ariav et al., 2003;
Gasparini et al., 2004; Womack and Khodakhah,
2004), to understand how dendrites spatially and
temporally integrate inputs (Magee, 1999; Polsky
et al., 2004; Williams, 2004; Gasparini and Magee,
2006; Nevian et al., 2007), and to reveal the extent
of local dendritic computation (Mel, 1993; Hausser
and Mel, 2003; Williams and Stuart, 2003).

Although these past studies have shed light on
many aspects of single-neuron computation, most
studies have focused on quiescent neurons in vitro.
A common experimental technique is to observe
how dendrites process brief ‘‘single-shock’’ inputs,
either a single EPSP or the equivalent dendritic

current injection, applied with no background acti-
vity present (but see Larkum et al., 2001; Oviedo
and Reyes, 2002; Ulrich, 2002; Oviedo and Reyes,
2005; Gasparini and Magee, 2006). Based on the
average spike rate of central neurons, it is unlikely
that dendrites receive single synaptic inputs in
isolation. A more likely scenario is that dendrites
receive constant time-varying excitatory and inhibi-
tory synaptic input that together produces random
fluctuations in the membrane potential (Ferster
and Jagadeesh, 1992; Destexhe and Pare, 1999;
Chance et al., 2002; Destexhe et al., 2003; Williams,
2004). The challenge is to incorporate this type
of temporally varying input into our study of the
neuronal input/output function. Fortunately, sys-
tem-identification theory provides us with several
useful tools for addressing this question.

Using a white-noise input to reveal the neuronal

input/output function

The field of system-identification theory has devel-
oped rigorous methods for describing the input/
output relationships of unknown systems (for
reviews, see Marmarelis and Marmarelis, 1978;
Sakai, 1992; Westwick and Kearney, 2003) and has
been used to describe the relationship between
external sensory inputs and neuronal responses in a
variety of brain areas (for reviews, see Chichilnisky,
2001; Wu et al., 2006). A prominent tool in system-
identification is the use of a ‘‘white-noise’’ stimulus
to characterize the system. Such an input theoret-
ically contains all temporal correlations and power
at all frequencies. If the unknown system is linear,
or slightly nonlinear, it is a straightforward process
to extract a description of the system by correlating
the output with the random input stimulus. If the
unknown system is highly nonlinear, however, this
approach is much more difficult.

One difficulty of describing the input/output
function of a single neuron is that we lack precise
statistical descriptions of the inputs neurons receive
over time. Given that a typical pyramidal neuron
has over ten thousand synaptic contacts, one might
reasonably estimate that an input arrives on the
dendrites every millisecond or less, producing
membrane fluctuations that are constantly varying
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in time. Thus, using a white-noise input has two
advantages: (1) it affords the use of quantitative
methods for identifying the dendrite input/output
function and (2) it may represent a stimulus that is
statistically closer to the type of input dendrites
receive in vivo.

We applied a system-identification approach to
reveal the input/output function of hippocampal
CA1 pyramidal neurons in vitro (Fig. 1). We used
standard techniques to perform dual whole-cell
patch clamp recordings in brain slices (Colbert and
Pan, 2002). More specifically, we injected 50 s of
white-noise current (Id) into the dendrites with one

electrode and measured the membrane potential at
the soma (Vs) with a second electrode. The ampli-
tude distribution of the injected current was
Gaussian with zero mean. Electrode separation
ranged from 125 to 210 mm with the dendrite elec-
trode placed on the main proximal apical dendritic
branch. Figure 1 illustrates a short segment of
the white-noise stimulus and the corresponding
somatic membrane potentials.

To examine how the input/output function
changed with different input conditions, we alter-
nately changed the variance of the input current
between low and high values. The low-variance
input produced small subthreshold fluctuations in
the somatic membrane potential. In contrast, the
high-variance input produced large fluctuations
that caused the neurons to fire action potentials
with an average rate of 0.9 spikes/s. This rate of
firing was chosen because it is similar to the average
firing rate of CA1 hippocampal neurons in vivo
(Markus et al., 1995; Yoganarasimha et al., 2006).
Thus, we examined the dendrite-to-soma input/
output function under physiologically reasonable
subthreshold and suprathreshold operating regimes.

The LN model

Figure 1 illustrates our approach for describing the
input/output function of the neuron using an LN
model (Hunter and Korenberg, 1986). This is a
functional model that provides an intuitive descrip-
tion of the system under study and has been parti-
cularly useful for capturing temporal processing in
the retina in response to random visual inputs (for
reviews, see Meister and Berry, 1999; Chichilnisky,
2001) and the processing of current injected at
the soma of neurons (Bryant and Segundo, 1976;
Poliakov et al., 1997; Binder et al., 1999; Slee et al.,
2005). The LN model is a cascade of two processing
stages: The first stage is a filter (the ‘‘L’’ stage) that
linearly convolves the input current Id. The output
of the linear filter, F, is the input to the nonlinear
second stage (the ‘‘N’’ stage) that converts the out-
put of the linear filter into the predicted somatic
potentials (V̂S). This second stage is static and can
be viewed as capturing the gain of the system. The
two stages of the LN model are represented

Fig. 1. Using a system-identification approach to characterize

the dendrite-to-soma input/output function. (A) Fifty seconds

of zero-mean Gaussian distributed random current (Id) was in-

jected into the proximal apical dendrites of CA1 pyramidal

neurons and the membrane potential (Vs) was recorded at the

soma. The variance of the injected current was switched be-

tween low (bottom traces) and high (top traces) on alternate

trials. Action potentials were produced with the high-variance

input. (B) An LN model was fit to the somatic potential. The

input to the model was the injected current and the output of

the model was the predicted soma potential (V̂S). The LN

model was composed of a linear filter that was convolved with

the input current followed by a static-gain function. The output

of the linear filter, F (arbitrary units), was scaled by the static-

gain function to produce the predicted somatic potential. The

static-gain function was modeled as a quadratic function of F.

3



mathematically as

F ¼ H�Id

V̂S ¼ GðF Þ ð1Þ

where H is a linear filter, * the convolution oper-
ator, and G a quadratic static-gain function.

Having two stages of processing is an important
aspect of the model because it allows us to separate
temporal processing from gain control. The linear
filter describes the temporal processing while the
nonlinear static-gain captures amplitude-depend-
ent changes in gain. Thus, this functional model
permits us to describe the neuronal input/output
function using quantitatively precise terms such as
filtering and gain control. In contrast, highly de-
tailed biophysical models of single neurons, with
their large number of nonlinear free parameters,
are less likely to provide such a functionally clear
description of single-neuron computation.

It is important to note that we did not seek to
describe the production of action potentials in the
dendrite-to-soma input/output function. Action
potentials are extremely nonlinear events and would
not be captured by the LN model. We instead focu-
sed on explaining the subthreshold fluctuations of
the somatic voltage potential. Thus, action poten-
tials were removed from the somatic potential be-
fore the data were analyzed. This was accomplished
by linearly interpolating the somatic potential from
1ms before the occurrence of the action potential to
either 5 or 10ms after the action potential. Because
action potentials make up a very small part of the
50 s of data (typically less than 2%), our results
were not qualitatively affected when the spikes were
left in place during the analysis.

The LN model accounts for the dendrite-to-soma

input/output function

Using standard techniques, we fit the LN model to
reproduce the recorded somatic potential in res-
ponse to the injected dendritic current (Hunter and
Korenberg, 1986). We wanted to know how the low
and high variance input conditions affected the
components of the LN model. Therefore, these
conditions were fit separately. An example of
the LN model’s ability to account for the neuronal

input/output function is shown in Fig. 2. For
this neuron, the LN model’s predicted somatic
membrane voltage (V̂S; dashed line) almost
perfectly overlapped the neuron’s actual somatic
potential (Vs, thick gray line) for both input condi-
tions (Fig. 2A and B). The LN model was able to
fully describe the somatic potentials in response to
the random input current with very little error.
Computing the Pearson’s correlation coefficient
over the entire 50 s of data, the LN model
accounted for greater than 97% of the variance of
this neuron’s somatic potential.

Repeating this experiment in 11 CA1 neurons,
the LN model accounted for practically all of the
somatic membrane potential (average R240.97).
Both the low and high variance input conditions
were captured equally well by the LN model. Thus,
the LN model is a functional model that describes
the neuronal input/output function over a range of
input regimes from low-variance subthreshold to
high-variance suprathreshold stimulation.

Gain but not filtering adapts to the input variance

The LN model’s linear filters and nonlinear static-
gain functions are shown for our example neuron in
Fig. 2C and D. The impulse-response function of
the linear filters (Fig. 2C) for both the low (solid
line) and high (dashed line) variance inputs had
pronounced negativities corresponding to a band-
pass in the 1–10Hz frequency range (inset).
Although the two input conditions were signifi-
cantly different, the filters for the low- and high-
variance inputs were very similar. Across our pop-
ulation of neurons, we found no systematic change
in the linear filters as the input variance was varied
between low and high levels. Therefore, the tem-
poral processing performed by CA1 pyramidal
neurons on inputs arriving at the proximal apical
dendrites does not change with the input variance.

In contrast to the filtering properties of CA1 neu-
rons, the static-gain function changed as a function
of input variance. Figure 2D illustrates the static-
gain function for both input conditions. In this
plot, the resting membrane potential corresponds to
0mV and the units for the output of the linear filter
(F) are arbitrary. The static-gain function for the
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low-variance input was a straight line indicating that
the neuronal input/output function was linear. For
the high-variance input, however, the static-gain
function demonstrated two important nonlineari-
ties. First, the static-gain function showed a com-
pressive nonlinearity at depolarized potentials.
Thus, at large depolarizing potentials, there was a
reduction in the gain of the input/output relation-
ship. Second, there was a general reduction in slope
of the static-gain function for high-variance input
compared with the low-variance slope, indicating an
overall reduction in gain. Thus, for this neuron, in-
creasing the variance of the input reduced the gain
of the input/output function at rest that was further
reduced for depolarizing potentials.

Across our population of 11 neurons, we found
that increasing the variance of the input reduced
the gain of CA1 neurons by an average of 16% at

the resting membrane potential. This reduction in
gain also increased with both hyperpolarized and
depolarized potentials. Adapting to the variance of
an input is an important form of gain control
because it ensures that the input stays within the
operating range of the neuron. Although a 16%
reduction may seem small in comparison to the
large change in the input-variance, there are many
instances where small changes in neuronal activity
are related to significant changes in behavior. For
visual cortical neurons, it has been shown that
small changes in spike activity (o5%) are corre-
lated with pronounced changes in perceptual
abilities (Britten et al., 1996; Dodd et al., 2001;
Cook and Maunsell, 2002; Uka and DeAngelis,
2004; Purushothaman and Bradley, 2005). Thus,
even small modulations of neuronal activity can
have large effects on behavior.

Fig. 2. The dendrite-to-soma input/output function of a CA1 neuron is well described by the LN model. (A) Example of 500ms of the

input current and somatic potential for the low-variance input. The predicted somatic membrane potential of the LN model (V̂S;
dashed line) overlaps the recorded somatic potential (Vs, thick gray line). (B) Example of the LN model’s fit to the high-variance input.

Action potentials were removed from the recorded somatic potential before fitting the LN model to the data. (C) The impulse-response

function of the linear filters for the optimized LN model corresponding to the low (solid line) and high (dashed line) variance inputs.

Inset is the frequency response of the filters. (D) Static-gain function for the optimized LN model plotted for the low (solid line) and

high (dashed line) variance inputs. The axes for the high variance input were appropriately scaled so that the slope of both static-gain

functions could be compared.
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Voltage- and time-dependent properties that

underlie neuronal bandpass filtering

The above experimental results suggest that the
dendrite-to-soma input/output relationship is well
described as a linear filter followed by an adapting
static-gain function. We wanted to know the bio-
physical components that produce the filtering and
gain control. To address this, we used the computer
program NEURON (Hines and Carnevale, 1997)
to simulate a multi-compartment ‘‘ball & stick’’
model neuron (Fig. 3A).

We applied the random stimulus that we used in
the experimental recordings to the dendrite of the
passive model and then fit the data with the LN
model to describe its input/output function. As
would be expected from Rall’s passive theory of
dendrites, the estimated filters and gain functions
were identical for the low and high variance input
conditions (Fig. 3B). In addition, the filters from
the passive model’s impulse-response function had
no negativity and thus were not bandpass (inset)

and the static-gain function was linear (Fig. 3C).
Thus, the passive properties of dendrites in the
compartmental model do not produce the same
characteristics of the experimentally observed dend-
rite-to-soma input/output function.

We wanted to know what type of voltage- and
time-dependent channels might account for our
experimental observations. Active channels come
in a variety of classes. Instead of focusing on
one particular class, we used the freedom of
computer simulations to construct a hypothetical
channel. Using a generic channel, referred to as
Ix, we systematically varied channel parameters to
investigate how the voltage- and time-dependent
properties affected temporal filtering and gain
control in the ball & stick model. Our theore-
tical channel was based on the classic Hodgkin
and Huxley formulation (Hodgkin and Huxley,
1952) that incorporated a voltage- and time-
dependent activation variable, n(v, t). This acti-
vation variable had sigmoidal voltage-dependent
steady-state activation with first-order kinetics.

Fig. 3. Dendrite-to-soma input/output function of a passive neuron model. (A) The passive model had 20 dendrite compartments with

a total length of 2000mm and a diameter that tapered distally from 3 to 1mm. The soma was a single 20� 20 mm compartment. The

passive parameters of the model were Rm ¼ 40,000O cm2, Cm ¼ 2 mF/cm2, and Ra ¼ 150O cm. (B) The optimized filters of the LN

model were fit to the passive model. Filters for the low- and high-variance input were identical. (C) Static-gain functions of the

optimized LN model were linear and had the same slope for both input conditions.
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Mathematically, our hypothetical channel is
described as

Ix ¼ ḡx � nðv; tÞ � ðv� ErevÞ

n1 ¼ 1�
1

1þ e�bðv�v1=2Þ

dn

dt
¼
ðn1 � nÞ

t
ð2Þ

where nN is the steady-state activation based on
a sigmoid centered at v1/2 with a slope of 1/b, ḡx the
maximal conductance, t the time constant of acti-
vation, and Erev the reversal potential of the channel.

We first examined the effects of varying the
steady-state voltage activation curve on the input/
output function of the model. Voltage-dependent

channels can have either depolarizing or hyperpo-
larizing activation curves. We inserted a uniform
density of our Ix current throughout the dendrites
and left the soma compartment passive. We set the
parameters of Ix to have decreasing activation with
depolarizing voltage (Fig. 4A) and stimulated the
model with our low- and high-variance dendritic
current injection. Fitting the LN model to the
results of the simulation resulted in a bandpass
filter and linear static-gain (Fig. 4A). The LN
model accounted for greater than 98% of the
somatic membrane potential and thus represented
an excellent description of the input/output
relationship of the compartmental model. It is
worth mentioning that the simulated properties
of Ix resembled the prominent dendritic current

Fig. 4. The direction of steady-state voltage activation has little effect on bandpass features of the LN model. This figure shows the LN

models that describe the dendrite-to-soma input/output function of the compartmental model containing the dendritic channel Ix. Two

different steady-state activation curves were used for Ix. (A) Hyperpolarizing steady-state voltage activation of Ix produced bandpass

features in the LN model (i.e., biphasic impulse-response function) but did not produce a reduction in gain between the low (solid line)

and high (dashed line) variance input conditions. (B) Depolarizing steady-state voltage activation of Ix also produced bandpass

features with no reduction in gain. In all simulations, Ix had a t of 50ms. The vertical dashed line in the activation plots indicates the

resting membrane potential of �65mV.
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Ih (Magee, 1998). Thus, a simple voltage- and
time-dependent channel can account for the band-
pass filtering observed in our experimental data.

To see how the activation properties of the
channel affected the input/output function, we
reversed the activation curve of our hypothetical
channel to have an increasing activation with
depolarized potentials (Fig. 4B). The other para-
meters were the same except that the reversal
potential of Ix was changed and the activation curve
was shifted slightly to maintain stability. Injecting
the low- and high-variance input current and fitting
the LN model to the somatic potential, we found
that this active current also produced a bandpass
input/output function. Interestingly, there was still
a lack of change in gain with input variance as can
be seen in the static-gain function. Similar results
were also observed when the slope of the activation
curves was varied (data not shown).

From these simulations we can draw two con-
clusions. First, it appears that a variety of voltage

dependencies can produce the bandpass filtering
observed in neurons. Of course, this is only true
when the membrane potential falls within the
voltage activation range of the channel. In other
words, a voltage-dependent channel that is always
open or closed would not produce bandpass
filtering. Second, a simple voltage-dependent
mechanism does not seem to account for the ex-
perimentally observed change in gain between the
low and high variance input conditions (compare
the static-gain functions in Figs. 2D and 4).

Next, we examined the effect of the time depen-
dencies of our theoretical channel on the neuronal
input/output function. In the above simulations, we
held the t of Ix fixed at 50ms. By varying t we
found that the time dependencies of the channel
greatly affected the filtering properties. A shorter t
of 8ms produced a model with an input/output
function that exhibited less bandpass filtering that
was shifted to higher frequencies (Fig. 5A). The
shorter t, however, created a slight increase in gain

Fig. 5. Temporal channel properties determine bandpass features of the LN model. Shown are the LN models for both the low (solid

line) and high (dashed line) variance input conditions. Except for t, the parameters for Ix were the same as in Fig. 4A. (A) Fast

activation of Ix (t ¼ 8ms) moved the bandpass to higher frequencies, but did not produce a reduction in gain with increased input

variance. (B) Slow activation of Ix (t ¼ 200ms) increased the bandpass property of the filter and moved it toward lower frequencies

with no reduction in gain.
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for the high-variance input compared with the low-
variance input, which is opposite to the gain change
observed experimentally. In comparison, increasing
t to 200ms had the opposite effect of enhancing
the bandpass filtering of the model (Fig. 5B).
Compared with a t of 50ms (Fig. 4A), the slower
channel also moved the bandpass region to a lower
frequency range. However, increasing t produced
no change in the gain of the neuron from the low-
variance to the high-variance condition.

Discussion

Determining how neurons integrate synaptic input
is critical for revealing the mechanisms underlying
higher brain function. A precise description of the
dendrite-to-soma input/output function is an im-
portant step. We found that the dendrite-to-soma
input/output function of CA1 pyramidal neurons
is well described by a simple functional LN model
that combines linear filtering with static nonlinear
gain control. The fact that the LN model ac-
counted for over 97% of the somatic potential
variance during a relatively long random input
cannot be overemphasized. Even when producing
action potentials during the high-variance input,
the neuronal input/output function was well de-
scribed by the LN model. The combination of
bandpass filtering characteristics and nonlinear
gain changes suggests that the input/output func-
tion cannot be explained by passive cellular prop-
erties, but requires active membrane mechanisms.

The advantages of characterizing the neuronal
input/output relationship using a functional LN
model are many. This model allows us to describe
neuronal processing using the well-defined signal
processing concepts of linear filtering and gain
control. Although useful in understanding the bio-
physical aspects of neurons, a realistic compart-
mental model of a neuron would not allow such a
clear description of the dendrite-to-soma input/
output function. As demonstrated by our mode-
ling of a hypothetical voltage-dependent conduct-
ance, Ix, different channel parameters can produce
the same qualitative input/output characteristics
of a compartmental neuron model.

That a simple functional model accounted so
well for the dendrite-to-soma processing was ini-
tially surprising given that dendrites contain a wide
range of nonlinear voltage- and time-dependent
channels (Johnston et al., 1996). However, our
subsequent computer simulations using a compart-
mental model indicate that nonlinear channels can
underlie the linear temporal dynamics observed
experimentally. The bandpass filtering produced by
our theoretical voltage- and time-dependent chan-
nel is a result of a complex interaction between the
passive filtering properties of the membrane and
the temporal dynamics of the channel (for review,
see Hutcheon and Yarom, 2000). Although the
steady-state activation curve also influenced the
bandpass filtering, we found that channel kinetics
had the greatest effect on the temporal filtering of
the model.

It is significant that the dendrite-to-soma input/
output relationship contains a prominent bandpass
in the theta frequency range. Neuronal networks in
the hippocampus have prominent theta oscillations
that are correlated with specific cognitive and
behavioral states. Hippocampal theta oscillations
occur during active exploration of the environ-
ment, during REM sleep, and may underlie
memory-related processes (for reviews, see Buzsaki,
2002; Lengyel et al., 2005). Thus, the bandpass
dynamics of the dendrite-to-soma input/output
function may contribute directly to network-level
oscillations in the hippocampus and other brain
areas such as the neocortex (Ulrich, 2002).

Adaptation of gain is an important signal-
processing mechanism because it ensures that the
amplitude of the stimulus is maintained within the
dynamic range of the system (for review, see Salinas
and Thier, 2000). Information theory provides a
basis for the popular idea that the brain adapts to
the statistical properties of the signals encoded for
efficient representation (e.g., Barlow, 1961; Atick,
1992; Bialek and Rieke, 1992; Hosoya et al., 2005).
For example, the spike activity of neurons in the
visual system has repeatedly been shown to adapt
to the variance (or contrast) of a visual stimulus
(e.g., Maffei et al., 1973; Movshon and Lennie,
1979; Albrecht et al., 1984; Fairhall et al., 2001;
Kim and Rieke, 2001; Baccus and Meister, 2002).
We found a similar change in gain to the variance
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of the injected current, suggesting that the intrinsic
properties of dendrites may provide part of the
foundation for gain adaptation observed at the cir-
cuit and systems level. Recent studies have reported
similar changes in the gain of signals injected into
the soma of cortical neurons in vitro. It has been
proposed that this regulation of gain may be due to
either intrinsic channel mechanisms (Sanchez-Vives
et al., 2000), changes in background synaptic acti-
vity (Chance et al., 2002; Rauch et al., 2003; Shu
et al., 2003), or both (Higgs et al., 2006). Because of
the importance of maintaining the optimal level of
activity in the brain, it is not surprising that there
may exist multiple mechanisms for regulating gain.

With our computer simulations, however, we
were not able to link the properties of our simple
theoretical channel to the experimentally observed
adaptation of the static-gain function. Although
we observed changes in gain that occurred between
the low- and high-variance input conditions, these
were in the wrong direction (compare Fig. 2D
and 5A). In addition, the model did not produce
the compressive reduction in gain observed at
depolarized potentials with the high-variance
input. This suggests that the experimentally
observed change in the static-gain function may
be due to other mechanisms such as an increase in
intracellular Ca2+ during the high-variance input.
Another possibility is that the reduction in gain
with increased input variance may arise from the
interaction of many different channel types and
mechanisms.

The theoretical channel model in Fig. 4A is
based closely on the voltage-dependent current, Ih.
This channel is expressed throughout the dendrites
and has been shown to affect the temporal inte-
gration of synaptic inputs (Magee, 1999). Using a
‘‘chirp’’ sinusoidal stimulus, Ulrich showed that Ih
plays a role in dendrite-to-soma bandpass filtering
in neocortical neurons (Ulrich, 2002). Our prelim-
inary experiments conducted in the presence of
pharmacological blockers suggest that Ih may have
a similar role in hippocampal pyramidal cells.
However, dendrites contain many other voltage-
dependent mechanisms and understanding how
they work together to shape the dendrite-to-soma
input/output function is an important topic for
future studies.
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CHAPTER 2

A simple growth model constructs critical avalanche
networks

L.F. Abbott1,� and R. Rohrkemper2
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Switzerland

Abstract: Neurons recorded from electrode arrays show a remarkable scaling property in their bursts of
spontaneous activity, referred to as ‘‘avalanches’’ (Beggs and Plenz, 2003, 2004). Such scaling suggests a
critical property in the coupling of these circuits. We show that similar scaling laws can arise in a simple
model for the growth of neuronal processes. In the model (Van Ooyen and Van Pelt, 1994, 1996), the spatial
range of the processes extending from each neuron is represented by a circle that grows or shrinks as a
function of the average intracellular calcium concentration. Neurons interact when the circles correspond-
ing to their processes intersect, with a strength proportional to the area of overlap.

Keywords: network activity; homeostasis; plasticity; network development

Introduction

Theoretical (also known as computational) neuro-
science seeks to use mathematical analysis and
computer simulation to link the anatomical and
physiological properties of neural circuits to be-
havioral and cognitive functions. Often, research-
ers working in this field have a general principle of
circuit design or a computational mechanism in
mind when they start to work on a project. For
the project to be described here, the general issue
concerns the connectivity of neural circuits. For all
but the smallest of neural circuits, we typically do
not have a circuit diagram of synaptic connectivity
or a list of synaptic strengths. How can we model a
circuit when we are ignorant of such basic facts
about its structure? One answer is to approach the

problem statistically, put in as much as we know
and essentially average over the rest. Another
approach, and the one that inspires this work, is to
hope that we can uncover properties of a neural
circuit from basic principles of synapse formation
and plasticity. In other words, if we knew the rules
by which neural circuits develop, maintain them-
selves, and change in response to activity, we could
work out their architecture on the basis of that
knowledge. To this end, we need to uncover the
basic rules and principles by which neural circuits
construct themselves.

When neurons are removed from the brain and
grown in culture, they change from disassociated
neurons into reconnected networks or, in the case
of slice cultures, from brain slices to essentially two-
dimensional neural circuits. These re-development
processes provide an excellent opportunity for ex-
ploring basic principles of circuit formation. Using
slice cultures from rat cortex (and also acute slices),
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Beggs and Plenz (2003, 2004) uncovered an intrigu-
ing property of networks of neurons developed in
this way. By growing neural circuits on electrode
arrays, they were able to record activity over long
periods of time and accumulate a lot of data on
the statistical properties of the activity patterns
that arise spontaneously in such networks. Of
particular interest are the observations of scaling
behavior and criticality. These results provide
the inspiration for the model we construct and
study here.

The networks recorded by Beggs and Plenz
(2003, 2004) are often silent, but silent periods are
punctuated by spontaneous bursts of activity ob-
served on variable numbers of electrodes for
different periods of time. Beggs and Plenz called
these bursts avalanches. To define and parameter-
ize neural avalanches, they divided time into bins
of size tbin through a procedure that selects an op-
timal size. Here, we simply use tbin ¼ 10ms, typical
of the values they used. An avalanche is defined as
an event in which activity is observed on at least
one electrode for a contiguous sequence of time
bins, bracketed before and after by at least one bin
of silence on all electrodes. We use an identical
definition here, except that electrode activity is re-
placed by neuronal activity, because our model has
no electrodes and we can easily monitor each
neuron we simulate.

The results of Beggs and Plenz (2003, 2004) of
particular importance for our study are histograms
characterizing both the durations and sizes of the

avalanches they recorded. Duration was deter-
mined by counting the number of consecutive bins
within an avalanche. Size was measured either in
terms of the number of electrodes on which activ-
ity was recorded during an avalanche, or by a
measure of the total signal seen on all electrodes
during the course of an avalanche. In our mode-
ling work, we measure the size of an avalanche by
counting the total number of action potentials
generated during its time course.

The histograms of duration and size constructed
from the data revealed a fascinating property
(Beggs and Plenz, 2003, 2004; Fig. 1); both were of
a power-law form. The number of events of a
given size fell as the size to the �3/2 power, and
the number of events of a given duration fell as the
duration to the �2 power. Power-law distributions
are interesting because they contain no natural
scale. For example, in this context we might expect
the typical size of a neuronal dendritic tree or
axonal arbor (around 100 mm) to set the spatial
scale for avalanches. Similarly, we might expect a
typical membrane time constant of around 10 ms
to set the scale for avalanche durations. If this
were true, the distributions should be exponential
rather than power-law. Power-law distributions
indicate that these networks can, at least occa-
sionally, produce activity patterns that are much
larger and much long-lasting that we would have
expected. This is what makes power-law distribu-
tions so interesting. Another intriguing feature is
that power-law behavior typically arises in systems

Fig. 1. Results of Beggs and Plenz on avalanche distributions. Left: probability of avalanches of different spatial sizes. The dashed line

corresponds to a �3/2 power. Right: probability of avalanches of different durations. The dashed line corresponds to a �2 power.

(Adapted with permission from Beggs and Plenz, 2004).
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