Nonlinear Fiber Optics

FOURTH EDITION

Govind P. Agrawal

Nonlinear Fiber Optics

Fourth Edition

"This page intentionally left blank"

Nonlinear Fiber Optics

Fourth Edition

GOVIND P. AGRAWAL

The Institute of Optics University of Rochester Rochester, New York

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper. ⊕

Copyright © 2007 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida 32887-6777.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

Library of Congress Cataloging-in-Publication Data

Application submitted.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 13: 978-0-12-369516-1 ISBN 10: 0-12-369516-3

For information on all Academic Press publications visit our Web site at www.books.elsevier.com

Printed in the United States of America 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International Sabre Foundation In the memory of my mother and for Anne, Sipra, Caroline, and Claire "This page intentionally left blank"

Pr	Preface							
1	Introduction							
	1.1	Histori	ical Perspective	1				
	1.2		Characteristics	3				
		1.2.1	Material and Fabrication	4				
		1.2.2	Fiber Losses	5				
		1.2.3	Chromatic Dispersion	6				
		1.2.4	Polarization-Mode Dispersion	11				
	1.3	Fiber N	Nonlinearities	13				
		1.3.1	Nonlinear Refraction	14				
		1.3.2	Stimulated Inelastic Scattering	15				
		1.3.3	Importance of Nonlinear Effects	17				
	1.4	Overvi	iew	18				
	Prob			20				
	Refe			21				
2	Puls	e Propa	ngation in Fibers	25				
	2.1	-	ell's Equations	25				
	2.2	Fiber N	Modes	27				
		2.2.1	Eigenvalue Equation	28				
		2.2.2	Single-Mode Condition	29				
		2.2.3	Characteristics of the Fundamental Mode	30				
	2.3	Pulse-l	Propagation Equation	31				
		2.3.1	Nonlinear Pulse Propagation	32				
		2.3.2	Higher-Order Nonlinear Effects	36				
	2.4	Numer	rical Methods	41				
		2.4.1	Split-Step Fourier Method	41				
		2.4.2	Finite-Difference Methods	45				
	Prob	lems .		46				
	Refe	rences .		47				

3	Gro	up-Velo	ocity Dispersion	51			
	3.1	Differe	ent Propagation Regimes	51			
	3.2	Disper	rsion-Induced Pulse Broadening	53			
		3.2.1	Gaussian Pulses	54			
		3.2.2	Chirped Gaussian Pulses	56			
		3.2.3	Hyperbolic Secant Pulses	58			
		3.2.4	Super-Gaussian Pulses	58			
		3.2.5	Experimental Results	61			
	3.3	Third-	Order Dispersion	62			
		3.3.1	Evolution of Chirped Gaussian Pulses	63			
		3.3.2	Broadening Factor	65			
		3.3.3	Arbitrary-Shape Pulses	67			
		3.3.4	Ultrashort-Pulse Measurements	69			
	3.4	Disper	rsion Management	71			
		3.4.1	GVD-Induced Limitations	71			
		3.4.2	Dispersion Compensation	73			
		3.4.3	Compensation of Third-Order Dispersion	74			
	Prob	olems	· · · · · · · · · · · · · · · · · · ·	76			
	Refe	erences		77			
4	C . 16	DI 1	Mr. JJ. 45	79			
4							
	4.1	4.1.1	Induced Spectral Changes	79 80			
		4.1.1	Nonlinear Phase Shift	80			
			Changes in Pulse Spectra	82 85			
		4.1.3	Effect of Pulse Shape and Initial Chirp	85 87			
	4.0	4.1.4	Effect of Partial Coherence				
	4.2		of Group-Velocity Dispersion	89			
		4.2.1	Pulse Evolution	90			
		4.2.2	Broadening Factor	91			
		4.2.3	Optical Wave Breaking	94			
		4.2.4	Experimental Results	97			
		4.2.5	Effect of Third-Order Dispersion	98			
		4.2.6	SPM Effects in Fiber Amplifiers	100			
	4.3		nalytic Techniques	102			
		4.3.1	Moment Method	102			
		4.3.2	Variational Method	103			
		4.3.3	Specific Analytic Solutions	104			
	4.4	e	r-Order Nonlinear Effects	106			
		4.4.1	Self-Steepening	107			
		4.4.2	Effect of GVD on Optical Shocks	109			
		4.4.3	Intrapulse Raman Scattering	111			
				114			
	Refe	erences		116			

5	Opti	ical Soli	tons	120
	5.1	Modula	ation Instability	120
		5.1.1	Linear Stability Analysis	121
		5.1.2	Gain Spectrum	122
		5.1.3	Experimental Results	124
		5.1.4	Ultrashort Pulse Generation	125
		5.1.5	Impact on Lightwave Systems	127
	5.2	Fiber S	olitons	129
		5.2.1	Inverse Scattering Method	130
		5.2.2	Fundamental Soliton	132
		5.2.3	Higher-Order Solitons	134
		5.2.4	Experimental Confirmation	136
		5.2.5	Soliton Stability	137
	5.3	Other 7	Types of Solitons	140
		5.3.1	Dark Solitons	140
		5.3.2	Dispersion-Managed Solitons	144
		5.3.3	Bistable Solitons	144
	5.4	Perturb	pation of Solitons	146
		5.4.1	Perturbation Methods	146
		5.4.2	Fiber Losses	147
		5.4.3	Soliton Amplification	149
		5.4.4	Soliton Interaction	152
	5.5	Higher	-Order Effects	156
		5.5.1	Moment Equations for Pulse Parameters	156
		5.5.2	Third-Order Dispersion	158
		5.5.3	Self-Steepening	160
		5.5.4	Intrapulse Raman Scattering	162
		5.5.5	Propagation of Femtosecond Pulses	167
	Prob	lems .		169
	Refe	rences.		170
6	Pola	rization	Effects	177
	6.1	Nonlin	ear Birefringence	177
		6.1.1	Origin of Nonlinear Birefringence	178
		6.1.2	Coupled-Mode Equations	180
		6.1.3	Elliptically Birefringent Fibers	181
	6.2	Nonlin	ear Phase Shift	182
		6.2.1	Nondispersive XPM	182
		6.2.2	Optical Kerr Effect	183
		6.2.3	Pulse Shaping	187
	6.3	Evoluti	ion of Polarization State	189
		6.3.1	Analytic Solution	189
		6.3.2	Poincaré-Sphere Representation	191
		6.3.3	Polarization Instability	194
		6.3.4	Polarization Chaos	196
	6.4	Vector	Modulation Instability	197

		6.4.1	Low-Birefringence Fibers	197
		6.4.2	High-Birefringence Fibers	
		6.4.3	Isotropic Fibers	
		6.4.4	Experimental Results	
	6.5	Birefri	ingence and Solitons	
		6.5.1	Low-Birefringence Fibers	
		6.5.2	High-Birefringence Fibers	
		6.5.3	Soliton-Dragging Logic Gates	
		6.5.4	Vector Solitons	
	6.6	Rando	m Birefringence	
		6.6.1	Polarization-Mode Dispersion	
		6.6.2	Vector Form of the NLS Equation	
		6.6.3	Effects of PMD on Solitons	
	Prob	lems		
	Refe			
7	Cros		e Modulation	226
	7.1	XPM-	Induced Nonlinear Coupling	
		7.1.1	Nonlinear Refractive Index	227
		7.1.2	Coupled NLS Equations	228
	7.2	XPM-	Induced Modulation Instability	229
		7.2.1	Linear Stability Analysis	229
		7.2.2	Experimental Results	232
	7.3		Paired Solitons	233
		7.3.1	Bright–Dark Soliton Pair	233
		7.3.2	Bright–Gray Soliton Pair	234
		7.3.3	Periodic Solutions	235
		7.3.4	Multiple Coupled NLS Equations	237
	7.4	Spectr	al and Temporal Effects	238
		7.4.1	Asymmetric Spectral Broadening	239
		7.4.2	Asymmetric Temporal Changes	244
		7.4.3	Higher-Order Nonlinear Effects	247
	7.5	Applic	cations of XPM	248
		7.5.1	XPM-Induced Pulse Compression	248
		7.5.2	XPM-Induced Optical Switching	251
		7.5.3	XPM-Induced Nonreciprocity	252
	7.6	Polariz	zation Effects	254
			Vector Theory of XPM	254
		7.6.2	Polarization Evolution	255
		7.6.3	Polarization-Dependent Spectral Broadening	257
		7.6.4	Pulse Trapping and Compression	
		7.6.5	XPM-Induced Wave Breaking	
	7.7		Effects in Birefringent Fibers	
		7.7.1	Fibers with Low Birefringence	
		7.7.2	Fibers with High Birefringence	
	Prob	lems		268

	Refe	erences		270
8	Stin		Raman Scattering	274
	8.1	Basic	Concepts	274
		8.1.1	Raman-Gain Spectrum	275
		8.1.2	Raman Threshold	276
		8.1.3	Coupled Amplitude Equations	279
		8.1.4	Effect of Four-Wave Mixing	281
	8.2	Quasi-	Continuous SRS	283
		8.2.1	Single-Pass Raman Generation	283
		8.2.2	Raman Fiber Lasers	285
		8.2.3	Raman Fiber Amplifiers	288
		8.2.4	Raman-Induced Crosstalk	292
	8.3	SRS w	vith Short Pump Pulses	294
		8.3.1	Pulse-Propagation Equations	294
		8.3.2	Nondispersive Case	295
		8.3.3	Effects of GVD	297
		8.3.4	Experimental Results	300
		8.3.5	Synchronously Pumped Raman Lasers	304
		8.3.6	Short-Pulse Raman Amplification	305
	8.4		n Effects	306
	0.1	8.4.1	Raman Solitons	306
		8.4.2	Raman Soliton Lasers	311
		8.4.3	Soliton-Effect Pulse Compression	313
	8.5		zation Effects	315
	0.5	8.5.1	Vector Theory of Raman Amplification	315
		8.5.2	PMD Effects on Raman Amplification	319
	Drok			321
				321
	Kelt	lences .		522
9	Stin	nulated	Brillouin Scattering	329
	9.1	Basic	Concepts	329
		9.1.1	Physical Process	330
		9.1.2	Brillouin-Gain Spectrum	330
	9.2	Ouasi-	-CW SBS	333
		9.2.1	Brillouin Threshold	333
		9.2.2	Polarization Effects	334
		9.2.3	Techniques for Controlling the SBS Threshold	335
		9.2.4	Experimental Results	338
	9.3		un Fiber Amplifiers	340
	1.5	9.3.1	Gain Saturation	341
		9.3.2	Amplifier Design and Applications	342
	9.4			344
	7.4	9.4.1	Coupled Amplitude Equations	345
		9.4.1 9.4.2		345 346
			SBS with Q-Switched Pulses	
		9.4.3	SBS-Induced Index Changes	350

		9.4.4	Relaxation Oscillations	352
		9.4.5	Modulation Instability and Chaos	354
	9.5	Brillou	in Fiber Lasers	356
		9.5.1	CW Operation	356
		9.5.2	Pulsed Operation	360
	Prob	lems .		362
	Refe	rences .		363
10	Four	-Wave]	Mixing	368
	10.1	Origin	of Four-Wave Mixing	368
	10.2	Theory	of Four-Wave Mixing	370
		10.2.1	Coupled Amplitude Equations	371
		10.2.2	Approximate Solution	371
			Effect of Phase Matching	373
		10.2.4	Ultrafast Four-Wave Mixing	374
	10.3		Matching Techniques	376
		10.3.1	Physical Mechanisms	376
		10.3.2	Phase Matching in Multimode Fibers	377
		10.3.3	Phase Matching in Single-Mode Fibers	380
			Phase Matching in Birefringent Fibers	383
	10.4		etric Amplification	387
		10.4.1	Review of Early Work	387
		10.4.2	Gain Spectrum and Its Bandwidth	389
		10.4.3	Single-Pump Configuration	391
		10.4.4	Dual-Pump Configuration	394
			Effects of Pump Depletion	399
	10.5		vation Effects	401
			Vector Theory of Four-Wave Mixing	401
			Polarization Dependence of Parametric Gain	403
			Linearly and Circularly Polarized Pumps	405
		10.5.4	Effect of Residual Fiber Birefringence	408
	10.6	Applic	ations of Four-Wave Mixing	411
			Parametric Oscillators	412
			Ultrafast Signal Processing	413
		10.6.3	Quantum Noise and Correlation	415
	Prob			417
	Refe	rences .		418
11	High	ly Nonl	linear Fibers	424
	11.1	Nonlin	ear Parameter	424
		11.1.1	Units and Values of n_2	425
			SPM-Based Techniques	426
			XPM-Based Technique	429
			FWM-Based Technique	430
			Variations in n_2 Values	431
	11.2	Fibers	with Silica Cladding	434

	-		Effects of Cross-Phase Modulation	
	-			
	1	12.4.2	Soliton Fission and Nonsolitonic Radiation	. 480
	1		Numerical Modeling of Supercontinuum	
			ral and Spectral Evolution	
			Pumping with Femtosecond Pulses	
			Continuous-Wave Pumping	
			Pumping with Picosecond Pulses	
			ontinuum Generation	
			Effects of Fiber Birefringence	
			FWM in Highly Nonlinear Fibers	
	12.2 F	Four-W	Vave Mixing	. 464
			Suppression of Raman-Induced Frequency Shifts	
			-	
			Effects of Birefringence	
			Nonsolitonic Radiation	
	1	12.1.1	Enhanced RIFS and Wavelength Tuning	. 454
	12.1 I	Intrapu	Ilse Raman Scattering	. 453
12			near Phenomena	453
10	NT 1	NT I		450
	Refere	inces .		. 449
	Refere			
	Proble	ems .		. 448
			ilica Fibers	
			tructured Fibers	
	1137	Tanereo	d Fibers with Air Cladding	. 436

"This page intentionally left blank"

Preface

Since the publication of the first edition of this book in 1989, the field of *nonlinear fiber optics* has remained an active area of research and has thus continued to grow at a rapid pace. During the 1990s, a major factor behind such a sustained growth was the advent of fiber amplifiers and lasers, made by doping silica fibers with rare-earth materials such as erbium and ytterbium. Erbium-doped fiber amplifiers revolutionized the design of fiber-optic communication systems, including those making use of optical solitons, whose very existence stems from the presence of nonlinear effects in optical fibers. Optical amplifiers permit propagation of lightwave signals over thousands of kilometers as they can compensate for all losses encountered by the signal in the optical domain. At the same time, fiber amplifiers enable the use of massive wavelength-division multiplexing, a technique that led by 1999 to the development of lightwave systems with capacities exceeding 1 Tb/s. Nonlinear fiber optics plays an important role in the design of such high-capacity lightwave systems. In fact, an understanding of various nonlinear effects occurring inside optical fibers is almost a prerequisite for a lightwave-system designer.

Starting around 2000, a new development occurred in the field of *nonlinear fiber optics* that changed the focus of research and has led to a number of advances and novel applications in recent years. Several kinds of new fibers, classified as highly nonlinear fibers, have been developed. They are referred to with names such as microstructured fibers, holey fibers, or photonic crystal fibers, and share the common property that a relatively narrow core is surrounded by a cladding containing a large number of air holes. The nonlinear effects are enhanced dramatically in such fibers to the extent that they can be observed even when the fiber is only a few centimeters long. Their dispersive properties are also quite different compared with those of conventional fibers developed for telecommunication applications. Because of these changes, microstructured fibers exhibit a variety of novel nonlinear effects that are finding applications in fields as diverse as optical coherence tomography and high-precision frequency metrology.

The fourth edition is intended to bring the book up-to-date so that it remains a unique source of comprehensive coverage on the subject of nonlinear fiber optics. It retains most of the material that appeared in the third edition. However, an attempt was made to include recent research results on all topics relevant to the field of nonlinear fiber optics. Such an ambitious objective has increased the size of the book considerably. Two new chapters, Chapters 11 and 12, have been added to cover the recent research advances. Chapter 11 describes the properties of highly nonlinear fibers, and the novel nonlinear effects that have been observed since 2000 in such fibers are cov-

ered in Chapter 12. Although all other chapters have been updated, Chapters 8 to 10 required major additions because of the recent advances in the research areas covered by them. For example, polarization issues have become increasingly more important for stimulated Raman scattering and four-wave mixing, and thus they are discussed in detail in Chapters 8 and 10. It is important that students learn about such polarization effects in a course devoted to nonlinear fiber optics.

The potential readership is likely to consist of senior undergraduate students, graduate students enrolled in the M.S. and Ph.D. degree programs, engineers and technicians involved with the fiber-optics industry, and scientists working in the fields of fiber optics and optical communications. This revised edition should continue to be a useful text for graduate and senior-level courses dealing with nonlinear optics, fiber optics, or optical communications that are designed to provide mastery of the fundamental aspects. Some universities may even opt to offer a high-level graduate course devoted to solely nonlinear fiber optics. The problems provided at the end of each chapter should be useful to instructors of such a course.

Many individuals have contributed, either directly or indirectly, to the completion of the third edition. I am thankful to all of them, especially to my graduate students whose curiosity and involvement led to several improvements. Several of my colleagues have helped me in preparing the fourth edition. I especially thank F. Omenetto, Q. Lin, and F. Yaman for reading drafts of selected chapters and for making helpful suggestions. I am grateful to many readers for their occasional feedback. Last, but not least, I thank my wife, Anne, and my daughters, Sipra, Caroline, and Claire, for understanding why I needed to spend many weekends on the book instead of spending time with them.

Govind P. Agrawal Rochester, New York July 2006 "This page intentionally left blank"

Chapter 1 Introduction

This introductory chapter is intended to provide an overview of the fiber characteristics that are important for understanding the nonlinear effects discussed in later chapters. Section 1.1 provides a historical perspective on the progress in the field of fiber optics. Section 1.2 discusses various fiber properties such as optical loss, chromatic dispersion, and birefringence. Particular attention is paid to chromatic dispersion because of its importance in the study of nonlinear effects probed by using ultrashort optical pulses. Section 1.3 introduces various nonlinear effects resulting from the intensity dependence of the refractive index and stimulated inelastic scattering. Among the nonlinear effects that have been studied extensively using optical fibers as a nonlinear medium are self-phase modulation, cross-phase modulation, four-wave mixing, stimulated Raman scattering, and stimulated Brillouin scattering. Each of these effects is considered in detail in separate chapters. Section 1.4 gives an overview of how this book is organized for discussing such a wide variety of nonlinear effects in optical fibers.

1.1 Historical Perspective

Total internal reflection—the basic phenomenon responsible for guiding of light in optical fibers—is known from the nineteenth century. The reader is referred to a 1999 book for the interesting history behind the discovery of this phenomenon [1]. Although uncladded glass fibers were fabricated in the 1920s [2]–[4], the field of fiber optics was not born until the 1950s when the use of a cladding layer led to considerable improvement in the fiber characteristics [5]–[8]. The idea that optical fibers would benefit from a dielectric cladding was not obvious and has a remarkable history [1].

The field of fiber optics developed rapidly during the 1960s, mainly for the purpose of image transmission through a bundle of glass fibers [9]. These early fibers were extremely lossy (loss >1000 dB/km) from the modern standard. However, the situation changed drastically in 1970 when, following an earlier suggestion [10], losses of silica fibers were reduced to below 20 dB/km [11]. Further progress in fabrication technology [12] resulted by 1979 in a loss of only 0.2 dB/km in the 1.55- μ m wave-

length region [13], a loss level limited mainly by the fundamental process of Rayleigh scattering.

The availability of low-loss silica fibers led not only to a revolution in the field of optical fiber communications [14]–[17] but also to the advent of the new field of nonlinear fiber optics. Stimulated Raman- and Brillouin-scattering processes in optical fibers were studied as early as 1972 [18]–[20]. This work stimulated the study of other nonlinear phenomena such as optically induced birefringence, parametric four-wave mixing, and self-phase modulation [21]–[25]. An important contribution was made in 1973 when it was suggested that optical fibers can support soliton-like pulses as a result of an interplay between the dispersive and nonlinear effects [26]. Optical solitons were observed in a 1980 experiment [27] and led to a number of advances during the 1980s in the generation and control of ultrashort optical pulses [28]–[32]. The decade of the 1980s also saw the development of pulse-compression and optical-switching techniques that exploited the nonlinear effects in fibers [33]–[40]. Pulses as short as 6 fs were generated by 1987 [41]. The first edition of this book covered the progress made during the 1980s [42]–[47].

The field of nonlinear fiber optics continued to grow during the decade of the 1990s. A new dimension was added when optical fibers were doped with rare-earth elements and used to make amplifiers and lasers. Although fiber amplifiers were made as early as 1964 [48], it was only after 1987 that their development accelerated [49]. Erbium-doped fiber amplifiers attracted the most attention because they operate in the wave-length region near 1.55 μ m and are thus useful for fiber-optic lightwave systems [50]. Their use led to a virtual revolution in the design of multichannel lightwave systems [14]–[17]. After 2000, two nonlinear effects occurring inside optical fibers, namely stimulated Raman scattering and four-wave mixing, were employed to develop new types of fiber-optic amplifiers. Such amplifiers do not require doped fibers and can operate in any spectral region. Indeed, the use of Raman amplification has become quite common in modern telecommunication systems [51]. Fiber-optic parametric amplifiers based on four-wave mixing are also attractive because of their potential for ultrafast signal processing [52].

The advent of fiber amplifiers also fueled research on optical solitons and led eventually to new types of solitons such as dispersion-managed solitons and dissipative solitons [53]–[56]. In another development, fiber gratings, first made in 1978 [57], were developed during the 1990s to the point that they became an integral part of lightwave technology [58]. Starting in 1996, new types of fibers, known under names such as photonic crystal fibers, holey fibers, microstructure fibers, and tapered fibers, were developed [59]–[63]. Structural changes in such fibers affect their dispersive as well as nonlinear properties. In particular, the wavelength at which the group-velocity dispersion vanishes shifts toward the visible region. Some fibers exhibit two such wavelengths such that dispersion is anomalous in the visible and near-infrared regions. At the same time, the nonlinear effects are enhanced considerably because of a relatively small core size. This combination leads to supercontinuum generation, a phenomenon in which the optical spectrum of ultrashort pulses is broadened by a factor of more than 200 over a length of only 1 m or less [64]–[66]. With these developments, the field of nonlinear fiber optics has grown considerably after 2000 and is expected to continue to do so in the near future.

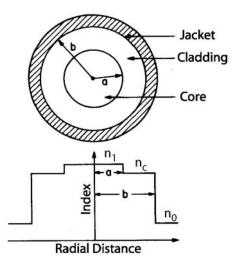


Figure 1.1: Schematic illustration of the cross section and the refractive-index profile of a stepindex fiber.

1.2 Fiber Characteristics

In its simplest form, an optical fiber consists of a central glass core surrounded by a cladding layer whose refractive index n_c is slightly lower than the core index n_1 . Such fibers are generally referred to as *step-index fibers* to distinguish them from *graded-index fibers* in which the refractive index of the core decreases gradually from center to core boundary [67]–[69]. Figure 1.1 shows schematically the cross section and refractive-index profile of a step-index fiber. Two parameters that characterize an optical fiber are the relative core–cladding index difference

$$\Delta = \frac{n_1 - n_c}{n_1} \tag{1.2.1}$$

and the so-called V parameter defined as

$$V = k_0 a (n_1^2 - n_c^2)^{1/2}, \qquad (1.2.2)$$

where $k_0 = 2\pi/\lambda$, *a* is the core radius, and λ is the wavelength of light.

The V parameter determines the number of modes supported by the fiber. Fiber modes are discussed in Section 2.2, where it is shown that a step-index fiber supports a single mode if V < 2.405. Optical fibers designed to satisfy this condition are called single-mode fibers. The main difference between the single-mode and multimode fibers is the core size. The core radius *a* is typically 25 μ m for multimode fibers. However, single-mode fibers with $\Delta \approx 0.003$ require *a* to be $<5 \mu$ m. The numerical value of the outer radius *b* is less critical as long as it is large enough to confine the fiber modes entirely. A standard value of $b = 62.5 \mu$ m is commonly used for both single-mode fibers, the term optical fiber in this text refers to single-mode fibers (unless noted otherwise).

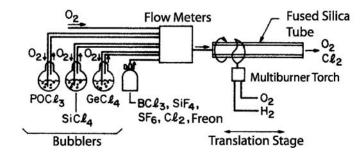


Figure 1.2: Schematic diagram of the MCVD process commonly used for fiber fabrication. (After Ref. [70]; ©1985 Elsevier.)

1.2.1 Material and Fabrication

The material of choice for low-loss optical fibers is pure silica glass synthesized by fusing SiO₂ molecules. The refractive-index difference between the core and the cladding is realized by the selective use of dopants during the fabrication process. Dopants such as GeO₂ and P₂O₅ increase the refractive index of pure silica and are suitable for the core, while materials such as boron and fluorine are used for the cladding because they decrease the refractive index of silica. Additional dopants can be used depending on specific applications. For example, to make fiber amplifiers and lasers, the core of silica fibers is codoped with rare-earth ions using dopants such as $ErCl_3$ and Nd_2O_3 .

The fabrication of optical fibers involves two stages [70]. In the first stage, a vapordeposition method is used to make a cylindrical preform with the desired refractiveindex profile and the relative core-cladding dimensions. A typical preform is 1-m long with a 2-cm diameter. In the second stage, the preform is drawn into a fiber using a precision-feed mechanism that feeds it into a furnace at a proper speed. During this process, the relative core-cladding dimensions are preserved. Both stages, preform fabrication and fiber drawing, involve sophisticated technology to ensure the uniformity of the core size and the index profile [70]–[72].

Several methods can be used for making a preform. The three commonly used methods are modified chemical vapor deposition (MCVD), outside vapor deposition, and vapor-phase axial deposition. Figure 1.2 shows a schematic diagram of the MCVD process. In this process, successive layers of SiO₂ are deposited on the inside of a fused silica tube by mixing the vapors of SiCl₄ and O₂ at a temperature of $\approx 1800^{\circ}$ C. To ensure uniformity, the multiburner torch is moved back and forth across the tube length. The refractive index of the cladding layers is controlled by adding fluorine to the tube. When a sufficient cladding thickness has been deposited with multiple passes of the torch, the vapors of GeCl₄ or POCl₃ are added to the vapor mixture to form the core. When all layers have been deposited, the torch temperature is raised to collapse the tube into a solid rod known as the preform.

This description is extremely brief and is intended to provide a general idea. The fabrication of optical fibers requires attention to a large number of technological details. The interested reader is referred to the extensive literature on this subject [70]–[72].

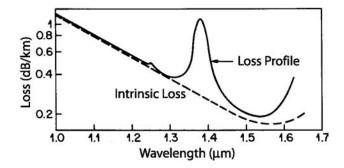


Figure 1.3: Measured loss spectrum of a single-mode silica fiber. Dashed curve shows the contribution resulting from Rayleigh scattering. (After Ref. [70]; ©1985 Elsevier.)

1.2.2 Fiber Losses

An important fiber parameter provides a measure of power loss during transmission of optical signals inside the fiber. If P_0 is the power launched at the input of a fiber of length L, the transmitted power P_T is given by

$$P_T = P_0 \exp(-\alpha L), \tag{1.2.3}$$

where the *attenuation constant* α is a measure of total fiber losses from all sources. It is customary to express α in units of dB/km using the relation (see Appendix A for an explanation of decibel units)

$$\alpha_{\rm dB} = -\frac{10}{L} \log\left(\frac{P_T}{P_0}\right) = 4.343\alpha, \qquad (1.2.4)$$

where Eq. (1.2.3) was used to relate α_{dB} and α .

As one may expect, fiber losses depend on the wavelength of light. Figure 1.3 shows the loss spectrum of a silica fiber made by the MCVD process [70]. This fiber exhibits a minimum loss of about 0.2 dB/km near 1.55 μ m. Losses are considerably higher at shorter wavelengths, reaching a level of a few dB/km in the visible region. Note, however, that even a 10-dB/km loss corresponds to an attenuation constant of only $\alpha \approx 2 \times 10^{-5}$ cm⁻¹, an incredibly low value compared to that of most other materials.

Several factors contribute to the loss spectrum of Figure 1.3, with material absorption and *Rayleigh scattering* contributing dominantly. Silica glass has electronic resonances in the ultraviolet region, and vibrational resonances in the far-infrared region beyond 2 μ m, but it absorbs little light in the wavelength region extending from 0.5 to 2 μ m. However, even a relatively small amount of impurities can lead to significant absorption in that wavelength window. From a practical point of view, the most important impurity affecting fiber loss is the OH ion, which has a fundamental vibrational absorption peak at $\approx 2.73 \ \mu$ m. The overtones of this OH-absorption peak are responsible for the dominant peak seen in Figure 1.3 near 1.4 μ m and a smaller peak near 1.23 μ m. Special precautions are taken during the fiber-fabrication process to ensure an OH-ion level of less than one part in one hundred million [70]. In stateof-the-art fibers, the peak near 1.4 μ m can be reduced to below the 0.5-dB level. It virtually disappears in the so-called "dry" fibers [73]. Such fibers with low losses in the entire 1.3–1.6 μ m spectral region are useful for fiber-optic communications and were available commercially by the year 2000.

Rayleigh scattering is a fundamental loss mechanism arising from density fluctuations frozen into the fused silica during manufacture. Resulting local fluctuations in the refractive index scatter light in all directions. The Rayleigh-scattering loss varies as λ^{-4} and is dominant at short wavelengths. As this loss is intrinsic to the fiber, it sets the ultimate limit on fiber loss. The intrinsic loss level (shown by a dashed line in Figure 1.3) is estimated to be (in dB/km)

$$\alpha_R = C_R / \lambda^4, \tag{1.2.5}$$

where the constant C_R is in the range 0.7–0.9 dB/(km- μ m⁴) depending on the constituents of the fiber core. As α_R is in the range of 0.12–0.15 dB/km near $\lambda = 1.55 \mu$ m, losses in silica fibers are dominated by Rayleigh scattering. In some glasses, α_R can be reduced to a level near 0.05 dB/km [74]. Such glasses may be useful for fabricating ultralow-loss fibers.

Among other factors that may contribute to losses are bending of fiber and scattering of light at the core-cladding interface [67]. Modern fibers exhibit a loss of ≈ 0.2 dB/km near 1.55 μ m. Total loss of fiber cables used in optical communication systems is slightly larger because of splice and cabling losses.

1.2.3 Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielectric, the medium response, in general, depends on the optical frequency ω . This property, referred to as chromatic dispersion, manifests through the frequency dependence of the refractive index $n(\omega)$. On a fundamental level, the origin of chromatic dispersion is related to the characteristic resonance frequencies at which the medium absorbs the electromagnetic radiation through oscillations of bound electrons. Far from the medium resonances, the refractive index is well approximated by the *Sellmeier equation* [67]

$$n^{2}(\omega) = 1 + \sum_{j=1}^{m} \frac{B_{j}\omega_{j}^{2}}{\omega_{j}^{2} - \omega^{2}},$$
(1.2.6)

where ω_j is the resonance frequency and B_j is the strength of *j*th resonance. The sum in Eq. (1.2.6) extends over all material resonances that contribute to the frequency range of interest. In the case of optical fibers, the parameters B_j and ω_j are obtained experimentally by fitting the measured dispersion curves [75] to Eq. (1.2.6) with m = 3 and depend on the core constituents [69]. For bulk-fused silica, these parameters are found to be [76] $B_1 = 0.6961663$, $B_2 = 0.4079426$, $B_3 = 0.8974794$, $\lambda_1 = 0.0684043 \ \mu m$, $\lambda_2 = 0.1162414 \ \mu m$, and $\lambda_3 = 9.896161 \ \mu m$, where $\lambda_j = 2\pi c/\omega_j$ and *c* is the speed of light in vacuum. Figure 1.4 displays how *n* varies with wavelength for fused silica. As seen there, *n* has a value of about 1.46 in the visible region, and this value decreases by 1% in the wavelength region near 1.5 μm .

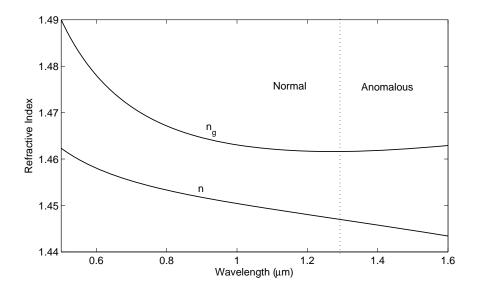


Figure 1.4: Variation of refractive index n and group index n_g with wavelength for fused silica.

Fiber dispersion plays a critical role in propagation of short optical pulses because different spectral components associated with the pulse travel at different speeds given by $c/n(\omega)$. Even when the nonlinear effects are not important, dispersion-induced pulse broadening can be detrimental for optical communication systems. In the nonlinear regime, the combination of dispersion and nonlinearity can result in a qualitatively different behavior, as discussed in later chapters. Mathematically, the effects of fiber dispersion are accounted for by expanding the mode-propagation constant β in a Taylor series about the frequency ω_0 at which the pulse spectrum is centered:

$$\beta(\boldsymbol{\omega}) = n(\boldsymbol{\omega})\frac{\boldsymbol{\omega}}{c} = \beta_0 + \beta_1(\boldsymbol{\omega} - \boldsymbol{\omega}_0) + \frac{1}{2}\beta_2(\boldsymbol{\omega} - \boldsymbol{\omega}_0)^2 + \cdots, \qquad (1.2.7)$$

where

$$\beta_m = \left(\frac{d^m \beta}{d\omega^m}\right)_{\omega = \omega_0} \qquad (m = 0, 1, 2, \ldots).$$
(1.2.8)

The parameters β_1 and β_2 are related to the refractive index $n(\omega)$ and its derivatives through the relations

$$\beta_1 = \frac{1}{v_g} = \frac{n_g}{c} = \frac{1}{c} \left(n + \omega \frac{dn}{d\omega} \right), \qquad (1.2.9)$$

$$\beta_2 = \frac{1}{c} \left(2 \frac{dn}{d\omega} + \omega \frac{d^2 n}{d\omega^2} \right), \qquad (1.2.10)$$

where n_g is the group index and v_g is the group velocity. Figure 1.4 shows the group index n_g changes with wavelength for fused silica. The group velocity can be found using $\beta_1 = c/n_g$. Physically speaking, the envelope of an optical pulse moves at the

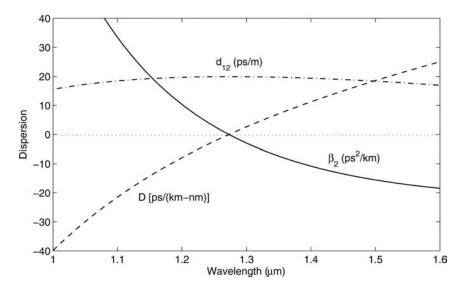


Figure 1.5: Variation of β_2 , *D*, and d_{12} with wavelength for fused silica. Both β_2 and *D* vanish at the zero-dispersion wavelength occurring near 1.27 μ m.

group velocity, while the parameter β_2 represents dispersion of the group velocity and is responsible for pulse broadening. This phenomenon is known as the *group-velocity dispersion* (GVD), and β_2 is the GVD parameter. The dispersion parameter D, defined as $d\beta_1/d\lambda$, is also used in practice. It is related to β_2 and n as

$$D = \frac{d\beta_1}{d\lambda} = -\frac{2\pi c}{\lambda^2}\beta_2 = -\frac{\lambda}{c}\frac{d^2n}{d\lambda^2}.$$
 (1.2.11)

Figure 1.5 shows how β_2 and *D* vary with wavelength λ for fused silica using Eqs. (1.2.6) and (1.2.10). The most notable feature is that both β_2 and *D* vanish at a wavelength of about 1.27 μ m and change sign for longer wavelengths. This wavelength is referred to as the *zero-dispersion wavelength* and is denoted as λ_D . However, the dispersive effects do not disappear completely at $\lambda = \lambda_D$. Pulse propagation near this wavelength requires inclusion of the cubic term in Eq. (1.2.7). The coefficient β_3 appearing in that term is called the *third-order dispersion* (TOD) parameter. Higher-order dispersive effects can distort ultrashort optical pulses both in the linear [67] and non-linear regimes [77]. Their inclusion is necessary for ultrashort optical pulses, or when the input wavelength λ approaches λ_D to within a few nanometers.

The curves shown in Figures 1.4 and 1.5 are for bulk-fused silica. The dispersive behavior of actual glass fibers deviates from that shown in these figures for the following two reasons. First, the fiber core may have small amounts of dopants such as GeO₂ and P₂O₅. Equation (1.2.6) in that case should be used with parameters appropriate to the amount of doping levels [69]. Second, because of dielectric waveguiding, the effective mode index is slightly lower than the material index $n(\omega)$ of the core, reduction itself being ω dependent [67]–[69]. This results in a waveguide contribution that

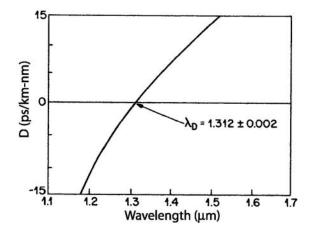


Figure 1.6: Measured variation of dispersion parameter D with wavelength for a single-mode fiber. (After Ref. [70]; ©1985 Elsevier.)

must be added to the material contribution to obtain the total dispersion. Generally, the waveguide contribution to β_2 is relatively small except near the zero-dispersion wavelength λ_D where the two become comparable. The main effect of the waveguide contribution is to shift λ_D slightly toward longer wavelengths; $\lambda_D \approx 1.31 \ \mu m$ for standard fibers. Figure 1.6 shows the measured total dispersion of a single-mode fiber [70]. The quantity plotted is the dispersion parameter *D* related to β_2 by the relation given in Eq. (1.2.11).

An interesting feature of the waveguide dispersion is that its contribution to D (or β_2) depends on fiber-design parameters such as core radius a and core-cladding index difference Δ . This feature can be used to shift the zero-dispersion wavelength λ_D in the vicinity of 1.55 μ m where the fiber loss is minimum. Such *dispersion-shifted* fibers [78] have found applications in optical communication systems. They are available commercially and are known by names such as TrueWave (Lucent), LEAF (Corning), and TeraLight (Alcatel), depending on at what wavelength D becomes zero in the 1.5 μ m spectral region. The fibers in which GVD is shifted to the wavelength region beyond 1.6 μ m exhibit a large positive value of β_2 . They are called *dispersion-compensating fibers* (DCFs). The slope of the curve in Figure 1.6 (called the *dispersion slope*) is related to the TOD parameter β_3 . Fibers with reduced slope have been developed in recent years for wavelength-division-multiplexing (WDM) applications.

It is possible to design *dispersion-flattened* optical fibers having low dispersion over a relatively large wavelength range of 1.3–1.6 μ m. This is achieved by using multiple cladding layers. Figure 1.7 shows the measured dispersion spectra for two such multiple-clad fibers having two (double-clad) and four (quadruple-clad) cladding layers around the core applications. For comparison, dispersion of a single-clad fiber is also shown by a dashed line. The quadruply clad fiber has low dispersion ($|D| \sim 1$ ps/km-nm) over a wide wavelength range extending from 1.25 to 1.65 μ m. Waveguide dispersion can also be used to make fibers for which *D* varies along the fiber length.

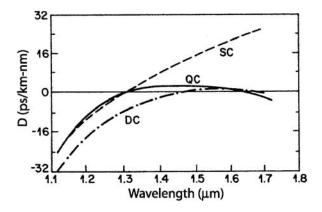


Figure 1.7: Variation of dispersion parameter *D* with wavelength for three kinds of fibers. Labels SC, DC, and QC stand for single-clad, double-clad, and quadruple-clad fibers, respectively. (After Ref. [79]; ©1982 IEE.)

An example is provided by *dispersion-decreasing* fibers made by tapering the core diameter along the fiber length [80].

Nonlinear effects in optical fibers can manifest qualitatively different behaviors depending on the sign of the GVD parameter. For wavelengths such that $\lambda < \lambda_D$, the fiber is said to exhibit *normal dispersion* as $\beta_2 > 0$ (see Figure 1.5). In the normal-dispersion regime, high-frequency (blue-shifted) components of an optical pulse travel slower than low-frequency (red-shifted) components of the same pulse. By contrast, the opposite occurs in the *anomalous dispersion* regime in which $\beta_2 < 0$. As seen in Figure 1.5, silica fibers exhibit anomalous dispersion when the light wavelength exceeds the zero-dispersion wavelength ($\lambda > \lambda_D$). The anomalous-dispersion regime is of considerable interest for the study of nonlinear effects because it is in this regime that optical fibers support solitons through a balance between the dispersive and nonlinear effects.

An important feature of chromatic dispersion is that pulses at different wavelengths propagate at different speeds inside a fiber because of a mismatch in their group velocities. This feature leads to a walk-off effect that plays an important role in the description of the nonlinear phenomena involving two or more closely spaced optical pulses. More specifically, the nonlinear interaction between two optical pulses ceases to occur when the faster moving pulse completely walks through the slower moving pulse. This feature is governed by the *walk-off parameter* d_{12} defined as

$$d_{12} = \beta_1(\lambda_1) - \beta_1(\lambda_2) = v_g^{-1}(\lambda_1) - v_g^{-1}(\lambda_2), \qquad (1.2.12)$$

where λ_1 and λ_2 are the center wavelengths of two pulses and β_1 at these wavelengths is evaluated using Eq. (1.2.9). For pulses of width T_0 , one can define the walk-off length L_W by the relation

$$L_W = T_0 / |d_{12}|. \tag{1.2.13}$$

Figure 1.5 shows variation of d_{12} with λ_1 for fused silica using Eq. (1.2.12) with $\lambda_2 = 0.8 \ \mu$ m. In the normal-dispersion regime ($\beta_2 > 0$), a longer-wavelength pulse travels