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Introduction to the Handbook of Financial
Engineering

John R. Birge
Graduate School of Business, University of Chicago, USA

Vadim Linetsky
Department of Industrial Engineering and Management Sciences, Northwestern University,
USA

Financial engineering (FE) is an interdisciplinary field focusing on applica-
tions of mathematical and statistical modeling and computational technology
to problems in the financial services industry. According to the report by the
National Academy of Engineering (2003),1 “Financial services are the foun-
dation of a modern economy. They provide mechanisms for assigning value,
exchanging payment, and determining and distributing risk, and they provide
the essential underpinnings of global economic activity. The industry provides
the wherewithal for the capital investment that drives innovation and produc-
tivity growth throughout the economy.” Important areas of FE include math-
ematical modeling of market and credit risk, pricing and hedging of derivative
securities used to manage risk, asset allocation and portfolio management.

Market risk is a risk of adverse changes in prices or rates, such as interest
rates, foreign exchange rates, stock prices, and commodity and energy prices.
Credit risk is a risk of default on a bond, loan, lease, pension or any other
type of financial obligation. Modern derivatives markets can be viewed as a
global marketplace for financial risks. The function of derivative markets is
to facilitate financial risk transfer from risk reducers (hedgers) to risk takers
(investors). Organizations wishing to reduce their risk exposure to a particu-
lar type of financial risk, such as the risk of increasing commodity and energy
prices that will make future production more expensive or the risk of increas-
ing interest rates that will make future financing more expensive, can offset
those risks by entering into financial contracts that act as insurance, protecting
the company against adverse market events. While the hedger comes to the
derivatives market to reduce its risk, the counterparty who takes the other side

1 National Academy of Engineering, The Impact of Academic Research on Industrial Performance,
National Academies Press, Washington, DC, 2003, http://www.nap.edu/books/0309089735/html.

3
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of the contract comes to the market to invest in that risk and expects to be ad-
equately compensated for taking the risk. We can thus talk about buying and
selling financial risks.

Global derivatives markets have experienced remarkable growth over the
past several decades. According to a recent survey by the Bank for Interna-
tional Settlement in Basel (2006),2 the aggregate size of the global derivatives
markets went from about $50 trillion in notional amounts in 1995 to $343 tril-
lion in notional amounts by the end of 2005 ($283 trillion in notional amounts
in over-the-counter derivatives contracts and $58 trillion in futures and options
traded on derivatives exchanges worldwide). Major segments of the global
derivatives markets include interest rate derivatives, currency derivatives, eq-
uity derivatives, commodity and energy derivatives, and credit derivatives.

A derivative is a financial contract between two parties that specifies con-
ditions, in particular, dates and the resulting values of underlying variables,
under which payments or payoffs are to be made between parties (payments
can be either in the form of cash or delivery of some specified asset). Call
and put options are basic examples of derivatives used to manage market risk.
A call option is a contract that gives its holder the right to buy some specified
quantity of an underlying asset (for example, a fixed number of shares of stock
of a particular company or a fixed amount of a commodity) at a predetermined
price (called the strike price) on or before a specified date in the future (option
expiration). A put option is a contract that gives its holder the right to sell some
specified quantity of an underlying asset at a predetermined price on or be-
fore expiration. The holder of the option contract locks in the price for future
purchase (in the case of call options) or future sale (in the case of put op-
tions), thus eliminating any price uncertainty or risk, at the cost of paying the
premium to purchase the option. The situation is analogous to insurance con-
tracts that pay pre-agreed amounts in the event of fire, flood, car accident, etc.
In financial options, the payments are based on financial market moves (and
credit events in the case of credit derivatives). Just as in the insurance industry
the key problem is to determine the insurance premium to charge for a policy
based on actuarial assessments of event probabilities, the option-pricing prob-
lem is to determine the premium or option price based on a stochastic model
of the underlying financial variables.

Portfolio optimization problems constitute another major class of impor-
tant problems in financial engineering. Portfolio optimization problems occur
throughout the financial services industry as pension funds, mutual funds, in-
surance companies, university and foundation endowments, and individual
investors all face the fundamental problem of allocating their capital across dif-
ferent securities in order to generate investment returns sufficient to achieve a
particular goal, such as meeting future pension liabilities. These problems are

2 Bank for International Settlement Quarterly Review, June 2006, pp. A103–A108, http://www.bis.org/
publ/qtrpdf/r_qa0606.pdf.
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often very complex owing to their dynamic and stochastic nature, their high
dimensionality, and the complexity of real-world constraints.

The remarkable growth of financial markets over the past decades has been
accompanied by an equally remarkable explosion in financial engineering re-
search. The goals of financial engineering research are to develop empirically
realistic stochastic models describing dynamics of financial risk variables, such
as asset prices, foreign exchange rates, and interest rates, and to develop ana-
lytical, computational and statistical methods and tools to implement the mod-
els and employ them to evaluate financial products used to manage risk and to
optimally allocate investment funds to meet financial goals. As financial mod-
els are stochastic, probability theory and stochastic processes play a central role
in financial engineering. Furthermore, in order to implement financial models,
a wide variety of analytical and computational tools are used, including Monte
Carlo simulation, numerical PDE methods, stochastic dynamic programming,
Fourier methods, spectral methods, etc.

The Handbook is organized in six parts: Introduction, Derivative Securities:
Models and Methods, Interest Rate and Credit Risk Models and Derivatives,
Incomplete Markets, Risk Management, and Portfolio Optimization. This di-
vision is somewhat artificial, as many chapters are equally relevant for several
or even all of these areas. Nevertheless, this structure provides an overview of
the main areas of the field of financial engineering.

A working knowledge of probability theory and stochastic processes is a
prerequisite to reading many of the chapters in the Handbook. Karatzas
and Shreve (1991) and Revuz and Yor (1999) are standard references on
Brownian motion and continuous martingales. Jacod and Shiryaev (2002)
and Protter (2005) are standard references on semimartingale processes with
jumps. Shreve (2004) and Klebaner (2005) provide excellent introductions
to stochastic calculus for finance at a less demanding technical level. For
the financial background at the practical level, excellent overviews of deriv-
atives markets and financial risk management can be found in Hull (2005)
and McDonald (2005). Key texts on asset pricing theory include Bjork (2004),
Duffie (2001), Jeanblanc et al. (2007), and Karatzas and Shreve (2001). These
monographs also contain extensive bibliographies.

In Chapter 1 “A Partial Introduction to Financial Asset Pricing Theory,”
Robert Jarrow and Philip Protter present a concise introduction to Mathe-
matical Finance theory. The reader is first introduced to derivative securities
and the fundamental financial concept of arbitrage in the binomial framework.
The core asset pricing theory is then developed in the general semimartingale
framework, assuming prices of risky assets follow semimartingale processes.
The general fundamental theorems of asset pricing are formulated and illus-
trated on important examples. In particular, the special case when the risky
asset price process is a Markov process is treated in detail, the celebrated
Black–Scholes–Merton model is derived, and a variety of results on pricing
European- and American-style options and more complex derivative securi-
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ties are presented. This chapter summarizes the core of Mathematical Finance
theory and is an essential reading.

Part II “Derivative Securities: Models and Methods,” contains chapters on
a range of topics in derivatives modeling and pricing. The first three chap-
ters survey several important classes of stochastic models used in derivatives
modeling. In Chapter 2 “Jump-Diffusion Models,” Steven Kou surveys recent
developments in option pricing in jump-diffusion models. The chapter dis-
cusses empirical evidence of jumps in financial variables and surveys analytical
and numerical methods for the pricing of European, American, barrier, and
lookback options in jump-diffusion models, with particular attention given to
the jump-diffusion model with a double-exponential jump size distribution due
to its analytical tractability.

In Chapter 3 “Modeling Financial Security Returns Using Levy Processes,”
Liuren Wu surveys a class of models based on time-changed Levy processes.
Applying stochastic time changes to Levy processes randomizes the clock on
which the process runs, thus generating stochastic volatility. If the character-
istic exponent of the underlying Levy process and the Laplace transform of
the time change process are known in closed form, then the pricing of op-
tions can be accomplished by inverting the Fourier transform, which can be
done efficiently using the fast Fourier transform (FFT) algorithm. The com-
bination of this analytical and computational tractability and the richness of
possible process behaviors (continuous dynamics, as well as jumps of finite ac-
tivity or infinite activity) make this class of models attractive for a wide range
of financial engineering applications. This chapter surveys both the theory and
empirical results.

In Chapter 4 “Pricing with Wishart Risk Factors,” Christian Gourieroux and
Razvan Sufana survey asset pricing based on risk factors that follow a Wishart
process. The class of Wishart models can be thought of as multi-factor exten-
sions of affine stochastic volatility models, which model a stochastic variance-
covariance matrix as a matrix-valued stochastic process. As for the standard
affine processes, the conditional Laplace transforms can be derived in closed
form for Wishart processes. This chapter surveys Wishart processes and their
applications to building a wide range of multi-variate models of asset prices
with stochastic volatilities and correlations, multi-factor interest rate models,
and credit risk models, both in discrete and in continuous time.

In Chapter 5 “Volatility,” Federico Bandi and Jeff Russell survey the state
of the literature on estimating asset price volatility. They provide a unified
framework to understand recent advances in volatility estimation by virtue of
microstructure noise contaminated asset price data and transaction cost evalu-
ation. The emphasis is on recently proposed identification procedures that rely
on asset price data sampled at high frequency. Volatility is the key factor that
determines option prices, and, as such, better understanding of volatility is of
key interest in options pricing.

In Chapter 6 “Spectral Methods in Derivatives Pricing,” Vadim Linetsky
surveys a problem of valuing a (possibly defaultable) derivative asset contin-
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gent on the underlying economic state modeled as a Markov process. To gain
analytical and computational tractability both in order to estimate the model
from empirical data and to compute the prices of derivative assets, financial
models in applications are often Markovian. In applications, it is important to
have a tool kit of analytically tractable Markov processes with known transition
semigroups that lead to closed-form expressions for prices of derivative assets.
The spectral expansion method is a powerful approach to generate analytical
solutions for Markovian problems. This chapter surveys the spectral method
in general, as well as those classes of Markov processes for which the spectral
representation can be obtained in closed form, thus generating closed form
solutions to Markovian derivative pricing problems.

When underlying financial variables follow a Markov jump-diffusion process,
the value function of a derivative security satisfies a partial integro-differential
equation (PIDE) for European-style exercise or a partial integro-differential
variational inequality (PIDVI) for American-style exercise. Unless the Markov
process has a special structure (as discussed in Chapter 6), analytical solu-
tions are generally not available, and it is necessary to solve the PIDE or the
PIDVI numerically. In Chapter 7 “Variational Methods in Derivatives Pricing,”
Liming Feng, Pavlo Kovalov, Vadim Linetsky and Michael Marcozzi survey a
computational method for the valuation of options in jump-diffusion models
based on converting the PIDE or PIDVI to a variational (weak) form, dis-
cretizing the weak formulation spatially by the Galerkin finite element method
to obtain a system of ODEs, and integrating the resulting system of ODEs in
time.

In Chapter 8 “Discrete Path-Dependent Options,” Steven Kou surveys re-
cent advances in the development of methods to price discrete path-dependent
options, such as discrete barrier and lookback options that sample the mini-
mum or maximum of the asset price process at discrete time intervals, including
discrete barrier and lookback options. A wide array of option pricing methods
are surveyed, including convolution methods, asymptotic expansion methods,
and methods based on Laplace, Hilbert and fast Gauss transforms.

Part III surveys interest rate and credit risk models and derivatives. In Chap-
ter 9 “Topics in Interest Rate Theory” Tomas Bjork surveys modern interest
rate theory. The chapter surveys both the classical material on the Heath–
Jarrow–Morton forward rate modeling framework and on the LIBOR market
models popular in market practice, as well as a range of recent advances in the
interest rate modeling literature, including the geometric interest rate theory
(issues of consistency and existence of finite-dimensional state space realiza-
tions), and potentials and positive interest models.

Chapters 10 and 11 survey the state-of-the-art in modeling portfolio credit
risk and multi-name credit derivatives. In Chapter 10 “Computational Aspects
of Credit Risk,” Paul Glasserman surveys modeling and computational issues
associated with portfolio credit risk. A particular focus is on the problem of
calculating the loss distribution of a portfolio of credit risky assets, such as cor-
porate bonds or loans. The chapter surveys models of dependence, including
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structural credit risk models, copula models, the mixed Poisson model, and as-
sociated computational techniques, including recursive convolution, transform
inversion, saddlepoint approximation, and importance sampling for Monte
Carlo simulation.

In Chapter 11 “Valuation of Basket Credit Derivatives in the Credit Migra-
tions Environment,” Tomasz Bielecki, Stephane Crepey, Monique Jeanblanc
and Marek Rutkowski present methods to value and hedge basket credit deriv-
atives (such as collateralized debt obligations (CDO) tranches and nth to de-
fault swaps) and portfolios of credit risky debt. The chapter presents methods
for modeling dependent credit migrations of obligors among credit classes and,
in particular, dependent defaults. The focus is on specific classes of Markovian
models for which computations can be carried out.

Part IV surveys incomplete markets theory and applications. In incomplete
markets, dynamic hedging and perfect replication of derivative securities break
down and derivatives are no longer redundant assets that can be manufac-
tured via dynamic trading in the underlying primary securities. In Chapter 12
“Incomplete Markets,” Jeremy Staum surveys, compares and contrasts many
proposed approaches to pricing and hedging derivative securities in incom-
plete markets, from the perspective of an over-the-counter derivatives market
maker operating in an incomplete market. The chapter discusses a wide range
of methods, including indifference pricing, good deal bounds, marginal pricing,
and minimum-distance pricing measures.

In Chapter 13 “Option Pricing: Real and Risk-Neutral Distributions,”
George Constantinides, Jens Jackwerth, and Stylianos Perrakis examine the
pricing of options in incomplete and imperfect markets in which dynamic trad-
ing breaks down either because the market is incomplete or because it is im-
perfect due to trading costs, or both. Market incompleteness renders the risk-
neutral probability measure nonunique and allows one to determine option
prices only within some lower and upper bounds. Moreover, in the presence
of trading costs, the dynamic replicating strategy does not exist. The authors
examine modifications of the theory required to accommodate incompleteness
and trading costs, survey testable implications of the theory for option prices,
and survey empirical evidence in equity options markets.

In Chapter 14 “Total Risk Minimization Using Monte Carlo Simulation,”
Thomas Coleman, Yuying Li, and Maria-Cristina Patron study options hedging
strategies in incomplete markets. While in an incomplete market it is generally
impossible to replicate an option exactly, total risk minimization chooses an
optimal self-financing strategy that best approximates the option payoff by its
terminal value. Total risk minimization is a computationally challenging dy-
namic stochastic programming problem. This chapter presents computational
approaches to tackle this problem.

In Chapter 15 “Queueing Theoretic Approaches to Financial Price Fluc-
tuations,” Erhan Bayraktar, Ulrich Horst, and Ronnie Sircar survey recent
research on agent-based market microstructure models. These models of fi-
nancial prices are based on queueing-type models of order flows and are ca-
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pable of explaining many stylized features of empirical data, such as herding
behavior, volatility clustering, and fat tailed return distributions. In particular,
the chapter examines models of investor inertia, providing a link with behav-
ioral finance.

Part V “Risk Management” contains chapters concerned with risk mea-
surement and its application to capital allocation, liquidity risk, and actuarial
risk. In Chapter 16 “Economic Credit Capital Allocation and Risk Contribu-
tions,” Helmut Mausser and Dan Rosen provide a practical overview of risk
measurement and management process, and in particular the measurement of
economic capital (EC) contributions and their application to capital allocation.
EC acts as a buffer for financial institutions to absorb large unexpected losses,
thereby protecting depositors and other claim holders. Once the amount of EC
has been determined, it must be allocated among the various components of
the portfolio (e.g., business units, obligors, individual transactions). This chap-
ter provides an overview of the process of risk measurement, its statistical and
computational challenges, and its application to the process of risk manage-
ment and capital allocation for financial institutions.

In Chapter 17 “Liquidity Risk and Option Pricing Theory,” Robert Jarrow
and Phillip Protter survey recent research advances in modeling liquidity risk
and including it into asset pricing theory. Classical asset pricing theory assumes
that investors’ trades have no impact on the prices paid or received. In real-
ity, there is a quantity impact on prices. The authors show how to extend the
classical arbitrage pricing theory and, in particular, the fundamental theorems
of asset pricing, to include liquidity risk. This is accomplished by studying an
economy where the security’s price depends on the trade size. An analysis of
the theory and applications to market data are presented.

In Chapter 18 “Financial Engineering: Applications in Insurance,” Phelim
Boyle and Mary Hardy provide an introduction to the insurance area, the old-
est branch of risk management, and survey financial engineering applications
in insurance. The authors compare the actuarial and financial engineering
approaches to risk assessment and focus on the life insurance applications
in particular. Life insurance products often include an embedded investment
component, and thus require the merging of actuarial and financial risk man-
agement tools of analysis.

Part VI is devoted to portfolio optimization. In Chapter 19 “Dynamic Port-
folio Choice and Risk Aversion,” Costis Skiadas surveys optimal consumption
and portfolio choice theory, with the emphasis on the modeling of risk aversion
given a stochastic investment opportunity set. Dynamic portfolio choice the-
ory was pioneered in Merton’s seminal work, who assumed that the investor
maximizes time-additive expected utility and approached the problem using
the Hamilton–Jacobi–Bellman equation of optimal control theory. This chap-
ter presents a modern exposition of dynamic portfolio choice theory from a
more advanced perspective of recursive utility. The mathematical tools include
backward stochastic differential equations (BSDE) and forward–backward sto-
chastic differential equations (FBSDE).
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In Chapter 20 “Optimization Methods in Dynamic Portfolio Management,”
John Birge describes optimization algorithms and approximations that apply
to dynamic discrete-time portfolio models including consumption-investment
problems, asset-liability management, and dynamic hedging policy design. The
chapter develops an overall structure to the many methods that have been
proposed by interpreting them in terms of the form of approximation used to
obtain tractable models and solutions. The chapter includes the relevant algo-
rithms associated with the approximations and the role that portfolio problem
structure plays in enabling efficient implementation.

In Chapter 21 “Simulation Methods for Optimal Portfolios,” Jerome De-
temple, Rene Garcia and Marcel Rindisbacher survey and compare Monte
Carlo simulation methods that have recently been proposed for the compu-
tation of optimal portfolio policies. Monte Carlo simulation is the approach
of choice for high-dimensional problems with large number of underlying vari-
ables. Simulation methods have recently emerged as natural candidates for
the numerical implementation of optimal portfolio rules in high-dimensional
portfolio choice models. The approaches surveyed include the Monte Carlo
Malliavin derivative method, the Monte Carlo covariation method, the Monte
Carlo regression method, and the Monte Carlo finite difference method. The
mathematical tools include Malliavin’s stochastic calculus of variations, a brief
survey of which is included in the chapter.

In Chapter 22 “Duality Theory and Approximate Dynamic Programming
for Pricing American Options and Portfolio Optimization,” Martin Haugh and
Leonid Kogan describe how duality and approximate dynamic programming
can be applied to construct approximate solutions to American option pric-
ing and portfolio optimization problems when the underlying state space is
high-dimensional. While it has long been recognized that simulation is an in-
dispensable tool in financial engineering, it is only recently that simulation has
begun to play an important role in control problems in financial engineering.
This chapter surveys recent advances in applying simulation to solve optimal
stopping and portfolio optimization problems.

In Chapter 23 “Asset Allocation with Multivariate Non-Gaussian Returns,”
Dilip Madan and Ju-Yi Yen consider a problem of optimal investment in assets
with non-Gaussian returns. They present and back test an asset allocation pro-
cedure that accounts for higher moments in investment returns. The procedure
is made computationally efficient by employing a signal processing technique
known as independent component analysis (ICA) to identify long-tailed inde-
pendent components in the vector of asset returns. The multivariate portfolio
allocation problem is then reduced to univariate problems of component in-
vestment. They further assume that the ICs follow the variance gamma (VG)
Levy processes and build a multivariate VG portfolio and analyze empirical
results of the optimal investment strategy in this setting and compare it with
the classical mean–variance Gaussian setting.

In Chapter 24 “Large Deviation Techniques and Financial Applications,”
Phelim Boyle, Shui Feng and Weidong Tian survey recent applications of large
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deviation techniques in portfolio management (establishing portfolio selection
criteria, construction of performance indexes), risk management (estimation
of large credit portfolio losses that occur in the tail of the distribution), Monte
Carlo simulation to better simulate rare events for risk management and as-
set pricing, and incomplete markets models (estimation of the distance of an
incomplete model to a benchmark complete model). A brief survey of the
mathematics of large deviations is included in the chapter.

A number of important topics that have recently been extensively surveyed
elsewhere were not included in the Handbook. Statistical estimation of sto-
chastic models in finance is an important area that has received limited at-
tention in this volume, with the exception of the focused chapter on volatility.
Recent advances in this area are surveyed in the forthcoming Handbook of
Financial Econometrics edited by Ait-Sahalia and Hansen (2007). In the cov-
erage of credit risk the Handbook is limited to surveying recent advances in
multi-name credit portfolios and derivatives in Chapters 10 and 11, leaving
out single-name credit models. The latter have recently been extensively sur-
veyed in monographs Bielecki and Rutkowski (2002), Duffie and Singleton
(2003), and Lando (2004). The coverage of Monte Carlo simulation meth-
ods is limited to applications to multi-name credit portfolios in Chapter 10,
to hedging in incomplete markets in Chapter 14, and to portfolio optimiza-
tion in Chapters 21 and 22. Monte Carlo simulation applications in derivatives
valuation have recently been surveyed by Glasserman (2004). Our coverage
of risk measurement and risk management is limited to Chapters 16, 17 and
18 on economic capital allocation, liquidity risk, and insurance risk, respec-
tively. We refer the reader to the recently published monograph McNeil et
al. (2005) for extensive treatments of Value-at-Risk and related topics. Mod-
eling energy and commodity markets and derivatives is an important area of
financial engineering not covered in the Handbook. We refer the reader to the
recent monographs by Eydeland and Wolyniec (2002) and Geman (2005) for
extensive surveys of energy and commodity markets.
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Abstract

We present an introduction to Mathematical Finance Theory, covering the basic is-
sues as well as some selected special topics.

1 Introduction

Stock markets date back to at least 1531, when one was started in Antwerp,
Belgium.1 Today there are over 150 stock exchanges (see Wall Street Journal,
2000). The mathematical modeling of such markets however, came hundreds
of years after Antwerp, and it was embroiled in controversy at its beginnings.
The first attempt known to the authors to model the stock market using prob-
ability is due to L. Bachelier in Paris about 1900. Bachelier’s model was his
thesis, and it met with disfavor in the Paris mathematics community, mostly
because the topic was not thought worthy of study. Nevertheless we now real-
ize that Bachelier essentially modeled Brownian motion five years before the
1905 paper of Einstein [albeit twenty years after T.N. Thiele of Copenhagen
(Hald, 1981)] and of course decades before Kolmogorov gave mathematical
legitimacy to the subject of probability theory. Poincaré was hostile to Bache-
lier’s thesis, remarking that his thesis topic was “somewhat remote from those
our candidates are in the habit of treating” and Bachelier ended up spending
his career in Besançon, far from the French capital. His work was then ignored
and forgotten for some time.

† Supported in part by NSF grant DMS-0202958 and NSA grant MDA-904-03-1-0092
1 For a more serious history than this thumbnail sketch, we refer the reader to the recent article (Jarrow
and Protter, 2004).
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Following work by Cowles, Kendall and Osborne, it was the renowned statis-
tician Savage who re-discovered Bachelier’s work in the 1950’s, and he alerted
Paul Samuelson (see Bernstein, 1992, pp. 22–23). Samuelson further devel-
oped Bachelier’s model to include stock prices that evolved according to a
geometric Brownian motion, and thus (for example) always remained posi-
tive. This built on the earlier observations of Cowles and others that it was the
increments of the logarithms of the prices that behaved independently.

The development of financial asset pricing theory over the 35 years since
Samuelson’s 1965 article (Samuelson, 1965) has been intertwined with the
development of the theory of stochastic integration. A key breakthrough oc-
curred in the early 1970’s when Black, Scholes, and Merton (Black and Scholes,
1973; Merton, 1973) proposed a method to price European options via an ex-
plicit formula. In doing this they made use of the Itô stochastic calculus and
the Markov property of diffusions in key ways. The work of Black, Merton,
and Scholes brought order to a rather chaotic situation, where the previous
pricing of options had been done by intuition about ill defined market forces.
Shortly after the work of Black, Merton, and Scholes, the theory of stochas-
tic integration for semimartingales (and not just Itô processes) was developed
in the 1970’s and 1980’s, mostly in France, due in large part to P.A. Meyer of
Strasbourg and his collaborators. These advances in the theory of stochastic
integration were combined with the work of Black, Scholes, and Merton to
further advance the theory, by Harrison and Kreps (1979) and Harrison and
Pliska (1981) in seminal articles published in 1979 and 1980. In particular they
established a connection between complete markets and martingale represen-
tation. Much has happened in the intervening two decades, and the subject
has attracted the interest and curiosity of a large number of researchers and
of course practitioners. The interweaving of finance and stochastic integration
continues today. This article has the hope of introducing researchers to the
subject at more or less its current state, for the special topics addressed here.
We take an abstract approach, attempting to introduce simplifying hypotheses
as needed, and we signal when we do so. In this way it is hoped that the reader
can see the underlying structure of the theory.

The subject is much larger than the topics of this article, and there are sev-
eral books that treat the subject in some detail (e.g., Duffie, 2001; Karatzas
and Shreve, 1998; Musiela and Rutkowski, 1997; Shiryaev, 1999), including the
new lovely book by Shreve (2004). Indeed, the reader is sometimes referred to
books such as (Duffie, 2001) to find more details for certain topics. Otherwise
references are provided for the relevant papers.

2 Introduction to derivatives and arbitrage

Let S = (St)0�t�T represent the (nonnegative) price process of a risky as-
set (e.g., the price of a stock, a commodity such as “pork bellies,” a currency
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exchange rate, etc.). The present is often thought of as time t = 0. One is in-
terested in the unknown price at some future time T , and thus ST constitutes
a “risk.” For example, if an American company contracts at time t = 0 to de-
liver machine parts to Germany at time T , then the unknown price of Euros at
time T (in dollars) constitutes a risk for that company. In order to reduce this
risk, one may use “derivatives”: one can purchase – at time t = 0 – the right
to buy Euros at time T at a price that is fixed at time 0, and which is called
the “strike price.” If the price of Euros is higher at time T , then one exercises
this right to buy the Euros, and the risk is removed. This is one example of a
derivative, called a call option.

A derivative is any financial security whose value is derived from the price
of another asset, financial security, or commodity. For example, the call option
just described is a derivative because its value is derived from the value of the
underlying Euro. In fact, almost all traded financial securities can be viewed
as derivatives.2 Returning to the call option with strike price K, its payoff at
time T can be represented mathematically as

C = (ST −K)+

where x+ = max(x� 0). Analogously, the payoff to a put option with strike
price K at time T is

P = (K − ST )
+

and this corresponds to the right to sell the security at price K at time T . These
are two simple examples of derivatives, called a European call option and Eu-
ropean put option, respectively. They are clearly related, and we have

ST −K = (ST −K)+ − (K − ST )
+�

This simple equality leads to a relationship between the price of a call option
and the price of a put option known as put–call parity. We return to this in
Section 3.7.

We can also use these two simple options as building blocks for more com-
plicated derivatives. For example, if

V = max(K� ST )

then

V = ST + (K − ST )
+ = K + (ST −K)+�

2 A fun exercise is to try to think of a financial security whose value does not depend on the price of
some other asset or commodity. An example is a precious metal itself, like gold, trading as a commodity.
But, gold stocks are a derivative as well as gold futures!
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More generally, if f : R+ → R+ is convex then we can use the well-known
representation

(1)f (x) = f (0)+ f ′+(0)x+
∞∫

0

(x− y)+μ(dy)�

where f ′+(x) is the right continuous version of the (mathematical) derivative
of f , and μ is a positive measure on R with μ = f ′′, where the mathematical
derivative is in the generalized function sense. In this case if

V = f (ST )

is our financial derivative, then V is effectively a portfolio consisting of a con-
tinuum of European call options, using (1) (see Brown and Ross, 1991):

V = f (0)+ f ′+(0)ST +
∞∫

0

(ST −K)+μ (dK)�

For the derivatives discussed so far, the derivative’s time T value is a random
variable of the form V = f (ST ), that is, a function of the value of S at one fixed
and prescribed time T . One can also consider derivatives of the form

V = F(S)T = F(St; 0 � t � T)

which are functionals of the paths of S. For example if S has càdlàg paths
(càdlàg is a French acronym for “right continuous with left limits”) then
F :D → R+, where D is the space of functions f : [0� T ] → R+ which are
right continuous with left limits.

If the derivative’s value depends on a decision of its holder at only the ex-
piration time T , then they are considered to be of the European type, although
their analysis for pricing and hedging is more difficult than for simple Euro-
pean call and put options. The decision in the case of a call or put option is
whether to exercise the right to buy or sell, respectively.3 Hence, such deci-
sions are often referred to as exercise decisions.

An American type derivative is one in which the holder has a decision to
make with respect to the security at any time before or at the expiration time.
For example, an American call option allows the holder to buy the security at a
striking price K not only at time T (as is the case for a European call option),
but at any time between times t = 0 and time T . (It is this type of option that
is listed, for example, in the “Listed Options Quotations” in the Wall Street
Journal.) Deciding when to exercise such an option is complicated. A strategy
for exercising an American call option can be represented mathematically by

3 This decision is explicitly represented by the maximum operator in the payoff of the call and put
options.
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a stopping rule τ. (That is, if F = (Ft)t�0 is the underlying filtration of S then
{τ � t} ∈ Ft for each t� 0 � t � T .) For a given τ, the American call’s payoff
at time τ(ω) is

C(ω) = (
Sτ(ω)(ω)−K

)+
�

We now turn to the pricing of derivatives. Let C be a random variable in FT

representing the time T payoff to a derivative. Let Vt be its value (or price) at
time t. What then is V0? From a traditional point of view based on an analysis
of fair (gambling) games, classical probability tells us that4

(2)V0 = E{C}�
One should pay the expected payoff of participating in the gamble. But, one
should also discount for the time value of money (the interest forgone or
earned) and assuming a fixed spot interest rate r, one would have

(3)V0 = E

{
C

(1 + r)T

}
instead of (2). Surprisingly, this value is not correct, because it ignores the
impact of risk aversion on the part of the purchaser. For simplicity, we will
take r = 0 and then show why the obvious price given in (2) does not work (!).

Let us consider a simple binary example. At time t = 0, 1 Euro = $1.15. We
assume at time t = T that the Euro will be worth either $0.75 or $1.45. Let the
probability that it goes up to $1.45 be p and the probability that it goes down
be 1 − p.

Consider a European call option with exercise price K = $1�15. That is,
C = (ST−$1�15)+, where S = (St)0�t�T is the price of one Euro in US dollars.
The classical rules for calculating probabilities dating back to Huygens and
Bernoulli give a fair price of C as

E{C} = (1�45 − 1�15)p = (0�30)p�

For example if p = 1/2 we get V0 = 0�15.
The Black–Scholes method5 for calculating the option’s price, however, is

quite different. We first replacepwith a new probabilityp∗ that (in the absence
of interest rates) makes the security price S = (St)t=0�T a martingale. Since
this is a two-step process, we need only to choose p∗ so that S has a constant
expectation under P∗, the probability measure implied by the choice of p∗. Since

4 This assumes, implicitly, that there are no intermediate cash flows from holding the derivative security.
5 The “Black–Scholes method” dates back to the fundamental and seminal articles (Black and Scholes,
1973) and (Merton, 1973) of 1973, where partial differential equations were used; the ideas implicit
in that (and subsequent) articles are now referred to as the Black–Scholes methods. More correctly, it
should be called the Black–Merton–Scholes method. M.S. Scholes and R. Merton received the Nobel
prize in economics for (Black and Scholes, 1973; Merton, 1973), and related work. (F. Black died and
was not able to share in the prize.)
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S0 = 1�15, we need

(4)E∗{ST } = 1�45p∗ + (1 − p∗)0�75 = 1�15�

where E∗ denotes mathematical expectation with respect to the probability
measure P∗ given by P∗(Euro = $1�45 at time T) = p∗, and P∗(Euro =
$0�75 at time T) = 1 − p∗. Solving for p∗ gives

p∗ = 4/7�

We get now

V0 = E∗{C} = (0�30)p∗ = 6
35

� 0�17�

The change from p to p∗ seems arbitrary. But, there is an economics argument
to justify it. This is where the economics concept of no arbitrage opportunities
changes the usual intuition dating back to the 16th and 17th centuries.

Suppose, for example, at time t = 0 you sell the call option, giving the buyer
of the option the right to purchase 1 Euro at time T for $1.15. He then gives
you the price v(C) of the option. Again we assume r = 0, so there is no cost to
borrow money. You can then follow a safety strategy to prepare for the option
you sold, as follows (calculations are to two decimal places):

Action at time t = 0 Result
Sell the option at price v(C) +v(C)
Borrow $ 9

28 +0�32
Buy 3

7 euros at $1.15 −0�49

The balance at time t = 0 is v(C)− 0�17.

At time T there are two possibilities:
What happens to the euro Result
The euro has risen:
Option is exercised −0�30
Sell 3

7 euros at $1.45 +0�62
Pay back loan −0�32
End balance: 0
The euro has fallen:
Option is worthless 0
Sell 3

7 euros at $0.75 +0�32
Pay back loan −0�32
End balance: 0

Since the balance at time T is zero in both cases, the balance at time 0 should
also be 0; therefore we must have v(C) = 0�17. Indeed any price other than
v(C) = 0�17 would allow either the option seller or buyer to make a sure profit
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Fig. 1. Binary schematic.

without any risk. Such a sure profit with no risk is called an arbitrage opportunity
in economics, and it is a standard assumption that such opportunities do not
exist. (Of course if they were to exist, market forces would, in theory, quickly
eliminate them.)

Thus we see that – at least in the case of this simple example – that the “no
arbitrage price” of the derivativeC is notE{C}, but rather it must beE∗{C}. We
emphasize that this is contrary to our standard intuition based on fair games,
since P is the probability measure governing the true laws of chance of the
security, while P∗ is an artificial construct.

Remark 1 (Heuristic Explanation). We offer two comments here. The first is
that the change of probability measures from P to P∗ is done with the goal of
keeping the expectation constant. (See Equation (4).) It is this property of con-
stant expectation of the price process which excludes the possibility of arbitrage
opportunities, when the price of the derivative is chosen to be the expectation
under P∗. Since one can have many different types of processes with constant
expectation, one can ask: what is the connection to martingales? The answer
is that a necessary and sufficient condition for a process M = (Mt)t�0 to be a
uniformly martingale is that E(Mτ) = E(M0) for every stopping time τ. The
key here is that it is required for every stopping time, and not just for fixed
times. In words, the price process must have constant expectation at all ran-
dom times (stopping times) under a measure P∗ in order for the expectation
of the contingent claim under P∗ to be an arbitrage free price of the claim.

The second comment refers to Figure 1 (binary schematic). Intuition tells us
that as p ↗ 1, that the price of a call or put option must change, since as it be-
comes almost certain that the price will go up, the call might be worth less (or
more) to the purchaser. And yet our no arbitrage argument tells us that it can-
not, and that p∗ is fixed for all p, 0 < p < 1. How can this be? An economics
explanation is that if one lets p increase to 1, one is implicitly perverting the
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economy. In essence, this perversion of the economy a fortiori reflects changes
in participants’ levels of risk aversion. If the price can change to only two prices,
and it is near certain to go up, how can we keep the current price fixed at $1.15?
Certainly this change in perceived probabilities should affect the current price
too. In order to increasep towards 1 and simultaneously keep the current price
fixed at $1.15, we are forced to assume that people’s behavior has changed, and
either they are very averse to even a small potential loss (the price going down
to $0.75), or they now value much less the near certain potential price increase
to $1.45.

This simple binary example can do more than illustrate the idea of using the
lack of arbitrage to determine a price. We can also use it to approximate some
continuous time models for the evolution of an asset’s price. We let the time
interval become small (�t), and we let the binomial model already described
become a recombinant tree, which moves up or down to a neighboring node
at each time “tick” �t. For an actual time “tick” of interest of length say δ, we
can have the price go to 2n possible values for a given n, by choosing �t small
enough in relation to n and δ. Thus for example if the continuous time process
follows geometric Brownian motion:

dSt = σSt dBt + μSt dt

(as is often assumed in practice); and if the security price process S has value
St = s, then it will move up or down at the next tick �t to

s exp(μ�t + σ
√
�t ) if up; s exp(μ�t − σ

√
�t ) if down;

with p being the probability of going up or down (here take p = 1
2 ). Thus for

a time t, if n = t
�t , we get

Snt = S0 exp
(
μt + σ

√
t

(
2Xn − n√

n

))
�

where Xn counts the number of jumps up. By the central limit theorem Snt
converges, as n tends to infinity, to a log normal process S = (St)t�0; that is,
log St has a normal distribution with mean log(S0 + μt) and variance σ2t.

Next we use the absence of arbitrage to change p from 1
2 to p∗. We find p∗

by requiring that E∗{St} = E∗{S0}, and we get p∗ approximately equal to

p∗ = 1
2

(
1 −√

�t

(
μ+ 1

2σ
2

σ

))
�

Thus under P∗, Xn is still binomial, but now it has mean np∗ and variance
np∗(1 − p∗). Therefore

( 2Xn−n√
n

)
has mean −√

t(μ + 1
2σ

2)/σ and a variance
which converges to 1 asymptotically. The central limit theorem now implies
that St converges as n tends to infinity to a log normal distribution: log St has
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mean log S0 − 1
2σ

2t and variance σ2t. Thus

St = S0 exp
(
σ
√
tZ − 1

2
σ2t

)
�

where Z is N(0� 1) under P∗. This is known as the “binomial approximation.”
The binomial approximation can be further used to derive the Black–Scholes
equations, by taking limits, leading to simple formulas in the continuous case.
(We present these formulas in Section 3.10.) A simple derivation can be found
in Cox et al. (1979) or in Duffie (2001, Chapter 12B, pp. 294–299).

3 The core of the theory

3.1 Basic definitions

Throughout this section we will assume that we are given an underly-
ing probability space (Ω�F�F� P), where F = (Ft)t�0. We further assume
Fs ⊂ Ft if s < t; F0 contains all the P-null sets of F ; and also that⋂

s>tFs ≡ Ft+ = Ft by hypothesis. This last property is called the right conti-
nuity of the filtration. These hypotheses, taken together, are known as the usual
hypotheses. (When the usual hypotheses hold, one knows that every martingale
has a version which is càdlàg, one of the most important consequences of these
hypotheses.)

3.2 The price process

We let S = (St)t�0 be a semimartingale6 which will be the price process of a
risky security. For simplicity, after the initial purchase or sale, we assume that
the security has no cash flows associated with it (for example, if the security is a
common stock, we assume that there are no dividends paid). This assumption
is easily relaxed, but its relaxation unnecessarily complicates the notation and
explanation, so we leave it to outside references.

3.3 Spot interest rates

Let r be a fixed spot rate of interest. If one invests 1 dollar at rate r for
one year, at the end of the year one has 1 + r dollars. If interest is paid at n
evenly spaced times during the year and compounded, then at the end of the
year one has (1+ r

n)
n. This leads to the notion of an interest rate r compounded

6 One definition of a semimartingale is a process S that has a decomposition S = M +A, with M a local
martingale and A an adapted process with càdlàg paths of finite variation on compacts. (See Protter,
2005.)
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continuously:

lim
n→∞

(
1 + r

n

)n

= er

or, for a fraction t of the year, one has $ert after t units of time for a spot
interest rate r compounded continuously.

We define

R(t) = ert;
then R satisfies the ODE (ODE abbreviates ordinary differential equation)

(5)dR(t) = rR(t) dt; R(0) = 1�

Using the ODE (5) as a basis for interest rates, one can treat a variable interest
rate r(t) as follows: (r(t) can be random: that is r(t) = r(t�ω))7:

(6)dR(t) = r(t)R(t) dt; R(0) = 1

and solving yields R(t) = exp(
∫ t

0 r(s) ds). We think of the interest rate process
R(t) as the time t value of a money market account.

3.4 Trading strategies and portfolios

We will assume as given a risky asset with price process S and a money mar-
ket account with price process R. Let (at)t�0 and (bt)t�0 be our time t holdings
in the security and the bond, respectively.

We call our holdings of S and R our portfolio. Note that for the model to
make sense, we must have both the risky asset and the money market account
present. When we receive money through the sale of risky assets, we place
the cash in the money market account; and when we purchase risky assets, we
use the cash from the money market account to pay for the expenditure. The
money market account is allowed to have a negative balance.

Definition 1. The value at time t8 of a portfolio (a� b) is

Vt(a� b) = atSt + btRt�

7 An example is to take r(t) to be a diffusion; one can then make appropriate hypotheses on the diffu-
sion to model the behavior of the spot interest rate.
8 This concept of value is a commonly used approximation. If one were to liquidate one’s risky assets
at time t all at once to realize this “value,” one would find less money in the savings account, due to
liquidity and transaction costs. For simplicity, we are assuming there are no liquidity and transaction
costs. Such an assumption is not necessary, however, and we recommend the interested reader to Jarrow
and Protter (2007) in this volume.
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Now we have our first problem. Later we will want to change probabilities so
that V = (Vt(a� b))t�0 is a martingale. One usually takes the right continuous
versions of a martingale, so we want the right side of (4) to be at least càdlàg.
Typically this is not a real problem. Even if the process a has no regularity, one
can always choose b in such a way that Vt(a� b) is càdlàg.

Let us next define two sigma algebras on the product space R+ × Ω. We
recall that we are given an underlying probability space (Ω�F�F� P) with F =
(Ft)t�0, satisfying the “usual hypotheses.”

Definition 2. Let L denote the space of left continuous processes whose paths
have right limits (càglàd), and which are adapted: that is, Ht ∈ Ft , for t � 0.
The predictable σ-algebra P on R+ ×Ω is

P = σ{H: H ∈ L}�
That is P is the smallest σ-algebra that makes all of L measurable.

Definition 3. The optional σ-algebra O on R+ ×Ω is

O = σ{H: H is càdlàg and adapted}�
In general we have P ⊂ O. In the case where B = (Bt)t�0 is a standard Wiener
process (or “Brownian motion”), and F0

t = σ(Bs; s � t) and Ft = F0
t ∨ N

where N are the P-null sets of F , then we have O = P . In general O and P
are not equal. Indeed if they are equal, then every stopping time is predictable:
that is, there are no totally inaccessible stopping times.9 Since the jump times
of (reasonable) Markov processes are totally inaccessible, any model which
contains a Markov process with jumps (such as a Poisson Process) will have
P ⊂ O, where the inclusion is strict.

Remark on filtration issues. The predictable σ-algebra P is important be-
cause it is the natural σ-field for which stochastic integrals are defined. In the
special case of Brownian motion one can use the optional σ-algebra (since
they are the same). There is a third σ-algebra which is often used, known as

9 A totally inaccessible stopping time is a stopping time that comes with no advance warning: it is a
complete surprise. A stopping time T is totally inaccessible if whenever there exists a sequence of non-
decreasing stopping times (Sn)n�1 with Λ = ⋂∞

n=1{Sn < T }, then

P
({
w: lim

n→∞ Sn = T
}
∩Λ

)
= 0�

A stopping time T is predictable if there exists a nondecreasing sequence of stopping times (Sn)n�1 as
above with

P
({
w: lim

n→∞ Sn = T
}
∩Λ

)
= 1�

Note that the probabilities above need not be only 0 or 1; thus there are in general stopping times which
are neither predictable nor totally inaccessible.
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the progressively measurable sets, and denoted π. One has, in general, that
P ⊂ O ⊂ π; however in practice one gains very little by assuming a process
is π-measurable instead of optional, if – as is the case here – one assumes that
the filtration (Ft)t�0 is right-continuous (that is Ft+ = Ft , all t � 0). The
reason is that the primary use of π is to show that adapted, right-continuous
processes are π-measurable and in particular that ST ∈ FT for T a stopping
time and S progressive; but such processes are already optional if (Ft)t�0 is
right continuous. Thus there are essentially no “naturally occurring” examples
of progressively measurable processes that are not already optional. An ex-
ample of such a process, however, is the indicator function 1G(t), where G is
described as follows: let Z = {(t�ω): Bt(ω) = 0}. (B is standard Brownian mo-
tion.) Then Z is a perfect (and closed) set on R+ for almost all ω. For fixed ω,
the complement is an open set and hence a countable union of open intervals.
G(ω) denotes the left end-points of these open intervals. One can then show
(using the Markov property of B and P.A. Meyer’s section theorems) that G is
progressively measurable but not optional. In this case note that 1G(t) is zero
except for countably many t for eachω, hence

∫
1G(s) dBs ≡ 0. Finally we note

that if a = (as)s�0 is progressively measurable, then
∫ t

0 as dBs = ∫ t
0 ȧs dBs,

where ȧ is the predictable projection of a.10

Let us now recall a few details of stochastic integration. First, let S and X be
any two càdlàg semimartingales. The integration by parts formula can be used
to define the quadratic co-variation of X and S:

[X�S]t = XtYt −
t∫

0

Xs− dSs −
t∫

0

Ss− dXs�

However if a càdlàg, adapted process H is not a semimartingale, one can still
give the quadratic co-variation a meaning, by using a limit in probability as the
definition. This limit always exists if both H and S are semimartingales:

[H�S]t = lim
n→∞

∑
ti∈πn[0�t]

(Hti+1 −Hti)(Sti+1 − Sti)�

whereπn[0� t] be a sequence of finite partitions of [0� t] with limn→∞ mesh(πn)
= 0.

10 Let H be a bounded, measurable process. (H need not be adapted.) The predictable projection of H
is the unique predictable process Ḣ such that

ḢT = E{H | FT−} a.s. on {T < ∞}
for all predictable stopping times T . Here FT− = σ{A ∩ {t < T };A ∈ Ft } ∨ F0. For a proof of the
existence and uniqueness of Ḣ see Protter (2005, p. 119).
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Henceforth let S be a (càdlàg) semimartingale, and let H be càdlàg and
adapted, or alternatively H ∈ L. Let H− = (Hs−)s�0 denote the left-
continuous version of H. (If H ∈ L, then of course H = H−.) We have:

Theorem 1. H càdlàg, adapted or H ∈ L. Then

lim
n→∞

∑
ti∈πn[0�t]

Hti(Sti+1 − Sti) =
t∫

0

Hs− dSs�

with convergence uniform in s on [0� t] in probability.

We remark that it is crucial that we sample H at the left endpoint of the
interval [ti� ti+1]. Were we to sample at, say, the right endpoint or the midpoint,
then the sums would not converge in general (they converge for example if the
quadratic covariation process [H�S] exists); in cases where they do converge,
the limit is in general different. Thus while the above theorem gives a pleasing
“limit as Riemann sums” interpretation to a stochastic integral, it is not at all
a perfect analogy.

The basic idea of the preceding theorem can be extended to bounded pre-
dictable processes in a method analogous to the definition of the Lebesgue
integral for real-valued functions. Note that

∑
ti∈πn[0�t]

Hti(Sti+1 − Sti) =
t∫

0+
Hn
s dSs�

where Hn
t = ∑

Hti1(ti�ti+1] which is in L; thus these “simple” processes are
the building blocks, and since σ(L) = P , it is unreasonable to expect to go
beyond P when defining the stochastic integral.

There is, of course, a maximal space of integrable processes where the sto-
chastic integral is well defined and still gives rise to a semimartingale as the
integrated process; without describing it [see any book on stochastic integra-
tion such as (Protter, 2005)], we define:

Definition 4. For a semimartingale S we let L(S) denote the space of pre-
dictable processes a, where a is integrable with respect to S.

We would like to fix the underlying semimartingale (or vector of semimartin-
gales) S. The process S represents the price process of our risky asset. A way to
do that is to introduce the notion of a model. We present two versions. The first
is the more complete, as it specifies the probability space and the underlying
filtration. However it is also cumbersome, and thus we will abbreviate it with
the second:

Definition 5. A sextuple (Ω�F�F� S�L(S)� P), where F = (Ft)t�0, is called
an asset pricing model; or more simply, the triple (S�L(S)� P) is called a model,
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where the probability space and σ-algebras are implicit: that is, (Ω�F�F) is
implicit.

We are now ready for a key definition.
A trading strategy in the risky asset is a predictable process a = (at)t�0 with

a ∈ L(S); its economic interpretation is that at time t one holds an amount at
of the asset. We also remark that it is reasonable that a be predictable: a is
the trader’s holdings at time t, and this is based on information obtained at
times strictly before t, but not t itself. Often one has in concrete situations that
a is continuous or at least càdlàg or càglàd (left continuous with right limits).
(Indeed, it is difficult to imagine a practical trading strategy with pathological
path irregularities.) In the case a is adapted and càglàd, then

t∫
0

as dSs = lim
n→∞

∑
ti∈πn[0�t]

ati�iS�

where πn[0� t] is a sequence of partitions of [0� t] with mesh tending to 0 as
n → ∞; �iS = Sti+1 − Sti ; and with convergence in u.c.p. (uniform in time on
compacts and converging in probability). Thus inspired by (1) we let

Gt =
t∫

0+
as dSs

and G is called the (financial) gain process generated by a. A trading strategy
in the money market account, b = (bt)t�0, is defined in an analogous fashion
except that we only require that b is optional and b ∈ L(R). We will call the
pair (a� b), as defined above, a trading strategy.

Definition 6. A trading strategy (a� b) is called self-financing if

(7)atSt + btRt = a0S0 + b0R0 +
t∫

0

as dSs +
t∫

0

bs dRs

for all t � 0.

Note that the equality (7) above implies that atSt + btRt is càdlàg.
To justify this definition heuristically, let us assume the spot interest rate is

constant and zero: that is, r = 0 which implies that Rt = 1 for all t � 0, a.s.
We can do this by the principle of numéraire invariance; see Section 3.6, later
in this article. We then have

atSt + btRt = atSt + bt�
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Assume for the moment that a and b are semimartingales, and as such let us
denote them X and Y , respectively.11 If at time t we change our position in the
risky asset, to be self-financing we must change also the amount in our money
market account; thus we need to have the equality:

(Xt+dt −Xt)St+dt = −(Yt+dt − Yt)�

which is algebraically equivalent to

(St+dt − St)(Xt+dt −Xt)+ (Xt+dt)St = −(Yt+dt − Yt)�

which implies in continuous time:

St− dXt + d[S�X]t = −dYt�

Using integration by parts, we get

XtSt −Xt− dSt = −dYt�

and integrating yields the desired equality

(8)XtSt + Yt =
t∫

0

Xs− dSs +X0S0 + Y0�

Finally we drop the assumption that X and Y are semimartingales, and replac-
ing X− with a and Y with b, respectively, Eq. (8) becomes

atSt + btRt = a0S0 + b0 +
t∫

0

as dSs + (bt − b0)�

as we have in Eq. (7).
The next concept is of fundamental importance. An arbitrage opportunity is

the chance to make a profit without risk. The standard way of modeling this
mathematically is as follows:

Definition 7. A model is arbitrage free if there does not exist a self-financing
trading strategy (a� b) such that V0(a� b) = 0� VT (a� b) � 0, and P(VT (a� b) >
0) > 0.

11 Since X is assumed to be a semimartingale, it is right continuous, and thus is not in general pre-
dictable; hence when it is the integrand of a stochastic integral we need to replace Xs with Xs−, which
of course denotes the left continuous version of X.
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3.5 The fundamental theorem of asset pricing

In Section 2 we saw that with the “no arbitrage” assumption, at least in the
case of a very simple example, a reasonable price of a derivative was obtained
by taking expectations and changing from the “true” underlying probability
measure, P, to an equivalent one, P∗. More formally, under the assumption
that r = 0, or equivalently that Rt = 1 for all t, the price of a derivative C
was not E{C} as one might expect, but rather E∗{C}. (If the process Rt is not
constant and equal to one, then we consider the expectation of the discounted
claim E∗{C/RT }.)

The idea underlying the equivalent change of measure was to find a prob-
ability P∗ that gave the price process S a constant expectation. This simple
insight readily generalizes to more complex stochastic processes. In continuous
time, a sufficient condition for the price process S = (St)t�0 to have constant
expectation is that it be a martingale. That is, if S is a martingale then the func-
tion t → E{St} is constant. Actually this property is not far from characterizing
martingales. A classic theorem from martingale theory is the following (cf.,
e.g., Protter, 2005):

Theorem 2. Let S = (St)t�0 be càdlàg and suppose E{Sτ} = E{S0} for any
bounded stopping time τ (and of course E{|Sτ|} < ∞). Then S is a martingale.

That is, if we require constant expectation at stopping times (instead of only
at fixed times), then S is a martingale.

Based on this simple pricing example and the preceding theorem, one is lead
naturally to the following conjecture.

Conjecture. Let S be a price process on a given space (Ω�F�F� P). Then there
are no arbitrage opportunities if and only if there exists a probability P∗, equi-
valent to P , such that S is a martingale under P∗.

The origins of the preceding conjecture can be traced back to Harrison and
Kreps (1979) for the case where FT is finite, and later to Dalang et al. (1990)
for the case where FT is infinite, but time is discrete. Before stating a more rig-
orous theorem [our version is due to Delbaen and Schachermeyer (1994); see
also Delbaen and Schachermayer (1998)], let us examine a needed hypothesis.

We need to avoid problems that arise from the classical doubling strategy in
gambling. Here a player bets $1 at a fair bet. If he wins, he stops. If he loses he
next bets $2. Whenever he wins, he stops, and his profit is $1. If he continues to
lose, he continues to play, each time doubling his bet. This strategy leads to a
certain gain of $1 without risk. However, the player needs to be able to tolerate
arbitrarily large losses before he gains his certain profit. Of course, no one has
such infinite resources to play such a game. Mathematically one can eliminate
this type of problem by requiring trading strategies to give martingales that are
bounded below by a constant. Thus the player’s resources, while they can be
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huge, are nevertheless finite and bounded by a nonrandom constant. This leads
to the next definition.

Definition 8. Let α > 0, and let S be a semimartingale. A predictable trading
strategy θ is α-admissible if θ0 = 0,

∫ t
0 θs dSs � −α, all t � 0. θ is called

admissible if there exists α > 0 such that θ is α-admissible.

Before we make more definitions, let us recall the basic approach. Suppose
θ is an admissible, self-financing trading strategy with θ0S0 = 0 and θTST � 0.
In the next section we will see that without loss of generality we can neglect
the bond or “numéraire” process by a “change of numéraire,” so that the self-
financing condition reduces to

θTST = θ0S0 +
T∫

0

θs dSs�

Then if P∗ exists such that
∫
θs dSs is a martingale, we have

E∗{θTST } = 0 + E∗
{ T∫

0

θs dSs

}
�

In general, if S is continuous then
∫ t

0 θs dSs is only a local martingale.12 If S is
merely assumed to be a càdlàg semimartingale, then

∫ t
0 θs dSs need only be a

σ martingale.13 However if for some reason we do know that it is a true mar-
tingale then E∗{∫ T0 θs dSs} = 0, whence E∗{θTST } = 0, and since θTST � 0 we
deduce θTST = 0, P∗ a.s., and since P∗ is equivalent to P , we have θTST = 0
a.s. (dP) as well. This implies no arbitrage exists. The technical part of this
argument is to show

∫ t
0 θs dSs is a P∗ true martingale, and not just a local mar-

tingale (see the proof of the Fundamental Theorem that follows). The converse
is typically harder: that is, that no arbitrage implies P∗ exists. The converse is
proved using a version of the Hahn–Banach theorem.

12 A process M is a local martingale if there exists a sequence of stopping times (Tn)n�1 increasing to
∞ a.s. such that (Mt∧Tn)t�0 is a martingale for each n � 1.
13 A process X is a σ martingale if there exists an Rd valued martingale M and a predictable R+ valued
M-integrable processH such thatX is the stochastic integral ofH with respect to M . See Protter (2005,
pp. 237–239) for more about σ martingales.
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Following Delbaen and Schachermayer, we make a sequence of definitions:

K0 =
{ ∞∫

0

θs dSs

∣∣∣∣∣ θ is admissible and lim
t→∞

t∫
0

θs dSs exists a.s.

}
C0

= {all functions dominated by elements of K0}
= K0 − L0+� where L0+ are positive, finite random variables,

K = K0 ∩ L∞�
C = C0 ∩ L∞�
C = the closure of C under L∞�

Definition 9. A semimartingale price process S satisfies
(i) the no arbitrage condition if C∩L∞+ = {0} (this corresponds to no chance

of making a profit without risk);
(ii) the no free lunch with vanishing risk condition (NFLVR) if C∩L∞+ = {0},

where C is the closure of C in L∞.

Definition 10. A probability measure P∗ is called an equivalent martingale mea-
sure, or alternatively a risk neutral probability, if P∗ is equivalent to P , and if
under P∗ the price process S is a σ martingale.

Clearly condition (ii) implies condition (i). Condition (i) is slightly too re-
strictive to imply the existence of an equivalent martingale measure P∗. (One
can construct a trading strategy of Ht(ω) = 1{[0�1]\Q×Ω}(t�ω), which means
one sells before each rational time and buys back immediately after it; combin-
ing H with a specially constructed càdlàg semimartingale shows that (i) does
not imply the existence of P∗ – see Delbaen and Schachermayer, 1994, p. 511.)

Let us examine then condition (ii). If NFLVR is not satisfied then there
exists an f0 ∈ L∞+ , f0 �≡ 0, and also a sequence fn ∈ C such that limn→∞ fn =
f0 a.s., such that for each n, fn � f0 − 1

n . In particular fn � − 1
n . This is almost

the same as an arbitrage opportunity, since any element of f ∈ C is the limit
in the L∞ norm of a sequence (fn)n�1 in C. This means that if f � 0 then the
sequence of possible losses (f−

n )n�1 tends to zero uniformly as n → ∞, which
means that the risk vanishes in the limit.

Theorem 3 (Fundamental Theorem; Bounded Case). Let S be a bounded semi-
martingale. There exists an equivalent martingale measure P∗ for S if and only if
S satisfies NFLVR.

Proof. Let us assume we have NFLVR. Since S satisfies the no arbitrage prop-
erty we have C∩L∞+ = {0}. However one can use the property NFLVR to show
C is weak∗ closed in L∞ (that is, it is closed in σ(L1� L∞)), and hence there
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will exist a probability P∗ equivalent to P with E∗{f } � 0, all f in C. (This is the
Kreps–Yan separation theorem – essentially the Hahn–Banach theorem; see,
e.g., Yan, 1980). For each s < t, B ∈ Fs, α ∈ R, we deduce α(St − Ss)1B ∈ C,
since S is bounded. Therefore E∗{(St − Ss)1B} = 0, and S is a martingale un-
der P∗.

For the converse, note that NFLVR remains unchanged with an equivalent
probability, so without loss of generality we may assume S is a martingale un-
der P itself. If θ is admissible, then (

∫ t
0 θs dSs)t�0 is a local martingale, hence

it is a supermartingale. Since E{θ0S0} = 0, we have as well E{∫ ∞
0 θs dSs} �

E{θsS0} = 0. This implies that for any f ∈ C, we have E{f } � 0. There-
fore it is true as well for f ∈ C, the closure of C in L∞. Thus we conclude
C ∩ L∞+ = {0}. �

Theorem 4 (Corollary). Let S be a locally bounded semimartingale. There is an
equivalent probability measure P∗ under which S is a local martingale if and only
if S satisfies NFLVR.

The measure P∗ in the corollary is known as a local martingale measure. We
refer to Delbaen and Schachermayer (1994, p. 479) for the proof of the corol-
lary. Examples show that in general P∗ can make S only a local martingale, not
a martingale. We also note that any semimartingale with continuous paths is
locally bounded. However in the continuous case there is a considerable sim-
plification: the no arbitrage property alone, properly interpreted, implies the
existence of an equivalent local martingale measure P∗ (see Delbaen, 1995).
Indeed using the Girsanov theorem this implies that under the No Arbitrage
assumption the semimartingale must have the form

St = Mt +
t∫

0

Hs d[M�M]s�

where M is a local martingale under P , and with restrictions on the predictable
process H. Indeed, if one has

∫ ε
0 H

2
s d[M�M]s = ∞ for some ε > 0, then

S admits “immediate arbitrage,” a fascinating concept introduced by Delbaen
and Schachermayer (1995).

For the general case, we have the impressive theorem of Delbaen and
Schachermayer (1995, see for a proof), as follows:

Theorem 5 (Fundamental Theorem; General Case). Let S be a semimartingale.
There exists an equivalent probability measure P∗ such that S is a sigma martingale
under P∗ if and only if S satisfies NFLVR.14

14 See Protter (2005, Section 9 of Chapter IV, pp. 237ff), for a treatment of sigma martingales; alterna-
tively, see Jacod and Shiryaev (2002, Section 6e of Chapter III, pp. 214ff).
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Caveat. In the remainder of the paper we will abuse language by referring to the
equivalent probability measure P∗ which makes S into a sigma martingale, as an
equivalent martingale measure. For clarity let us repeat: if P∗ is an equivalent
martingale measure, then we can a priori conclude no more than that S is a
sigma martingale (or local martingale, if S has continuous paths).

3.6 Numéraire invariance

Our portfolio as described in Section 3.4 consists of

Vt(a� b) = atSt + btRt�

where (a� b) are trading strategies, S is the risky security price, and Rt =
exp(

∫ t
0 rs ds) is the price of a money market account. The process R is often

called a numéraire. One can then deflate future monetary values by multiply-
ing by 1

Rt
= exp(− ∫ t

0 rs ds). Let us write Yt = 1
Rt

and we shall refer to the
process Yt as a deflator. By multiplying S and R by Y = 1

R , we can effectively
reduce the situation to the case where the price of the money market account
is constant and equal to one. The next theorem allows us to do just that.

Theorem 6 (Numéraire Invariance). Let (a� b) be a trading strategy for (S�R).
Let Y = 1

R . Then (a� b) is self-financing for (S�R) if and only if (a� b) is self-
financing for (YS� 1).

Proof. Let Z = ∫ t
0 as dSs +

∫ t
0 bs dRs. Then using integration by parts we have

(since Y is continuous and of finite variation)

d(YtZt) = Yt dZt + Zt dYt

= Ytat dSt + Ytbt dRt +
( t∫

0

as dSs +
t∫

0

bs dRs

)
dYt

= at(Yt dSt + St dYt)+ bt(Yt dRt +Rt dYt)

= at d(YS)t + bt d(YR)t

and since YR = 1
RR = 1, this is

= at d(YS)t

since dYR = 0 because YR is constant. Therefore

atSt + btRt = a0S0 + b0 +
t∫

0

as dSs +
t∫

0

bs dRs
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if and only if

at
1
Rt
St + bt = a0S0 + b0 +

t∫
0

as d
(

1
R
S

)
s

�

�

Theorem 6 allows us to assume R ≡ 1 without loss of generality. Note that
one can easily check that there is no arbitrage for (a� b) with (S�R) if and only
if there is no arbitrage for (a� b) with ( 1

RS� 1). By renormalizing, we no longer
write ( 1

RS� 1), but simply S.
The preceding theorem is the standard version, but in many applications

(for example those arising in the modeling of stochastic interest rates), one
wants to assume that the numéraire is a strictly positive semimartingale (in-
stead of only a continuous finite variation process as in the previous theorem).
We consider here the general case, where the numéraire is a (not necessarily
continuous) semimartingale. For examples of how such a change of numéraire
theorem can be used (albeit for the case where the deflator is assumed contin-
uous), see for example (Geman et al., 1995). A reference to the literature for
a result such as the following theorem is (Huang, 1985, p. 223).

Theorem 7 (Numéraire Invariance; General Case). Let S, R be semimartingales,
and assumeR is strictly positive. Then the deflator Y = 1

R is a semimartingale and
(a� b) is self-financing for (S�R) if and only if (a� b) is self-financing for ( SR� 1).

Proof. Since f (x) = 1
x is C2 on (0�∞), we have that Y is a (strictly positive)

semimartingale by Itô’s formula. By the self-financing hypothesis we have

Vt(a� b) = atSt + btRt

= a0S0 + b0R0 +
t∫

0

as dSs +
t∫

0

bs dRs�

Let us assume S0 = 0, and R0 = 1. The integration by parts formula for
semimartingales gives

d(StYt) = d
(
St

Rt

)
= St− d

(
1
Rt

)
+ 1
Rt−

dSt + d
[
S�

1
R

]
t

and

d
(
Vt

Rt

)
= Vt− d

(
1
Rt

)
+ 1
Rt−

dVt + d
[
V �

1
R

]
t

�
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We can next use the self-financing assumption to write:

d
(
Vt

Rt

)
= atSt− d

(
1
Rt

)
+ btRt− d

(
1
Rt

)
+ 1
Rt−

at dSt + 1
Rt−

bt dRt

+ at d
[
S�

1
R

]
t

+ bt d
[
R�

1
R

]
t

= at

(
St− d

(
1
R

)
+ 1
Rt−

dS + d
[
S�

1
R

])
+ bt

(
Rt− d

(
1
R

)
+ 1
Rt−

dR+ d
[
R�

1
R

])
= at d

(
S

1
R

)
+ bt d

(
R

1
R

)
�

Of course Rt
1
Rt

= 1, and d(1) = 0; hence

d
(
Vt

Rt

)
= at d

(
St

1
Rt

)
�

In conclusion we have

Vt = atSt + btRt = b0 +
t∫

0

as dSs +
t∫

0

bs dRs�

and

at

(
St

Rt

)
+ bt = Vt

Rt
= b0 +

t∫
0

as d
(
Ss

Rs

)
�

�

3.7 Redundant derivatives

Let us assume given a security price process S, and by the results in Sec-
tion 3.6 we take Rt ≡ 1. Let F0

t = σ(Sr; r � t) and let F∼
t = F0

t ∨N where N
are the null sets of F and F = ∨

t F0
t , under P , defined on (Ω�F� P). Finally

we take Ft = ⋂
u>t F∼

u . A derivative on S is then a random variableC ∈ FT , for
some fixed time T . Note that we pay a small price here for the simplification of
taking Rt ≡ 1, since if Rt were to be a nonconstant stochastic process, it might
well change the minimal filtration we are taking, because then the processes of
interest would be (Rt� St), in place of just St/Rt .

One goal of Finance Theory is to show there exists a self financing trading
strategy (a� b) that one can use either to obtain C at time T , or to come as
close as possible – in an appropriate sense – to obtaining C. This is the issue
we discuss in this section.
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Definition 11. Let S be the price process of a risky security and let R be the
price process of a money market account (numéraire), which we setting equal
to the constant process 1.15 A derivative C ∈ FT is said to be redundant if there
exists an admissible self-financing trading strategy (a� b) such that

C = a0S0 + b0R0 +
T∫

0

as dSs +
T∫

0

bs dRs�

Let us normalize S by writing M = 1
RS; then C will still be redundant under M

and hence we have (taking Rt = 1, all t):

C = a0M0 + b0 +
T∫

0

as dMs�

Next note that if P∗ is any equivalent martingale measure making M a mar-
tingale, and if C has finite expectation under P∗, we then have

E∗{C} = E∗{a0M0 + b0} + E∗
{ T∫

0

as dMs

}

provided all expectations exist,

= E∗{a0M0 + b0} + 0�

Theorem 8. Let C be a redundant derivative such that there exists an equivalent
martingale measure P∗ with C ∈ L∗(M). (See the second definition following for
a definition of L∗(M).) Then there exists a unique no arbitrage price of C and it
is E∗{C}.
Proof. First we note that the quantity E∗{C} is the same for every equivalent
martingale measure. Indeed if Q1 and Q2 are both equivalent martingale mea-
sures, then

EQi
{C} = EQi

{a0M0 + b0} + EQi

{ T∫
0

as dMs

}
�

But EQi
{∫ T0 as dMs} = 0, and EQi

{a0M0 + b0} = a0M0 + b0, since we assume
a0,M0, and b0 are known at time 0 and thus without loss of generality are taken
to be constants.

15 Although R is taken to be constant and equal to 1, we include it initially in the definition to illustrate
the role played by being able to take it a constant process.
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Next suppose one offers a price v > E∗{C} = a0M0 + b0. Then one follows
the strategy a = (as)s�0 and (we are ignoring transaction costs) at time T one
has C to present to the purchaser of the option. One thus has a sure profit (that
is, risk free) of v − (a0M0 + b0) > 0. This is an arbitrage opportunity. On the
other hand, if one can buy the claim C at a price v < a0M0 + b0, analogously
at time T one will have achieved a risk-free profit of (a0M0 + b0)− v. �

Definition 12. If C is a derivative, and there exists an admissible self-financing
trading strategy (a� b) such that

C = a0M0 + b0 +
T∫

0

as dMs;

then the strategy a is said to replicate the derivative C.

Theorem 9 (Corollary). If C is a redundant derivative, then one can replicate C
in a self-financing manner with initial capital equal to E∗{C}, where P∗ is any
equivalent martingale measure for the normalized price process M .

At this point we return to the issue of put–call parity mentioned in the intro-
duction (Section 2). Recall that we had the trivial relation

MT −K = (MT −K)+ − (K −MT)
+�

which, by taking expectations under P∗, shows that the price of a call at time 0
equals the price of a put plus the stock price minus K. More generally at time t,
E∗{(MT −K)+ | Ft} equals the value of a put at time t plus the stock price at
time t minus K, by the P∗ martingale property of M .

It is tempting to consider markets where all derivatives are redundant. Un-
fortunately, this is too large a space of random variables; we wish to restrict
ourselves to derivatives that have good integrability properties as well.

Let us fix an equivalent martingale measure P∗, so that M is a martin-
gale (or even a local martingale) under P∗. We consider all self-financing
trading strategies (a� b) such that the process (

∫ t
0 a

2
s d[M�M]s)1/2 is locally in-

tegrable: that means that there exists a sequence of stopping times (Tn)n�1
which can be taken Tn � Tn+1, a.s., such that limn→∞ Tn � T a.s. and
E∗{(∫ Tn0 a2

s d[M�M]s)1/2} < ∞, each Tn. Let L∗(M) denote the class of such
strategies, under P∗. We remark that we are cheating a little here: we are letting
our definition of a complete market (which follows) depend on the measure P∗,
and it would be preferable to define it in terms of the objective probability P .
How to go about doing this is a nontrivial issue. In the happy case where the
price process is already a local martingale under the objective probability mea-
sure, this issue of course disappears.

Definition 13. A market model (M�L∗(M)� P∗) is complete if every derivative
C ∈ L1(FT � dP∗) is redundant for L∗(M). That is, for any C ∈ L1(FT � dP∗),
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there exists an admissible self-financing trading strategy (a� b) with a ∈ L∗(M)
such that

C = a0M0 + b0 +
T∫

0

as dMs�

and such that (
∫ t

0 as dMs)t�0 is uniformly integrable. In essence, then, a com-
plete market is one for which every derivative is redundant.

We point out that the above definition is one of many possible definitions
of a complete market. For example, one could limit attention to nonnegative
random payoffs and/or payoffs that are in L2(FT � dP∗).

We note that in probability theory a martingale M is said to have the pre-
dictable representation property if for any C ∈ L2(FT ) one has

C = E{C} +
T∫

0

as dMs

for some predictable a ∈ L(M). This is, of course, essentially the property
of market completeness. Martingales with predictable representation are well
studied and this theory can usefully be applied to Finance. For example, sup-
pose we have a model (S�R) where by a change of numéraire we take R = 1.
Suppose further there is an equivalent martingale measure P∗ such that S is
a Brownian motion under P∗. Then the model is complete for all claims C in
L1(FT � P

∗) such that C � −α, for some α � 0. (α can depend on C.) To
see this, we use martingale representation (see, e.g., Protter, 2005) to find a
predictable process a such that for 0 � t � T :

E∗{C | Ft} = E∗{C} +
t∫

0

as dSs�

Let

Vt(a� b) = a0S0 + b0 +
t∫

0

as dSs +
t∫

0

bs dRs;

we need to find b such that (a� b) is an admissible, self-financing trading strat-
egy. Since Rt = 1, we have dRt = 0, hence we need

atSt + btRt = b0 +
t∫

0

as dSs�
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and taking b0 = E∗{C}, we have

bt = b0 +
t∫

0

as dSs − atSt

provides such a strategy. It is admissible since
∫ t

0 as dSs � −α for some α which
depends on C.

Unfortunately, having the predictable representation property is rather del-
icate, and few martingales possess this property. Examples include Brownian
motion, the compensated Poisson process (but not mixtures of the two nor
even the difference of two Poisson processes) (although see Jeanblanc and
Privault, 2002 for sufficient conditions when one can mix the two and have
completeness), and the Azéma martingales. (One can consult Protter, 2005 for
background, and Dritschel and Protter, 1999 for more on the Azéma martin-
gales.) One can mimic a complete market in the case (for example) of two
independent noises, each of which is complete alone. Several authors have
done this with Brownian noise together with compensated Poisson noise, by
proposing hedging strategies for each noise separately. A recent example of
this is Kusuoka (1999) (where the Poisson intensity can depend on the Brown-
ian motion) in the context of default risk models. A more traditional example
is Jeanblanc-Piqué and Pontier (1990).

Most models are therefore not complete, and most practitioners believe the
a financial world being modeled is at best only approximately complete. We
will return again to the notion of an incomplete market later on in this section.
First, we need to characterize complete markets. In this regard, we have the
following result:

Theorem 10. Suppose there is an equivalent martingale measure P∗ such that M
is a local martingale. Then P∗ is the unique equivalent martingale measure only if
the market is complete.

This theorem is a trivial consequence of Dellacherie’s approach to martin-
gale representation: if there is a unique probability making a process M a local
martingale, then M must have the martingale representation property. The
theory has been completely resolved in the work of Jacod and Yor. [See for ex-
ample Protter (2005, Chapter IV, Section 4), for a pedagogic approach to the
theory.]

To give an example of what can happen, let M2 be the set of equivalent
probabilities making M an L2-martingale. Then M has the predictable repre-
sentation property (and hence market completeness) for every extremal ele-
ment of the convex set M2. If M2 = {P∗}, only one element, then of course
P∗ is extremal. (See Protter, 2005, Theorem 40, p. 186.) Indeed P∗ is in fact
unique in the proto-typical example of Brownian motion; since many diffusions
can be constructed as pathwise functionals of Brownian motion they inherit the
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completeness of the Brownian model. But there are examples where one has
complete markets without the uniqueness of the equivalent martingale mea-
sure (see Artzner and Heath, 1995 in this regard, as well as Jarrow et al., 1999).
Nevertheless the situation is simpler when we assume our models have contin-
uous paths.

The next theorem is a version of what is known as the second fundamental
theorem of asset pricing. We state and prove it for the case ofL2 derivatives only.
We note that this theorem has a long and illustrious history, going back to the
fundamental paper of Harrison and Kreps (1979, p. 392) for the discrete case,
and to Harrison and Pliska (1981, p. 241) for the continuous case, although in
Harrison and Pliska (1981) the theorem below is stated only for the “only if”
direction.

Theorem 11. Let M have continuous paths. There is a unique P∗ such that M is
an L2 P∗-martingale if and only if the market is complete.

Proof. The theorem follows easily from Theorems 38, 39, and 340 of Protter
(2005, pp. 185–186); we will assume those results and prove the theorem. The-
orem 39 shows that if P∗ is unique then the market model is complete. If P∗
is not unique but the model is nevertheless complete, then by Theorem 37 P∗
is nevertheless extremal in the space of probability measures making M an L2

martingale. Let Q be another such extremal probability, and let L∞ = dQ
dP∗

and Lt = EP{L∞ | Ft}, with L0 = 1. Let Tn = inf{t > 0: |Lt | � n}. L will
be continuous by Theorem 40 of Protter (2005, p. 186), hence Lnt = Lt∧Tn is
bounded. We then have, for bounded C ∈ Fs:

EQ{Mt∧TnC} = E∗{Mt∧TnLnt C
}
�

EQ{Ms∧TnC} = E∗{Ms∧TnLns C
}
�

The two left sides of the above equalities are equal and this implies that MLn

is a martingale, and thus Ln is a bounded P∗-martingale orthogonal to M . It is
hence constant by Theorem 39 of Protter (2005, p. 185). We conclude L∞ ≡ 1
and thus Q = P∗. �

Note that if C is a redundant derivative, then the no arbitrage price of C
is E∗{C}, for any equivalent martingale measure P∗. (If C is redundant then
we have seen the quantity E∗{C} is the same under every P∗.) However, if a
market model is not complete, then

• there will arise nonredundant claims, and
• there will be more than one equivalent martingale measure P∗.

We now have the conundrum: if C is nonredundant, what is the no arbi-
trage price of C? We can no longer argue that it is E∗{C}, because there
are many such values! The absence of this conundrum is a large part of the
appeal of complete markets. One resolution of this conundrum is to use an


