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Introduction

This is a presentation of what we call memory evolutive systems. We offer
these as mathematical models for autonomous evolutionary systems, such as
biological or social systems, and in particular, nervous systems of higher
animals. Our work is rooted in category theory, which is a particular domain
of mathematics. We have spent some 20 years developing the concepts
involved in memory evolutive systems, and over that time have presented
them in a series of articles and several conferences. This book is a synthesis of
these two decades of research.

1. Motivations

One of us, Jean-Paul Vanbremeersch, is a physician who specializes in ger-
ontology. He has long been interested in explaining the complex responses of
organisms to illness or senescence. The second of us, Andrée C. Ehresmann, is
a mathematician, whose research areas have included analysis, optimiza-
tion theory and category theory, in collaboration with her well-known
mathematician husband, late Charles Ehresmann. In 1980, she organized
an international conference on category theory in Amiens, France, in
memory of her husband, who died in 1979. In doing so, she asked
Vanbremeersch for assistance in writing an explanation of category theory
for non-mathematicians. It was during these initial interactions that he first
suggested that categories might have applications for problems related to
complexity.

This is how our study of memory evolutive systems began. Our subse-
quent examination of the literature revealed that there had not yet been any
real work done on this subject. Although Rosen (1958a) had promoted the
use of category theory in biology, he considered only its basic notions and
not its more powerful constructions. Hence, we decided to combine our
interests and pursue research in this direction.

1.1. How Can Complexity Be Characterized?

During the late 1970s and early 1980s, there was a great deal of excitement
around the question of ‘complexity’, with researchers discussing non-linear
systems, chaos theory, fractal objects and other complex analytical
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constructs. We quickly realized that category theory could provide tools to
study concepts germane to complexity, such as the following.

(1) The binding problem: how do simple objects bind together to form a
‘whole that is greater than the sum of its parts’?

(1) The emergence problem: how do the properties of a complex object relate
to the properties of the more elementary objects that it binds?

(iii) The hierarchy problem: how may we explain the formation of increas-
ingly complex objects, beginning with elementary particles that form atoms,
which in turn form molecules, up through increasingly complicated systems
such as cells, animals and societies?

We considered these three problems in our first joint paper (Ehresmann
and Vanbremeersch, 1987), in which we defined a model called hierarchical
evolutive systems, based on the categorical concept of colimit, and the
process of complexification.

1.2.  Self-Regulation

In our 1987 paper, however, we did not introduce those characteristics of
living systems that allow for autonomy through self-regulation; namely,
some type of internal regulation systems, as well as a capacity to recognize,
innately or through learning, those environmental characteristics that
require the system to develop adequate and appropriate responses.

Our work in hierarchical evolutive systems had to be enriched to take
these characteristics into account, and we did so in subsequent papers.
Initially we introduced the concept of a single regulatory organ (Ehresmann
and Vanbremeersch, 1989). However, soon we realized that it was not pos-
sible to have only a single regulatory organ, because of differences in laws
and time scales across various levels of the hierarchy. Hence, we introduced
(in Ehresmann and Vanbremeersch, 1990, 1991, 1992a) the concept of a
net of such regulatory organs, individually called co-regulators (CR). To
function, these co-regulators must rely on a central internal archive, a kind
of ‘memory’. Such a memory would not be rigid, like that of a computer, but
would instead be flexible enough to allow for successful adaptation to
change over time, and the formation, possibly, of increasingly better
adapted behaviours. From this work, we developed the model which we call
a memory evolutive system.

1.3.  Cognitive Systems

In 1989, we sketched some applications of memory evolutive systems to
the nervous system and to cognition. In that same year, Gerald Edelman
published The Remembered Present: A Biological Theory of Consciousness
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(1989). We were amazed to see that Edelman’s ideas corroborated many of
the concepts we had arrived at through applying the methods of category
theory to problems of cognition and consciousness. In particular, Edelman
insists on a notion of degeneracy, which is readily modelled by what we now
call the multiplicity principle, and which we place at the basis of emergent
properties. Edelman’s book also encouraged us to develop our study of
semantics and higher cognitive processes within the framework of memory
evolutive systems, and in particular to attempt to model consciousness.
The issue of consciousness has been central in some of our recent articles
(Ehresmann and Vanbremeersch, 1999, 2002, 2003), in which we have
singled out some of its characteristics, and shown how they rely on the
development of a personal memory, called the archetypal core, which forms
the basis of the self.

2. Why Resort to a Model?

From whence came the interest in designing such models in the first place?
Through memory evolutive systems, we propose a mathematical model that
provides a framework to study and possibly simulate natural complex sys-
tems. Indeed, since their beginnings, the dream of philosophy and of science
has been to give an explanatory account of the universe. In seeking deeper
explanations for life and consciousness, scholars in many fields have become
increasingly aware of the problem of complexity in biological systems.
Computational science has played a very important role in pushing these
understandings forward, but the pursuit requires increasingly elaborate
mathematical tools. Our hope is that an adequate mathematical model will
shed some light on the characteristics of complex evolutionary systems,
on what distinguishes them from simple mechanisms or straightforward
physical systems, and on the development of complex systems over time,
from birth to death.

Moreover, the behaviour of such a system depends heavily on its expe-
riences. In a memory evolutive system, we posit that the system may
remember these experiences for later use. A model that represents a system
over a certain time period, one that accounts for the system’s responses to
various situations that it encounters, might be able to anticipate the system’s
later behaviour and perhaps even predict some developmental alternatives
for the system. This dream of developing a computational forecasting abil-
ity, which is rather like seeking a modern Pythia, has been considerably
stimulated by the increasing power of computers, which makes it possible to
deal with very large numerical and non-numerical data sets. However,
computation also has its limits. Thus the role of a mathematical model is
twofold: theoretical, for comprehending the fundamental nature of complex
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systems; and practical, for applications in biology, medicine, sociology,
ecology, economics, meteorology and other fields that trade in complexity.

2.1. Different Types of Models

There are many ways of designing models. For example, the traditional
models in physics (e.g. those inspired by the Newtonian paradigm, or
that are well known in thermodynamics, electromagnetism and quantum
mechanics) generally use a representation based on ‘observables’ that satisfy
systems of differential equations, which translate the laws of physics into a
quantitative language.

Some of these traditional models include chaotic behaviour and have been
imported into such fields as biology and ecology. The values (real numbers
or vectors) of the observables are obtained empirically. Over the past five
decades, such analytical models have assumed an increasingly important
role in many scientific fields, as advances in computational science led to the
development of powerful data processing systems, capable of handling large
systems of equations with many parameters.

Another kind of model is the black box model, which does not try to
reproduce the internal behaviour of a system. Rather, this kind of model
takes into account only the inputs, the outputs and the change-of-state rules.
These rules are formal, as in a Turing machine; or as in cellular automata,
introduced by von Neuman (1966), one of the main architects of the modern
digital computer. Black box models can be used to help develop decision
trees that operate on variables issued from databases, according to usual
Boolean logic: and/or; if ... then; not and so on. Such trees are useful in
expert systems; for example, in those used in the diagnosis and treatment of
diseases.

Cybernetics is a field comprising another class of mathematical models.
The term was defined by Wiener (1948) to mean ‘the entire field of control
and communication theory, whether in the machine or in the animal’ (p. 19).
Its models use in an essential way the concept of feedback, and at times
Shannon’s information theory (Shannon and Weaver, 1949). Cybernetics
advanced throughout the 1940s, 1950s and 1960s, thanks to the collabo-
ration of specialists in biology, neurobiology and economics, who compared
their individual approaches, and found great similarity in the structure and
the evolutionary modes of the systems they studied.

It is also in this multi-disciplinary environment that systems theory
developed. Although it is related to cybernetics, systems theory focuses more
on modelling the relations among the components of a system. As defined
by von Bertalanffy (1926), a system is a set of interacting elements organized
to achieve a particular goal. Today, in engineering or science, a system is



