Methods in ENZYMOLOGY

Volume 434 Lipodomics and Bioactive Lipids: Lipids and Cell Signaling

> Edited by H. Alex Brown

Methods in ENZYMOLOGY

Lipodomics and Bioactive Lipids: Lipids and Cell Signaling

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

Methods in ENZYMOLOGY

Lipodomics and Bioactive Lipids: Lipids and Cell Signaling

EDITED BY

H. ALEX BROWN Departments of Pharmacology and Chemistry Vanderbilt University Medical Center Nashville, Tennessee

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101–4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2007, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2007 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2007 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions."

For information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com

ISBN: 978-0-12-373965-0

 PRINTED IN THE UNITED STATES OF AMERICA

 07
 08
 09
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

CONTENTS

Contributors	
reface	xvii
olumes in Series	xix
 Phospholipase A₁ Assays Using a Radiolabeled Substration and Mass Spectrometry Rei Morikawa, Masafumi Tsujimoto, Hiroyuki Arai, and Junken A 	1
1. Introduction	2
2. Types of PLA_1	2
3. Conventional PLA ₁ Assay Using Radiolabeled Substrates	3
4. Novel PLA1 Assay Using ESI-MS	6
5. Perspective	11
Acknowledgments	11
References	11
2. Real-Time Cell Assays of Phospholipase A ₂ s Using Fluorogenic Phospholipids Debasis Manna and Wonhwa Cho	15
1. Introduction	16
 Fluorogenic PLA₂ Substrates Measuring Cellular sPLA₂ Activity Using PED6 and Red-PED 	18 6 23
4. Measuring Cellular cPLA ₂ α Activity Using DAPC	23
References	26
3. Analysis and Pharmacological Targeting of Phospholipase C β Interactions with G Proteins David M. Lehmann, Chujun Yuan, and Alan V. Smrcka	29
1. Introduction	30
2. Methods	31
3. Concluding Remarks	46
Acknowledgment	47
References	47

4.	. Biochemical Analysis of Phospholipase D	49
	H. Alex Brown, Lee G. Henage, Anita M. Preininger,	
	Yun Xiang, and John H. Exton	
	1. Introduction	50
	2. Assay of Recombinant PLD <i>In Vitro</i>	50 52
	3. Regulated PLD1 Activity	52
	4. Preparation of Activators of PLD1	60
	5. Effects of Activators on PLD1 Activity	61
	6. Synergy Between PLD1 Activators	62
	7. Binding of PLD1 to Phospholipid Vesicles	63
	8. Kinetic Parameters of PLD1 Catalytic Activity	65
	9. Kinetic Analyses of Synergistic Responses	69
	10. Phosphatidylinositol 4,5-Bisphosphate is an Essential	
	PLD1 Activator	69
	11. In Vivo PLD Assay Using Radioisotopes	74
	12. In Vivo PLD Assay Using Deuterated 1-Butanol	74
	13. Fluorescent In Vitro PLD Assay	77
	14. Real-Time Diacylglycerol Lipase Assay	80
	Acknowledgments	85
	References	85
5.	Measurement of Autotaxin/Lysophospholipase D Activity	89
5.	Measurement of Autotaxin/Lysophospholipase D Activity Andrew J. Morris and Susan S. Smyth	89
5.	Andrew J. Morris and Susan S. Smyth	·
5.	Andrew J. Morris and Susan S. Smyth 1. Introduction	90
5.	Andrew J. Morris and Susan S. Smyth1. Introduction2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity	90 93
5.	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 	90
5.	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 4. Measurement of Autotaxin/LysoPLD Activity Using 	90 93 94
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates 	90 93
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using 	90 93 94 95
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 	90 93 94 95 98
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates Concluding Comments 	90 93 94 95 98 100
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 	90 93 94 95 98
5.	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates Concluding Comments Acknowledgment 	90 93 94 95 98 100 102
	 Andrew J. Morris and Susan S. Smyth Introduction Overview of Methods for Determination of Autotaxin/LysoPLD Activity Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates Concluding Comments Acknowledgment 	90 93 94 95 98 100 102
	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 4. Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates 5. Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 6. Concluding Comments Acknowledgment References 	90 93 94 95 98 100 102 102
	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 4. Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates 5. Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 6. Concluding Comments Acknowledgment References Platelet-Activating Factor 	90 93 94 95 98 100 102 102
	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 4. Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates 5. Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 6. Concluding Comments Acknowledgment References Platelet-Activating Factor John S. Owen, Michael J. Thomas, and Robert L. Wykle 1. Introduction 2. Procedure 	90 93 94 95 98 100 102 102 102
	 Andrew J. Morris and Susan S. Smyth 1. Introduction 2. Overview of Methods for Determination of Autotaxin/LysoPLD Activity 3. Expression of V5-Tagged Autotaxin/LysoPLD in HEK293 Cells 4. Measurement of Autotaxin/LysoPLD Activity Using Radiolabeled Substrates 5. Measurement of Autotaxin/LysoPLD Activity Using Fluorogenic Substrates 6. Concluding Comments Acknowledgment References Platelet-Activating Factor John S. Owen, Michael J. Thomas, and Robert L. Wykle 1. Introduction 	90 93 94 95 98 100 102 102 105

7.	Quantitative Measurement of Phosphatidylinositol 3,4,5-trisphosphate	117
	Hervé Guillou, Len R. Stephens, and Phillip T. Hawkins	,
		0
	 Introduction Measuring Levels of Radioactively Labeled 	118
	Phosphoinositides in Isolated Cells	120
	3. Measuring PtdIns(3,4,5)P ₃ by Protein–Lipid Overlay	122
	4. Conclusions	126
	Acknowledgments	128
	References	128
8.	Measuring Phosphorylated Akt and Other Phosphoinositide 3-kinase-Regulated Phosphoproteins in Primary Lymphocytes	131
	Amber C. Donahue, Michael G. Kharas, and David A. Fruman	
	1. Overview	132
	 Choosing a Downstream Readout: General Considerations Protocols for Detection of PI3K-Regulated 	134
	Phosphoproteins by Immunoblot	137
	4. Protocols for Detection of Phosphoproteins by Flow Cytometry	142
	5. Discussion	147
	Acknowledgments References	150
	Relefences	150
9.	Regulation of Phosphatidylinositol 4-Phosphate 5-kinase	
	Activity by Partner Proteins	155
	Yasunori Kanaho, Kazuhisa Nakayama, Michael A. Frohman, and Takeaki Yokozeki	
	1. Introduction	156
	2. Protocols	158
	Acknowledgments	166
	References	166
10.	Biochemical Analysis of Inositol Phosphate Kinases	171
	James C. Otto, Sashidhar Mulugu, Peter C. Fridy, Shean-Tai Chiou, Blaine N. Armbruster, Anthony A. Ribeiro, and John D. York	
	1. Introduction	172
	2. Experimental Methods	174
	3. Conclusions	182
	Acknowledgments	183
	References	183

11.	Analysis of Phosphoinositides and Their Aqueous Metabolites	187
	Christopher P. Berrie, Cristiano Iurisci, Enza Piccolo, Renzo Bagnati, and Daniela Corda	
	 Introduction Cell Sample Extraction Lipid Phase: TLC, HPLC Separation, and Desalting Aqueous Phase: HPLC Separation, Desalting, and Ascintillant Extraction Chemical Identification ESI-MS/MS Identification Standards Final Considerations Acknowledgments References 	188 191 197 203 212 214 219 226 227 227
12.	Combination of C_{17} Sphingoid Base Homologues and Mass Spectrometry Analysis as a New Approach to Study Sphingolipid Metabolism	233
	Stefka Spassieva, Jacek Bielawski, Viviana Anelli, and Lina M. Obeid	
	 Introduction Mass Spectrometry Analysis Ceramide Synthase In Vitro Ceramide Synthase Method Sphingosine Kinase In Vitro Sphingosine Kinase Method In Cells Labeling with C₁₇ Sphingoid Base Acknowledgments References 	234 235 236 237 238 239 240 240
13.	Measurement of Mammalian Sphingosine-1-Phosphate Phosphohydrolase Activity <i>In Vitro</i> and <i>In Vivo</i>	243
	Michael Maceyka, Sheldon Milstien, and Sarah Spiegel	15
	 Introduction Principle Measurement of SPP Activity in Cell Lysates Measurement of SPP Activity in Live Cells Acknowledgments References 	244 249 249 252 253 253
14.	A Rapid and Sensitive Method to Measure Secretion of	
	Sphingosine-1-Phosphate Poulami Mitra, Shawn G. Payne, Sheldon Milstien, and Sarah Spiegel	257
	 Introduction Measurement of S1P 	258 259

	3. Conclusions and Perspectives	262
	Acknowledgments References	263 263
		2
15.	Ceramide Kinase and Ceramide-1-Phosphate	265
	Dayanjan S. Wijesinghe, Nadia F. Lamour,	
	Antonio Gomez-Munoz, and Charles E. Chalfant	
	1. Introduction	266
	2. Recombinant Expression and Kinetic Analysis of CERK	269
	3. In Vitro Kinetic Analysis of CERK Activity Using Mixed Micellar Assays	272
	4. Effective Delivery of C1P to Cells in Tissue Culture to	
	Study Biological Effects	278
	 Analysis of Levels of Kinase-Derived C1P in Cells Analysis of CERK Localization in Cells 	281
	7. Analysis of CERK Function by siRNA-Mediated Manipulation of	284
	CERK Expression	286
	8. Analysis of CERK mRNA Levels by Q-PCR	288
	Acknowledgments	289
	References	290
16	Measurement of Mammalian Diacylglycerol Kinase Activity	
10.	In Vitro and in Cells	293
	Richard M. Epand and Matthew K. Topham	-75
	A Introduction	201
	 Introduction In Vitro Assay of DGK 	294
	3. Measuring DGK Activity in Subcellular Compartments	295 300
	 Measuring DGK Activity in Subcential compartments Measuring DGK Activity in Cultured Cells 	301
	5. Summary	303
	References	303
	Lipid Phosphate Phosphatases from Saccharomyces cerevisiae	
1/.		305
	George M. Carman and Wen-I Wu	
	1. Introduction	306
	2. Preparation of Radiolabeled Substrates	307
	3. Assay Methods	307
	4. Growth of Yeast	308
	5. Purification Procedure	308
	6. Properties of <i>DPP1</i> - and <i>LPP1</i> -Encoded Lipid Phosphate Phosphatases	311
	Acknowledgment References	313
	NEIEIEILES	313
Aut	thor Index	317
Sul	bject Index	335

This page intentionally left blank

Contributors

Viviana Anelli

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

Junken Aoki

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan and PRESTO of the Japan Science and Technology Agency, Kawaguchi-Shi, Saitama, Japan

Hiroyuki Arai

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan and CREST of the Japan Science and Technology Agency, Kawaguchi-Shi, Saitama, Japan

Blaine N. Armbruster

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Renzo Bagnati

Department of Environmental Health, Istituto di Ricerche Farmacologiche "Mario Negri," Milan, Italy

Christopher P. Berrie

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Jacek Bielawski

Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina

H. Alex Brown

Departments of Pharmacology and Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee

George M. Carman

Department of Food Science, Rutgers University, New Brunswick, New Jersey

Charles E. Chalfant

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia and Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia

Shean-Tai Chiou

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Wonhwa Cho

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Daniela Corda

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Amber C. Donahue

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Richard M. Epand

Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada

John H. Exton

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Peter C. Fridy

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Michael A. Frohman

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

David A. Fruman

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Antonio Gomez-Munoz

Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain

Hervé Guillou

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Phillip T. Hawkins

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Lee G. Henage

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Cristiano Iurisci

Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy

Yasunori Kanaho

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

Michael G. Kharas

Department of Molecular Biology and Biochemistry and Center for Immunology, University of California–Irvine, Irvine, California

Nadia F. Lamour

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

David M. Lehmann

Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York

Michael Maceyka

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Debasis Manna

Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois

Sheldon Milstien

Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland

Poulami Mitra

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Rei Morikawa

Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo and Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama, Japan

Andrew J. Morris

Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky College of Medicine, Lexington, Kentucky

Sashidhar Mulugu

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Kazuhisa Nakayama

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

Lina M. Obeid

Department of Medicine, Medical University of South Carolina, and Ralph H. Johnson VA Medical Center, Charleston, South Carolina

James C. Otto

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

John S. Owen

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Shawn G. Payne

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Enza Piccolo

Clinical Research Centre, "G. d'Annunzio" University Foundation, Centre for Excellence on Aging (CeSI), Chieti Scalo, Italy

Anita M. Preininger

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Anthony A. Ribeiro

Department of Biochemistry, NMR Center, Duke University Medical Center, Durham, North Carolina

Alan V. Smrcka

Department of Pharmacology and Physiology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York

Susan S. Smyth

Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky College of Medicine, Lexington, Kentucky

Stefka Spassieva

Department of Medicine, Medical University of South Carolina, Charleston, South Carolina

Sarah Spiegel

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Len R. Stephens

The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom

Michael J. Thomas

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Matthew K. Topham

Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah

Masafumi Tsujimoto

Laboratory of Cellular Biochemistry, RIKEN, Wako-shi, Saitama, Japan

Dayanjan S. Wijesinghe

Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia

Wen-I Wu

Array Biopharma, Boulder, Colorado

Robert L. Wykle

Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina

Yun Xiang

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee

Takeaki Yokozeki

Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

John D. York

Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

Chujun Yuan

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York

This page intentionally left blank

PREFACE

Lipid metabolism and cellular signaling are highly integrated processes that regulate cell growth, proliferation, and survival. Lipids have essential roles in cellular functions, including determinants of membrane structure, serving as docking sites for cytosolic proteins, and allosteric modulators. Abnormalities in lipid composition have established roles in human diseases, including diabetes, coronary disease, obesity, neurodegenerative diseases, and cancer. In the post-genomic era, we look at epigenetic factors and metabolomic biomarkers to better understand the molecular mechanisms of complex cellular processes and realize the benefits of personalized medicine.

Recent advances in lipid profiling and quantitative analysis provide an opportunity to define new roles of lipids in complex biological functions. Lipidomics was developed to be a systems biology approach to better understand contextual changes in lipid composition within an organelle, cell, or tissue as a result of challenge, stress, or metabolism. It provides an approach for determining precursor-product relationships as well as ordering the temporal and spatial events that constitute vital processes. This volume of Methods in Enzymology is one of a three-volume set on Lipidomics and Bioactive Lipids designed to provide state-of-the-art techniques in profiling and quantification of lipids using mass spectrometry and other analytical techniques used to determine the roles of lipids in cell function and disease. The first volume (432), Mass-Spectrometry-Based Lipid Analysis, provides current techniques to profile lipids using qualitative and quantitative approaches. The cell liposome is composed of thousands of molecular species of lipids; thus, generating a detailed description of the membrane composition presents both analytical and bioinformatic challenges. This volume includes the methodologies developed by the National Institute of General Medicine large-scale collaborative initiative, LIPID MAPS (www.lipidmaps.org), as well as an overview of international lipidomics projects. The second volume (433), Specialized Analytical Methods and Lipids in Disease, presents applications of lipid analysis to understanding disease processes, in addition to describing more specialized analytical approaches. The third volume (434), Lipids and Cell Signaling, is a series of chapters focused on lipid-signaling molecules and enzymes.

The goal of these volumes is to provide a guide to techniques used in profiling and quantification of cellular lipids with an emphasis on lipid signaling pathways. Many of the leaders in the emerging field of lipidomics have contributed to these volumes, and I am grateful for their comments in shaping the content. I hope that this guide will satisfy the needs of students who are interested in lipid structure and function as well as experienced researchers. It must be noted that many of the solvents, reagents, and instrumentation described in these chapters have the potential to be harmful to health. Readers should consult material safety data sheets, follow instrument instructions, and be properly trained in laboratory procedures before attempting any of the methods described.

H. Alex Brown

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME II. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME IV. Special Techniques for the Enzymologist Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VI. Preparation and Assay of Enzymes (Continued) Preparation and Assay of Substrates Special Techniques Edited by Sidney P. Colowick and Nathan O. Kaplan VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan **VOLUME VIII.** Complex Carbohydrates Edited by ELIZABETH F. NEUFELD AND VICTOR GINSBURG VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD VOLUME X. Oxidation and Phosphorylation Edited by Ronald W. Estabrook and Maynard E. Pullman VOLUME XI. Enzyme Structure Edited by C. H. W. HIRS VOLUME XII. Nucleic Acids (Parts A and B) Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN VOLUME XIV. Lipids Edited by J. M. LOWENSTEIN VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON