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Preface

Since the publication of the first edition of this book in 1989, the field of nonlinear
fiber optics has remained an active area of research and has thus continued to grow at
a rapid pace. During the 1990s, a major factor behind such a sustained growth was
the advent of fiber amplifiers and lasers, made by doping silica fibers with rare-earth
materials such as erbium and ytterbium. Erbium-doped fiber amplifiers revolutionized
the design of fiber-optic communication systems, including those making use of optical
solitons, whose very existence stems from the presence of nonlinear effects in optical
fibers. Optical amplifiers permit propagation of lightwave signals over thousands of
kilometers as they can compensate for all losses encountered by the signal in the optical
domain. At the same time, fiber amplifiers enable the use of massive wavelength-
division multiplexing, a technique that led by 1999 to the development of lightwave
systems with capacities exceeding 1 Tb/s. Nonlinear fiber optics plays an important
role in the design of such high-capacity lightwave systems. In fact, an understanding
of various nonlinear effects occurring inside optical fibers is almost a prerequisite for a
lightwave-system designer.

Starting around 2000, a new development occurred in the field of nonlinear fiber
optics that changed the focus of research and has led to a number of advances and novel
applications in recent years. Several kinds of new fibers, classified as highly nonlinear
fibers, have been developed. They are referred to with names such as microstructured
fibers, holey fibers, or photonic crystal fibers, and share the common property that a rel-
atively narrow core is surrounded by a cladding containing a large number of air holes.
The nonlinear effects are enhanced dramatically in such fibers to the extent that they
can be observed even when the fiber is only a few centimeters long. Their dispersive
properties are also quite different compared with those of conventional fibers devel-
oped for telecommunication applications. Because of these changes, microstructured
fibers exhibit a variety of novel nonlinear effects that are finding applications in fields
as diverse as optical coherence tomography and high-precision frequency metrology.

The fourth edition is intended to bring the book up-to-date so that it remains a
unique source of comprehensive coverage on the subject of nonlinear fiber optics. It
retains most of the material that appeared in the third edition. However, an attempt was
made to include recent research results on all topics relevant to the field of nonlinear
fiber optics. Such an ambitious objective has increased the size of the book consid-
erably. Two new chapters, Chapters 11 and 12, have been added to cover the recent
research advances. Chapter 11 describes the properties of highly nonlinear fibers, and
the novel nonlinear effects that have been observed since 2000 in such fibers are cov-
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ered in Chapter 12. Although all other chapters have been updated, Chapters 8 to 10
required major additions because of the recent advances in the research areas covered
by them. For example, polarization issues have become increasingly more important
for stimulated Raman scattering and four-wave mixing, and thus they are discussed in
detail in Chapters 8 and 10. It is important that students learn about such polarization
effects in a course devoted to nonlinear fiber optics.

The potential readership is likely to consist of senior undergraduate students, gradu-
ate students enrolled in the M.S. and Ph.D. degree programs, engineers and technicians
involved with the fiber-optics industry, and scientists working in the fields of fiber op-
tics and optical communications. This revised edition should continue to be a useful
text for graduate and senior-level courses dealing with nonlinear optics, fiber optics,
or optical communications that are designed to provide mastery of the fundamental as-
pects. Some universities may even opt to offer a high-level graduate course devoted to
solely nonlinear fiber optics. The problems provided at the end of each chapter should
be useful to instructors of such a course.

Many individuals have contributed, either directly or indirectly, to the completion
of the third edition. I am thankful to all of them, especially to my graduate students
whose curiosity and involvement led to several improvements. Several of my col-
leagues have helped me in preparing the fourth edition. I especially thank F. Omenetto,
Q. Lin, and F. Yaman for reading drafts of selected chapters and for making helpful
suggestions. I am grateful to many readers for their occasional feedback. Last, but
not least, I thank my wife, Anne, and my daughters, Sipra, Caroline, and Claire, for
understanding why I needed to spend many weekends on the book instead of spending
time with them.

Govind P. Agrawal

Rochester, New York
July 2006





Chapter 1

Introduction

This introductory chapter is intended to provide an overview of the fiber characteristics
that are important for understanding the nonlinear effects discussed in later chapters.
Section 1.1 provides a historical perspective on the progress in the field of fiber optics.
Section 1.2 discusses various fiber properties such as optical loss, chromatic disper-
sion, and birefringence. Particular attention is paid to chromatic dispersion because
of its importance in the study of nonlinear effects probed by using ultrashort optical
pulses. Section 1.3 introduces various nonlinear effects resulting from the intensity
dependence of the refractive index and stimulated inelastic scattering. Among the non-
linear effects that have been studied extensively using optical fibers as a nonlinear
medium are self-phase modulation, cross-phase modulation, four-wave mixing, stim-
ulated Raman scattering, and stimulated Brillouin scattering. Each of these effects is
considered in detail in separate chapters. Section 1.4 gives an overview of how this
book is organized for discussing such a wide variety of nonlinear effects in optical
fibers.

1.1 Historical Perspective

Total internal reflection—the basic phenomenon responsible for guiding of light in
optical fibers—is known from the nineteenth century. The reader is referred to a 1999
book for the interesting history behind the discovery of this phenomenon [1]. Although
uncladded glass fibers were fabricated in the 1920s [2]–[4], the field of fiber optics
was not born until the 1950s when the use of a cladding layer led to considerable
improvement in the fiber characteristics [5]–[8]. The idea that optical fibers would
benefit from a dielectric cladding was not obvious and has a remarkable history [1].

The field of fiber optics developed rapidly during the 1960s, mainly for the purpose
of image transmission through a bundle of glass fibers [9]. These early fibers were
extremely lossy (loss >1000 dB/km) from the modern standard. However, the situ-
ation changed drastically in 1970 when, following an earlier suggestion [10], losses
of silica fibers were reduced to below 20 dB/km [11]. Further progress in fabrication
technology [12] resulted by 1979 in a loss of only 0.2 dB/km in the 1.55-μm wave-
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length region [13], a loss level limited mainly by the fundamental process of Rayleigh
scattering.

The availability of low-loss silica fibers led not only to a revolution in the field
of optical fiber communications [14]–[17] but also to the advent of the new field of
nonlinear fiber optics. Stimulated Raman- and Brillouin-scattering processes in optical
fibers were studied as early as 1972 [18]–[20]. This work stimulated the study of other
nonlinear phenomena such as optically induced birefringence, parametric four-wave
mixing, and self-phase modulation [21]–[25]. An important contribution was made
in 1973 when it was suggested that optical fibers can support soliton-like pulses as a
result of an interplay between the dispersive and nonlinear effects [26]. Optical solitons
were observed in a 1980 experiment [27] and led to a number of advances during the
1980s in the generation and control of ultrashort optical pulses [28]–[32]. The decade
of the 1980s also saw the development of pulse-compression and optical-switching
techniques that exploited the nonlinear effects in fibers [33]–[40]. Pulses as short as
6 fs were generated by 1987 [41]. The first edition of this book covered the progress
made during the 1980s [42]–[47].

The field of nonlinear fiber optics continued to grow during the decade of the 1990s.
A new dimension was added when optical fibers were doped with rare-earth elements
and used to make amplifiers and lasers. Although fiber amplifiers were made as early
as 1964 [48], it was only after 1987 that their development accelerated [49]. Erbium-
doped fiber amplifiers attracted the most attention because they operate in the wave-
length region near 1.55 μm and are thus useful for fiber-optic lightwave systems [50].
Their use led to a virtual revolution in the design of multichannel lightwave systems
[14]–[17]. After 2000, two nonlinear effects occurring inside optical fibers, namely
stimulated Raman scattering and four-wave mixing, were employed to develop new
types of fiber-optic amplifiers. Such amplifiers do not require doped fibers and can
operate in any spectral region. Indeed, the use of Raman amplification has become
quite common in modern telecommunication systems [51]. Fiber-optic parametric am-
plifiers based on four-wave mixing are also attractive because of their potential for
ultrafast signal processing [52].

The advent of fiber amplifiers also fueled research on optical solitons and led even-
tually to new types of solitons such as dispersion-managed solitons and dissipative
solitons [53]–[56]. In another development, fiber gratings, first made in 1978 [57],
were developed during the 1990s to the point that they became an integral part of light-
wave technology [58]. Starting in 1996, new types of fibers, known under names such
as photonic crystal fibers, holey fibers, microstructure fibers, and tapered fibers, were
developed [59]–[63]. Structural changes in such fibers affect their dispersive as well
as nonlinear properties. In particular, the wavelength at which the group-velocity dis-
persion vanishes shifts toward the visible region. Some fibers exhibit two such wave-
lengths such that dispersion is anomalous in the visible and near-infrared regions. At
the same time, the nonlinear effects are enhanced considerably because of a relatively
small core size. This combination leads to supercontinuum generation, a phenomenon
in which the optical spectrum of ultrashort pulses is broadened by a factor of more than
200 over a length of only 1 m or less [64]–[66]. With these developments, the field of
nonlinear fiber optics has grown considerably after 2000 and is expected to continue to
do so in the near future.
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Figure 1.1: Schematic illustration of the cross section and the refractive-index profile of a step-
index fiber.

1.2 Fiber Characteristics

In its simplest form, an optical fiber consists of a central glass core surrounded by a
cladding layer whose refractive index nc is slightly lower than the core index n1. Such
fibers are generally referred to as step-index fibers to distinguish them from graded-
index fibers in which the refractive index of the core decreases gradually from center
to core boundary [67]–[69]. Figure 1.1 shows schematically the cross section and
refractive-index profile of a step-index fiber. Two parameters that characterize an opti-
cal fiber are the relative core–cladding index difference

Δ =
n1 −nc

n1
(1.2.1)

and the so-called V parameter defined as

V = k0a(n2
1 −n2

c)
1/2, (1.2.2)

where k0 = 2π/λ , a is the core radius, and λ is the wavelength of light.
The V parameter determines the number of modes supported by the fiber. Fiber

modes are discussed in Section 2.2, where it is shown that a step-index fiber supports
a single mode if V < 2.405. Optical fibers designed to satisfy this condition are called
single-mode fibers. The main difference between the single-mode and multimode fibers
is the core size. The core radius a is typically 25 μm for multimode fibers. However,
single-mode fibers with Δ ≈ 0.003 require a to be <5 μm. The numerical value of the
outer radius b is less critical as long as it is large enough to confine the fiber modes
entirely. A standard value of b = 62.5 μm is commonly used for both single-mode and
multimode fibers. Since nonlinear effects are mostly studied using single-mode fibers,
the term optical fiber in this text refers to single-mode fibers (unless noted otherwise).
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Figure 1.2: Schematic diagram of the MCVD process commonly used for fiber fabrication.
(After Ref. [70]; c©1985 Elsevier.)

1.2.1 Material and Fabrication

The material of choice for low-loss optical fibers is pure silica glass synthesized by fus-
ing SiO2 molecules. The refractive-index difference between the core and the cladding
is realized by the selective use of dopants during the fabrication process. Dopants such
as GeO2 and P2O5 increase the refractive index of pure silica and are suitable for the
core, while materials such as boron and fluorine are used for the cladding because they
decrease the refractive index of silica. Additional dopants can be used depending on
specific applications. For example, to make fiber amplifiers and lasers, the core of silica
fibers is codoped with rare-earth ions using dopants such as ErCl3 and Nd2O3.

The fabrication of optical fibers involves two stages [70]. In the first stage, a vapor-
deposition method is used to make a cylindrical preform with the desired refractive-
index profile and the relative core-cladding dimensions. A typical preform is 1-m long
with a 2-cm diameter. In the second stage, the preform is drawn into a fiber using
a precision-feed mechanism that feeds it into a furnace at a proper speed. During this
process, the relative core-cladding dimensions are preserved. Both stages, preform fab-
rication and fiber drawing, involve sophisticated technology to ensure the uniformity
of the core size and the index profile [70]–[72].

Several methods can be used for making a preform. The three commonly used
methods are modified chemical vapor deposition (MCVD), outside vapor deposition,
and vapor-phase axial deposition. Figure 1.2 shows a schematic diagram of the MCVD
process. In this process, successive layers of SiO2 are deposited on the inside of a
fused silica tube by mixing the vapors of SiCl4 and O2 at a temperature of ≈1800◦C.
To ensure uniformity, the multiburner torch is moved back and forth across the tube
length. The refractive index of the cladding layers is controlled by adding fluorine to
the tube. When a sufficient cladding thickness has been deposited with multiple passes
of the torch, the vapors of GeCl4 or POCl3 are added to the vapor mixture to form the
core. When all layers have been deposited, the torch temperature is raised to collapse
the tube into a solid rod known as the preform.

This description is extremely brief and is intended to provide a general idea. The
fabrication of optical fibers requires attention to a large number of technological details.
The interested reader is referred to the extensive literature on this subject [70]–[72].
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Figure 1.3: Measured loss spectrum of a single-mode silica fiber. Dashed curve shows the
contribution resulting from Rayleigh scattering. (After Ref. [70]; c©1985 Elsevier.)

1.2.2 Fiber Losses

An important fiber parameter provides a measure of power loss during transmission of
optical signals inside the fiber. If P0 is the power launched at the input of a fiber of
length L, the transmitted power PT is given by

PT = P0 exp(−αL), (1.2.3)

where the attenuation constant α is a measure of total fiber losses from all sources. It
is customary to express α in units of dB/km using the relation (see Appendix A for an
explanation of decibel units)

αdB = −10
L

log
(

PT

P0

)
= 4.343α, (1.2.4)

where Eq. (1.2.3) was used to relate αdB and α .
As one may expect, fiber losses depend on the wavelength of light. Figure 1.3

shows the loss spectrum of a silica fiber made by the MCVD process [70]. This fiber
exhibits a minimum loss of about 0.2 dB/km near 1.55 μm. Losses are considerably
higher at shorter wavelengths, reaching a level of a few dB/km in the visible region.
Note, however, that even a 10-dB/km loss corresponds to an attenuation constant of
only α ≈ 2 × 10−5 cm−1, an incredibly low value compared to that of most other
materials.

Several factors contribute to the loss spectrum of Figure 1.3, with material ab-
sorption and Rayleigh scattering contributing dominantly. Silica glass has electronic
resonances in the ultraviolet region, and vibrational resonances in the far-infrared re-
gion beyond 2 μm, but it absorbs little light in the wavelength region extending from
0.5 to 2 μm. However, even a relatively small amount of impurities can lead to sig-
nificant absorption in that wavelength window. From a practical point of view, the
most important impurity affecting fiber loss is the OH ion, which has a fundamental
vibrational absorption peak at ≈2.73 μm. The overtones of this OH-absorption peak
are responsible for the dominant peak seen in Figure 1.3 near 1.4 μm and a smaller
peak near 1.23 μm. Special precautions are taken during the fiber-fabrication process
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to ensure an OH-ion level of less than one part in one hundred million [70]. In state-
of-the-art fibers, the peak near 1.4 μm can be reduced to below the 0.5-dB level. It
virtually disappears in the so-called “dry” fibers [73]. Such fibers with low losses in
the entire 1.3–1.6 μm spectral region are useful for fiber-optic communications and
were available commercially by the year 2000.

Rayleigh scattering is a fundamental loss mechanism arising from density fluctu-
ations frozen into the fused silica during manufacture. Resulting local fluctuations in
the refractive index scatter light in all directions. The Rayleigh-scattering loss varies
as λ−4 and is dominant at short wavelengths. As this loss is intrinsic to the fiber, it
sets the ultimate limit on fiber loss. The intrinsic loss level (shown by a dashed line in
Figure 1.3) is estimated to be (in dB/km)

αR = CR/λ 4, (1.2.5)

where the constant CR is in the range 0.7–0.9 dB/(km-μm4) depending on the con-
stituents of the fiber core. As αR is in the range of 0.12–0.15 dB/km near λ = 1.55 μm,
losses in silica fibers are dominated by Rayleigh scattering. In some glasses, αR can
be reduced to a level near 0.05 dB/km [74]. Such glasses may be useful for fabricating
ultralow-loss fibers.

Among other factors that may contribute to losses are bending of fiber and scat-
tering of light at the core-cladding interface [67]. Modern fibers exhibit a loss of
≈0.2 dB/km near 1.55 μm. Total loss of fiber cables used in optical communication
systems is slightly larger because of splice and cabling losses.

1.2.3 Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielectric, the
medium response, in general, depends on the optical frequency ω . This property, re-
ferred to as chromatic dispersion, manifests through the frequency dependence of the
refractive index n(ω). On a fundamental level, the origin of chromatic dispersion is re-
lated to the characteristic resonance frequencies at which the medium absorbs the elec-
tromagnetic radiation through oscillations of bound electrons. Far from the medium
resonances, the refractive index is well approximated by the Sellmeier equation [67]

n2(ω) = 1+
m

∑
j=1

B jω2
j

ω2
j −ω2 , (1.2.6)

where ω j is the resonance frequency and B j is the strength of jth resonance. The sum in
Eq. (1.2.6) extends over all material resonances that contribute to the frequency range
of interest. In the case of optical fibers, the parameters B j and ω j are obtained experi-
mentally by fitting the measured dispersion curves [75] to Eq. (1.2.6) with m = 3 and
depend on the core constituents [69]. For bulk-fused silica, these parameters are found
to be [76] B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 μm,
λ2 = 0.1162414 μm, and λ3 = 9.896161 μm, where λ j = 2πc/ω j and c is the speed of
light in vacuum. Figure 1.4 displays how n varies with wavelength for fused silica. As
seen there, n has a value of about 1.46 in the visible region, and this value decreases by
1% in the wavelength region near 1.5 μm.
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Figure 1.4: Variation of refractive index n and group index ng with wavelength for fused silica.

Fiber dispersion plays a critical role in propagation of short optical pulses because
different spectral components associated with the pulse travel at different speeds given
by c/n(ω). Even when the nonlinear effects are not important, dispersion-induced
pulse broadening can be detrimental for optical communication systems. In the nonlin-
ear regime, the combination of dispersion and nonlinearity can result in a qualitatively
different behavior, as discussed in later chapters. Mathematically, the effects of fiber
dispersion are accounted for by expanding the mode-propagation constant β in a Taylor
series about the frequency ω0 at which the pulse spectrum is centered:

β (ω) = n(ω)
ω
c

= β0 +β1(ω −ω0)+
1
2

β2(ω −ω0)2 + · · · , (1.2.7)

where

βm =
(

dmβ
dωm

)
ω=ω0

(m = 0,1,2, . . .). (1.2.8)

The parameters β1 and β2 are related to the refractive index n(ω) and its derivatives
through the relations

β1 =
1
vg

=
ng

c
=

1
c

(
n+ω

dn
dω

)
, (1.2.9)

β2 =
1
c

(
2

dn
dω

+ω
d2n
dω2

)
, (1.2.10)

where ng is the group index and vg is the group velocity. Figure 1.4 shows the group
index ng changes with wavelength for fused silica. The group velocity can be found
using β1 = c/ng. Physically speaking, the envelope of an optical pulse moves at the
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Figure 1.5: Variation of β2, D, and d12 with wavelength for fused silica. Both β2 and D vanish
at the zero-dispersion wavelength occurring near 1.27 μm.

group velocity, while the parameter β2 represents dispersion of the group velocity and
is responsible for pulse broadening. This phenomenon is known as the group-velocity
dispersion (GVD), and β2 is the GVD parameter. The dispersion parameter D, defined
as dβ1/dλ , is also used in practice. It is related to β2 and n as

D =
dβ1

dλ
= −2πc

λ 2 β2 = −λ
c

d2n
dλ 2 . (1.2.11)

Figure 1.5 shows how β2 and D vary with wavelength λ for fused silica using Eqs.
(1.2.6) and (1.2.10). The most notable feature is that both β2 and D vanish at a wave-
length of about 1.27 μm and change sign for longer wavelengths. This wavelength
is referred to as the zero-dispersion wavelength and is denoted as λD. However, the
dispersive effects do not disappear completely at λ = λD. Pulse propagation near this
wavelength requires inclusion of the cubic term in Eq. (1.2.7). The coefficient β3 ap-
pearing in that term is called the third-order dispersion (TOD) parameter. Higher-order
dispersive effects can distort ultrashort optical pulses both in the linear [67] and non-
linear regimes [77]. Their inclusion is necessary for ultrashort optical pulses, or when
the input wavelength λ approaches λD to within a few nanometers.

The curves shown in Figures 1.4 and 1.5 are for bulk-fused silica. The dispersive
behavior of actual glass fibers deviates from that shown in these figures for the follow-
ing two reasons. First, the fiber core may have small amounts of dopants such as GeO2
and P2O5. Equation (1.2.6) in that case should be used with parameters appropriate
to the amount of doping levels [69]. Second, because of dielectric waveguiding, the
effective mode index is slightly lower than the material index n(ω) of the core, reduc-
tion itself being ω dependent [67]–[69]. This results in a waveguide contribution that
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Figure 1.6: Measured variation of dispersion parameter D with wavelength for a single-mode
fiber. (After Ref. [70]; c©1985 Elsevier.)

must be added to the material contribution to obtain the total dispersion. Generally,
the waveguide contribution to β2 is relatively small except near the zero-dispersion
wavelength λD where the two become comparable. The main effect of the waveguide
contribution is to shift λD slightly toward longer wavelengths; λD ≈ 1.31 μm for stan-
dard fibers. Figure 1.6 shows the measured total dispersion of a single-mode fiber [70].
The quantity plotted is the dispersion parameter D related to β2 by the relation given in
Eq. (1.2.11).

An interesting feature of the waveguide dispersion is that its contribution to D (or
β2) depends on fiber-design parameters such as core radius a and core-cladding index
difference Δ. This feature can be used to shift the zero-dispersion wavelength λD in the
vicinity of 1.55 μm where the fiber loss is minimum. Such dispersion-shifted fibers
[78] have found applications in optical communication systems. They are available
commercially and are known by names such as TrueWave (Lucent), LEAF (Corn-
ing), and TeraLight (Alcatel), depending on at what wavelength D becomes zero in
the 1.5 μm spectral region. The fibers in which GVD is shifted to the wavelength
region beyond 1.6 μm exhibit a large positive value of β2. They are called dispersion-
compensating fibers (DCFs). The slope of the curve in Figure 1.6 (called the dispersion
slope) is related to the TOD parameter β3. Fibers with reduced slope have been devel-
oped in recent years for wavelength-division-multiplexing (WDM) applications.

It is possible to design dispersion-flattened optical fibers having low dispersion
over a relatively large wavelength range of 1.3–1.6 μm. This is achieved by using
multiple cladding layers. Figure 1.7 shows the measured dispersion spectra for two
such multiple-clad fibers having two (double-clad) and four (quadruple-clad) cladding
layers around the core applications. For comparison, dispersion of a single-clad fiber
is also shown by a dashed line. The quadruply clad fiber has low dispersion (|D| ∼ 1
ps/km-nm) over a wide wavelength range extending from 1.25 to 1.65 μm. Waveguide
dispersion can also be used to make fibers for which D varies along the fiber length.
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Figure 1.7: Variation of dispersion parameter D with wavelength for three kinds of fibers. La-
bels SC, DC, and QC stand for single-clad, double-clad, and quadruple-clad fibers, respectively.
(After Ref. [79]; c©1982 IEE.)

An example is provided by dispersion-decreasing fibers made by tapering the core
diameter along the fiber length [80].

Nonlinear effects in optical fibers can manifest qualitatively different behaviors
depending on the sign of the GVD parameter. For wavelengths such that λ < λD, the
fiber is said to exhibit normal dispersion as β2 > 0 (see Figure 1.5). In the normal-
dispersion regime, high-frequency (blue-shifted) components of an optical pulse travel
slower than low-frequency (red-shifted) components of the same pulse. By contrast,
the opposite occurs in the anomalous dispersion regime in which β2 < 0. As seen
in Figure 1.5, silica fibers exhibit anomalous dispersion when the light wavelength
exceeds the zero-dispersion wavelength (λ > λD). The anomalous-dispersion regime is
of considerable interest for the study of nonlinear effects because it is in this regime that
optical fibers support solitons through a balance between the dispersive and nonlinear
effects.

An important feature of chromatic dispersion is that pulses at different wavelengths
propagate at different speeds inside a fiber because of a mismatch in their group ve-
locities. This feature leads to a walk-off effect that plays an important role in the
description of the nonlinear phenomena involving two or more closely spaced optical
pulses. More specifically, the nonlinear interaction between two optical pulses ceases
to occur when the faster moving pulse completely walks through the slower moving
pulse. This feature is governed by the walk-off parameter d12 defined as

d12 = β1(λ1)−β1(λ2) = v−1
g (λ1)− v−1

g (λ2), (1.2.12)

where λ1 and λ2 are the center wavelengths of two pulses and β1 at these wavelengths
is evaluated using Eq. (1.2.9). For pulses of width T0, one can define the walk-off
length LW by the relation

LW = T0 /|d12|. (1.2.13)

Figure 1.5 shows variation of d12 with λ1 for fused silica using Eq. (1.2.12) with λ2 =
0.8 μm. In the normal-dispersion regime (β2 > 0), a longer-wavelength pulse travels


