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Preface to the First Edition
Watermarking, as we define it, is the practice of hiding a message about

an image, audio clip, video clip, or other work of media within that work

itself. Although such practices have existed for quite a long time—at least sev-

eral centuries, if not millennia—the field of digital watermarking only gained

widespread popularity as a research topic in the latter half of the 1990s. A few

earlier books have devoted substantial space to the subject of digital watermark-

ing [171, 207, 219]. However, to our knowledge, this is the first book dealing

exclusively with this field.

PURPOSE
Our goal with this book is to provide a framework in which to conduct research

and development of watermarking technology. This book is not intended as a

comprehensive survey of the field of watermarking. Rather, it represents our

own point of view on the subject. Although we analyze specific examples from

the literature, we do so only to the extent that they highlight particular con-

cepts being discussed. (Thus, omissions from the Bibliography should not be

considered as reflections on the quality of the omitted works.)

Most of the literature on digital watermarking deals with its application to

images, audio, and video, and these application areas have developed somewhat

independently. This is in part because each medium has unique characteristics,

and researchers seldom have expertise in all three. We are no exception, our

own backgrounds being predominantly in images and video. Nevertheless, the

fundamental principles behind still image, audio, and video watermarking are

the same, so we have made an effort to keep our discussion of these principles

generic.

The principles of watermarking we discuss are illustrated with several exam-

ple algorithms and experiments (the C source code is provided in Appendix C).

All of these examples are implemented for image watermarking only. We

decided to use only image-based examples because, unlike audio or video,

images can be easily presented in a book.

The example algorithms are very simple. In general, they are not themselves

useful for real watermarking applications. Rather, each algorithm is intended to

provide a clear illustration of a specific idea, and the experiments are intended

to examine the idea’s effect on performance. xv
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The book contains a certain amount of repetition. This was a conscious

decision, because we assume that many, if not most, readers will not read

the book from cover to cover. Rather, we anticipate that readers will look up

topics of interest and read only individual sections or chapters. Thus, if a point

is relevant in a number of places, we may briefly repeat it several times. It is

hoped that this will not make the book too tedious to read straight through,

yet will make it more useful to those who read technical books the way we do.

CONTENT AND ORGANIZATION
Chapters 1 and 2 of this book provide introductory material. Chapter 1 provides

a history of watermarking, as well as a discussion of the characteristics that dis-

tinguish watermarking from the related fields of data hiding and steganography.

Chapter 2 describes a wide variety of applications of digital watermarking and

serves as motivation. The applications highlight a variety of sometimes conflict-

ing requirements for watermarking, which are discussed in more detail in the

second half of the chapter.

The technical content of this book begins with Chapter 3, which presents

several frameworks for modeling watermarking systems. Along the way, we

describe, test, and analyze some simple image watermarking algorithms that

illustrate the concepts being discussed. In Chapter 4, these algorithms are

extended to carry larger data payloads by means of conventional message-

coding techniques. Although these techniques are commonly used in water-

marking systems, some recent research suggests that substantially better

performance can be achieved by exploiting side information in the encoding

process. This is discussed in Chapter 5.

Chapter 7 analyzes message errors, false positives, and false negatives that

may occur in watermarking systems. It also introduces whitening.

The next three chapters explore a number of general problems related to

fidelity, robustness, and security that arise in designing watermarking systems,

and present techniques that can be used to overcome them. Chapter 8 examines

the problems of modeling human perception, and of using those models in

watermarking systems. Although simple perceptual models for audio and still

images are described, perceptual modeling is not the focus of this chapter.

Rather, we focus on how any perceptual model can be used to improve the

fidelity of the watermarked content.

Chapter 9 covers techniques for making watermarks survive several types of

common degradations, such as filtering, geometric or temporal transformations,

and lossy compression.
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Chapter 10 describes a framework for analyzing security issues in

watermarking systems. It then presents a few types of malicious attacks to

which watermarks might be subjected, along with possible countermeasures.

Finally, Chapter 11 covers techniques for using watermarks to verify the

integrity of the content in which they are embedded. This includes the area

of fragile watermarks, which disappear or become invalid if the watermarked

Work is degraded in any way.
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It has been almost 7 years since the publication of Digital Watermarking.

During this period there has been significant progress in digital watermark-

ing; and the field of steganography has witnessed increasing interest since the

terrorist events of September 11, 2001.

Digital watermarking and steganography are closely related. In the first edi-

tion of Digital Watermarking we made a decision to distinguish between

watermarking and steganography and to focus exclusively on the former. For

this second edition we decided to broaden the coverage to include steganog-

raphy and to therefore change the title of the book to Digital Watermarking
and Steganography.

Despite the new title, this is not a new book, but a revision of the original.

We hope this is clear from the backcover material and apologize in advance to

any reader who thought otherwise.

CONTENT AND ORGANIZATION
The organization of this book closely follows that of the original. The treatment

of watermarking and steganography is, for the most part, kept separate. The rea-

sons for this are twofold. First, we anticipate that readers might prefer not to read

the book from cover to cover, but rather read specific chapters of interest. And

second, an integrated revision would require considerably more work.

Chapters 1 and 2 include new material related to steganography and, where

necessary, updated material related to watermarking. In particular, Chapter 2 high-

lights the similarities and differences between watermarking and steganography.

Chapters 3, 4, 7, 8, 9, and 10 remain untouched, except that bibliographic

citations have been updated.

Chapter 5 of the first edition has now been expanded to two chapters,

reflecting the research interest in modeling watermarking as communications

with side information. Chapter 5 provides a more detailed theoretical discus-

sion of the topic, especially with regard to dirty-paper coding. Chapter 6 then

provides a description of a variety of common dirty-paper coding techniques

for digital watermarking.

Section 11.1.3 in Chapter 11 has been revised to include material on a

variety of erasable watermarking methods.

Finally, two new chapters, Chapters 12 and 13, have been added. These

chapters discuss steganography and steganalysis, respectively. xix
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Example Watermarking Systems
In this book, we present a number of example watermarking systems to illus-

trate and test some of the main points. Discussions of test results provide

additional insights and lead to subsequent sections.

Each investigation begins with a preamble. If a new watermarking system is

being used, a description of the system is provided. Experimental procedures

and results are then described.

The watermark embedders and watermark detectors that make up these sys-

tems are given names and are referred to many times throughout the book. The

naming convention we use is as follows: All embedder and detector names are

written in sans serif font to help set them apart from the other text. Embedder

names all start with E_ and are followed by a word or acronym describing one

of the main techniques illustrated by an algorithm. Similarly, detector names

begin with D_ followed by a word or acronym. For example, the embed-

der in the first system is named E_BLIND (it is an implementation of blind

embedding), and the detector is named D_LC (it is an implementation of linear

correlation detection).

Each system used in an investigation consists of an embedder and a detector.

In many cases, one or the other of these is shared with several other systems.

For example, in Chapter 3, the D_LC detector is paired with the E_BLIND
embedder in System 1 and with the E_FIXED_LC embedder in System 2. In

subsequent chapters, this same detector appears again in a number of other

systems. Each individual embedder and detector is described in detail in the

first system in which it is used.

In the following, we list each of the 19 systems described in the text, along

with the number of the page on which its description begins, as well as a brief

review of the points it is meant to illustrate and how it works. The source code

for these systems is provided in Appendix C.

System 1: E_BLIND/D_LC . . . . . . . . . . . . . . . . . . . . . 70

Blind Embedding and Linear Correlation Detection: The blind embedder

E_BLIND simply adds a pattern to an image. A reference pattern is scaled by

a strength parameter, �, prior to being added to the image. Its sign is dictated

by the message being encoded.

The D_LC linear correlation detector calculates the correlation between the

received image and the reference pattern. If the magnitude of the correlation is

higher than a threshold, the watermark is declared to be present. The message

is encoded in the sign of the correlation. xxi
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System 2: E_FIXED_LC/D_LC . . . . . . . . . . . . . . . . . . . 77

Fixed Linear Correlation Embedder and Linear Correlation Detection: This

system uses the same D_LC linear correlation detector as System 1, but

introduces a new embedding algorithm that implements a type of informed

embedding. Interpreting the cover Work as channel noise that is known, the

E_FIXED_LC embedder adjusts the strength of the watermark to compensate

for this noise, to ensure that the watermarked Work has a specified linear cor-

relation with the reference pattern.

System 3: E_BLK_BLIND/D_BLK_CC . . . . . . . . . . . . . . . . 89

Block-Based, Blind Embedding, and Correlation Coefficient Detection: This

system illustrates the division of watermarking into media space and mark-
ing space by use of an extraction function. It also introduces the use of the

correlation coefficient as a detection measure.

The E_BLK_BLIND embedder performs three basic steps. First, a 64-

dimensional vector, vo, is extracted from the unwatermarked image by averaging

8 × 8 blocks. Second, a reference mark, wr, is scaled and either added to or sub-

tracted from vo. This yields a marked vector, vw. Finally, the difference between

vo and vw is added to each block in the image, thus ensuring that the extraction

process (block averaging), when applied to the resulting image, will yield vw.

The D_BLK_CC detector extracts a vector from an image by averaging 8 × 8

pixel blocks. It then compares the resulting 64-dimensional vector, v, against a

reference mark using the correlation coefficient.

System 4: E_SIMPLE_8/D_SIMPLE_8 . . . . . . . . . . . . . . . 116

8-Bit Blind Embedder, 8-Bit Detector: The E_SIMPLE_8 embedder is a version

of the E_BLIND embedder modified to embed 8-bit messages. It first constructs

a message pattern by adding or subtracting each of eight reference patterns.

Each reference pattern denotes 1 bit, and the sign of the bit determines whether

it is added or subtracted. It then multiplies the message pattern by a scaling

factor and adds it to the image.

The D_SIMPLE_BITS detector correlates the received image against each of

the eight reference patterns and uses the sign of each correlation to determine

the most likely value for the corresponding bit. This yields the decoded mes-

sage. The detector does not distinguish between marked and unwatermarked

images.

System 5: E_TRELLIS_8/D_TRELLIS_8 . . . . . . . . . . . . . . 123

Trellis-Coding Embedder, Viterbi Detector: This system embeds 8-bit mes-

sages using trellis-coded modulation. In the E_TRELLIS_8 embedder, the 8-bit
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message is redundantly encoded as a sequence of symbols drawn from an

alphabet of 16 symbols. A message pattern is then constructed by adding

together reference patterns representing the symbols in the sequence. The

pattern is then embedded with blind embedding.

The D_TRELLIS_8 detector uses a Viterbi decoder to determine the most

likely 8-bit message. It does not distinguish between watermarked and unwa-

termarked images.

System 6: E_BLK_8/D_BLK_8 . . . . . . . . . . . . . . . . . . 131

Block-Based Trellis-Coding Embedder and Block-Based Viterbi Detector That
Detects by Reencoding: This system illustrates a method of testing for the pres-

ence of multibit watermarks using the correlation coefficient. The E_BLK_8
embedder is similar to the E_TRELLIS_8 embedder, in that it encodes an 8-bit

message with trellis-coded modulation. However, it constructs an 8 × 8 message

mark, which is embedded into the 8 × 8 average of blocks in the image, in the

same way as the E_BLK_BLIND embedder.

The D_BLK_8 detector averages 8 × 8 blocks and uses a Viterbi decoder to

identify the most likely 8-bit message. It then reencodes that 8-bit message to

find the most likely message mark, and tests for that message mark using the

correlation coefficient.

System 7: E_BLK_FIXED_CC/D_BLK_CC . . . . . . . . . . . . . 144

Block-Based Watermarks with Fixed Normalized Correlation Embedding:
This is a first attempt at informed embedding for normalized correlation detec-

tion. Like the E_FIXED_LC embedder, the E_BLK_FIXED_CC embedder aims

to ensure a specified detection value. However, experiments with this system

show that its robustness is not as high as might be hoped.

The E_BLK_FIXED_CC embedder is based on the E_BLK_BLIND embed-

der, performing the same basic three steps of extracting a vector from the

unwatermarked image, modifying that vector to embed the mark, and then

modifying the image so that it will yield the new extracted vector. However,

rather than modify the extracted vector by blindly adding or subtracting a refer-

ence mark, the E_BLK_FIXED_CC embedder finds the closest point in 64 space

that will yield a specified correlation coefficient with the reference mark. The

D_BLK_CC detector used here is the same as in the E_BLK_BLIND/D_BLK_CC
system.

System 8: E_BLK_FIXED_R/D_BLK_CC . . . . . . . . . . . . . . 149

Block-Based Watermarks with Fixed Robustness Embedding: This system fixes

the difficulty with the E_BLK_FIXED_CC/D_BLK_CC system by trying to

obtain a fixed estimate of robustness, rather than a fixed detection value.
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After extracting a vector from the unwatermarked image, the E_BLK_FIXED_R
embedder finds the closest point in 64 space that is likely to lie within the

detection region even after a specified amount of noise has been added. The

D_BLK_CC detector used here is the same as in the E_BLK_BLIND/D_BLK_CC
system.

System 9: E_LATTICE/D_LATTICE . . . . . . . . . . . . . . . . 191

Lattice-Coded Watermarks: This illustrates a method of watermarking with

dirty-paper codes that can yield much higher data payloads than are practical

with the E_DIRTY_PAPER/D_DIRTY_PAPER system. Here, the set of code

vectors is not random. Rather, each code vector is a point on a lattice. Each

message is represented by all points on a sublattice.

The embedder takes a 345-bit message and applies an error correction code

to obtain a sequence of 1,380 bits. It then identifies the sublattice that corre-

sponds to this sequence of bits and quantizes the cover image to find the closest

point in that sublattice. Finally, it modifies the image to obtain a watermarked

image close to this lattice point.

The detector quantizes its input image to obtain the closest point on the

entire lattice. It then identifies the sublattice that contains this point, which

corresponds to a sequence of 1,380 bits. Finally, it decodes this bit sequence

to obtain a 345-bit message. It makes no attempt to determine whether or not

a watermark is present, but simply returns a random message when presented

with an unwatermarked image.

System 10: E_E8LATTICE/D_E8LATTICE . . . . . . . . . . . . . . 202

E8 Lattice-Coded Watermarks: This System illustrates the benefits of using an

E8 lattice over an orthogonal lattice, used in System 9. Experimental results

compare the performance of System 10 and System 9 and demonstrate that the

E8 lattice has superior performance.

System 11: E_BLIND/D_WHITE . . . . . . . . . . . . . . . . . . 234

Blind Embedding and Whitened Linear Correlation Detection: This system

explores the effects of applying a whitening filter in linear correlation detection.

It uses the E_BLIND embedding algorithm introduced in System 1.

The D_WHITE detector applies a whitening filter to the image and the

watermark reference pattern before computing the linear correlation between

them. The whitening filter is an 11 × 11 kernel derived from a simple model of

the distribution of unwatermarked images as an elliptical Gaussian.
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System 12: E_BLK_BLIND/D_WHITE_BLK_CC . . . . . . . . . . . 247

Block-Based Blind Embedding and Whitened Correlation Coefficient Detection:
This system explores the effects of whitening on correlation coefficient detection.

It uses the E_BLK_BLIND embedding algorithm introduced in System 3.

The D_WHITE_BLK_CC detector first extracts a 64 vector from the image

by averaging 8 × 8 blocks. It then filters the result with the same whitening

filter used in D_WHITE. This is roughly equivalent to filtering the image before

extracting the vector. Finally, it computes the correlation coefficient between

the filtered, extracted vector and a filtered version of a reference mark.

System 13: E_PERC_GSCALE . . . . . . . . . . . . . . . . . . 277

Perceptually Limited Embedding and Linear Correlation Detection: This sys-

tem begins an exploration of the use of perceptual models in watermark

embedding. It uses the D_LC detector introduced in System 1.

The E_PERC_GSCALE embedder is similar to the E_BLIND embedder in

that, ultimately, it scales the reference mark and adds it to the image. However,

in E_PERC_GSCALE the scaling is automatically chosen to obtain a specified

perceptual distance, as measured by Watson’s perceptual model.

System 14: E_PERC_SHAPE . . . . . . . . . . . . . . . . . . 284

Perceptually Shaped Embedding and Linear Correlation Detection: This sys-

tem is similar to System 11, but before computing the scaling factor for the

entire reference pattern the E_PERC_SHAPE embedder first perceptually
shapes the pattern.

The perceptual shaping is performed in three steps. First, the embedder con-

verts the reference pattern into the block DCT domain (the domain in which

Watson’s model is defined). Next, it scales each term of the transformed ref-

erence pattern by a corresponding slack value obtained by applying Watson’s

model to the cover image. This amplifies the pattern in areas where the image

can easily hide noise, and attenuates in areas where noise would be visible.

Finally, the resultant shaped pattern is converted back into the spatial domain.

The shaped pattern is then scaled and added to the image in the same manner

as in E_PERC_GSCALE.

System 15: E_PERC_OPT . . . . . . . . . . . . . . . . . . . . 290

Optimally Scaled Embedding and Linear Correlation Detection: This system

is essentially the same as System 12. The only difference is that perceptual shap-

ing is performed using an “optimal” algorithm, instead of simply scaling each

term of the reference pattern’s block DCT. This shaping is optimal in the sense
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that the resulting pattern yields the highest possible correlation with the refer-

ence pattern for a given perceptual distance (as measured by Watson’s model).

System 16: E_MOD/D_LC . . . . . . . . . . . . . . . . . . . . 381

Watermark Embedding Using Modulo Addition: This is a simple example

of a system that produces erasable watermarks. It uses the D_LC detector

introduced in System 1.

The E_MOD embedder is essentially the same as the E_BLIND embedder, in

that it scales a reference pattern and adds it to the image. The difference is that

the E_MOD embedder uses modulo 256 addition. This means that rather than

being clipped to a range of 0 to 255, the pixel values wrap around. Therefore,

for example, 253 + 4 becomes 1. Because of this wraparound, it is possible for

someone who knows the watermark pattern and embedding strength to per-

fectly invert the embedding process, erasing the watermark and obtaining a

bit-for-bit copy of the original.

System 17: E_DCTQ/D_DCTQ . . . . . . . . . . . . . . . . . . 400

Semi-fragile Watermarking: This system illustrates a carefully targeted semi-

fragile watermark intended for authenticating images. The watermarks are

designed to be robust against JPEG compression down to a specified quality

factor, but fragile against most other processes (including more severe JPEG

compression).

The E_DCTQ embedder first converts the image into the block DCT domain

used by JPEG. It then quantizes several high-frequency coefficients in each block

to either an even or odd multiple of a quantization step size. Each quantized

coefficient encodes either a 0, if it is quantized to an even multiple, or a 1, if

quantized to an odd multiple. The pattern of 1s and 0s embedded depends on

a key that is shared with the detector. The quantization step sizes are chosen

according to the expected effect of JPEG compression at the worst quality factor

the watermark should survive.

The D_DCTQ detector converts the image into the block DCT domain and

identifies the closest quantization multiples for each of the high-frequency coef-

ficients used during embedding. From these, it obtains a pattern of bits, which

it compares against the pattern embedded. If enough bits match, the detector

declares that the watermark is present.

The D_DCTQ detector can be modified to yield localized information about

where an image has been corrupted. This is done by checking the number

of correct bits in each block independently. Any block with enough correctly

embedded bits is deemed authentic.
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System 18: E_SFSIG/D_SFSIG . . . . . . . . . . . . . . . . . . 406

Semi-fragile Signature: This extends the E_DCTQ/D_DCTQ system to provide

detection of distortions that only effect the low-frequency terms of the block

DCT. Here, the embedded bit pattern is a semi-fragile signature derived from

the low-frequency terms of the block DCT.

The E_SFSIG embedder computes a bit pattern by comparing the magni-

tudes of corresponding low-frequency coefficients in randomly selected pairs

of blocks. Because quantization usually does not affect the relative magnitudes

of different values, most bits of this signature should be unaffected by JPEG

(which quantizes images in the block DCT domain). The signature is embed-

ded in the high-frequency coefficients of the blocks using the same method

used in E_DCTQ.

The D_SFSIG detector computes a signature in the same way as E_SFSIG
and compares it against the watermark found in the high-frequency coefficients.

If enough bits match, the watermark is deemed present.

System 19: E_PXL/D_PXL . . . . . . . . . . . . . . . . . . . . 412

Pixel-by-Pixel Localized Authentication: This system illustrates a method of

authenticating images with pixel-by-pixel localization. That is, the detector

determines whether each individual pixel is authentic.

The E_PXL embedder embeds a predefined binary pattern, usually a tiled

logo that can be easily recognized by human observers. Each bit is embedded in

one pixel according to a secret mapping of pixel values into bit values (known

to both embedder and detector). The pixel is moved to the closest value that

maps to the desired bit value. Error diffusion is used to minimize the perceptual

impact.

The D_PXL detector simply maps each pixel value to a bit value accord-

ing to the secret mapping. Regions of the image modified since the watermark

was embedded result in essentially random bit patterns, whereas unmodified

regions result in the embedded pattern. By examining the detected bit pattern,

it is easy to see where the image has been modified.

System 20: SE_LTSOLVER . . . . . . . . . . . . . . . . . . . . 463

Linear System Solver for Matrices Satisfying Robust Soliton Distribution: This

system describes a method for solving a system of linear equations, Ax = y,

when the Hamming weights of the matrix A columns follow a robust soliton

distribution. It is intended to be used as part of a practical implementation of

wet paper codes with non-shared selection rules.

The SE_LTSOLVER accepts on its input the linear system matrix, A, and

the right hand side, y, and outputs the solution to the system if it exists,
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or a message that the solution cannot be found. The solution proceeds by

repeatedly swapping the rows and columns of the matrix until an upper diago-

nal matrix is obtained (if the system has a solution). The solution is then found

by backsubstitution as in classical Gaussian elimination and re-permuting the

solution vector.

System 21: SD_SPA . . . . . . . . . . . . . . . . . . . . . . . 484

Detector of LSB Embedding: This is a steganalysis system that detects images

with messages embedded using LSB embedding. It uses sample pairs analysis

to estimate the number of flipped LSBs in an image and thereby detect LSB

steganography.

It works by first dividing all pixels in the image into pairs and then assigns

them to several categories. The cardinalities of the categories are used to form a

quadratic equation for the unknown relative number of flipped LSBs. The input

is a grayscale image, the output is the estimate of the relative message length

in bits per pixel.

System 22: SD_DEN_FEATURES . . . . . . . . . . . . . . . . . 491

Blind Steganalysis in Spatial Domain based on de-noising and a feature
vector: This system extracts 27 features from a grayscale image for the purpose

of blind steganlysis primarily in the spatial domain.

The SD_DEN_FEATURES system first applies a denoising filter to the

image and then extracts the noise residual, which is subsequently transformed

to the wavelet domain. Statistical moments of the coefficients from the three

highest-frequency subbands are then calculated as features for steganalysis.

Classification can be performed using a variety of machine learning tools.
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Introduction

Hold an American $20 bill up to the light. If you are looking at the side with the

portrait of president Andrew Jackson, you will see that the portrait is echoed in

a watermark on the right. This watermark is embedded directly into the paper

during the papermaking process, and is therefore very difficult to forge. It also

thwarts a common method of counterfeiting in which the counterfeiter washes

the ink out of $20 bills and prints $100 bills on the same paper.

The watermark on the $20 bill (Figure 1.1), just like most paper watermarks

today, has two properties that relate to the subject of the present book. First,

the watermark is hidden from view during normal use, only becoming visible

as a result of a special viewing process (in this case, holding the bill up to the

light). Second, the watermark carries information about the object in which it

is hidden (in this case, the watermark indicates the authenticity of the bill).

In addition to paper, watermarking can be applied to other physical objects

and to electronic signals. Fabrics, garment labels, and product packaging are

examples of physical objects that can be watermarked using special invisible

dyes and inks [344, 348]. Electronic representations of music, photographs, and

video are common types of signals that can be watermarked.

Consider another example that also involves imperceptible marking of paper

but is fundamentally different on a philosophical level. Imagine a spy called

Alice who needs to communicate a very important finding to her superiors.

Alice begins by writing a letter describing her wonderful recent family vacation.

After writing the letter, Alice replaces the ink in her pen with milk and writes a

top secret message between the inked lines of her letter. When the milk dries,

this secret message becomes imperceptible to the human eye. Heating up the

paper above a candle will make the secret message visible. This is an example

of steganography. In contrast to watermarking, the hidden message is unrelated

to the content of the letter, which only serves as a decoy or cover to hide the

very presence of sending the secret message.

1
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FIGURE 1.1

American $20 bill.

This book deals with both watermarking and steganology1 of electronic

signals. We adopt the following terminology to describe these signals. We refer

to a specific song, video, or picture—or to a specific copy of such—as a Work,2

and to the set of all possible Works as content. Thus, audio music is an example

of content, and the song “Satisfaction” by the Rolling Stones is an example of a

Work. The original unaltered Work is sometimes referred to as the cover Work,
in that it hides or “covers” the watermark or the secret message. We use the

term media to refer to the means of representing, transmitting, and recording

content. Thus, the audio CD on which “Satisfaction” is recorded is an example

of a medium.

We define watermarking as the practice of imperceptibly altering a Work
to embed a message about that Work.3

We define steganography as the practice of undetectably altering a Work
to embed a secret message.

Even though the objectives of watermarking and steganography are quite

different, both applications share certain high-level elements. Both systems

1
We use the term steganology to refer to both steganography and steganalysis, just as cryp-

tology refers to both cryptography and cryptanalysis. The term steganology is not commonly

used but is more precise than using steganography. However, we will often use steganography

and steganology interchangeably.
2

This definition of the term Work is consistent with the language used in the United States

copyright laws [416]. Other terms that have been used can be found in the disscussion of

this term in the Glossary.
3

Some researchers do not consider imperceptibility a defining characteristic of digital water-

marking. This leads to the field of perceptible watermarking [52, 164, 286, 294, 295], which

is outside the scope of this book.
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FIGURE 1.2

A generic watermarking (steganography) system.

consist of an embedder and a detector, as illustrated in Figure 1.2. The embed-

der takes two inputs. One is the payload we want to embed (e.g., either the

watermark or the secret message), and the other is the cover Work in which

we want to embed the payload. The output of the embedder is typically trans-

mitted or recorded. Later, that Work (or some other Work that has not been

through the embedder) is presented as an input to the detector. Most detectors

try to determine whether a payload is present, and if so, output the message

encoded by it.

In the late 1990s there was an explosion of interest in digital systems for

the watermarking of various content. The main focus has been on photographs,

audio, and video, but other content—such as binary images [453], text [49, 50,

271], line drawings [380], three-dimensional models [36, 312, 462], animation

parameters [177], executable code [385], and integrated circuits [215, 249]—

have also been marked. The proposed applications of these methods are many

and varied, and include identification of the copyright owner, indication to

recording equipment that the marked content should not be recorded, verifi-

cation that content has not been modified since the mark was embedded, and

the monitoring of broadcast channels looking for marked content.

Interest in steganology increased significantly after the terrorist attacks on

September 11, 2001, when it became clear that means for concealing the com-

munication itself are likely to be used for criminal activities.4 The first steganalytic

methods focused on the most common type of hiding called Least Significant

Bit embedding [142, 444] in bitmap and GIF images. Later, substantial effort has

been directed to the most common image format—JPEG—[132, 144] and audio

files [443]. Accurate methods for detecting hidden messages prompted further

research in steganography for multimedia files [147, 442].

4
Interestingly, USA Today reported on this possibility several months before the September 11,

2001 attacks [1]. However, there has been little evidence to substantiate these claims.


