


In Praise of Digital Design: An Embedded
Systems Approach Using VHDL

“Peter Ashenden is leading the way towards a new curriculum for 
educating the next generation of digital logic designers. Recognizing that 
digital design has moved from being gate-centric assembly of custom 
logic to processor-centric design of embedded systems, Dr. Ashenden has 
shifted the focus from the gate to the modern design and integration of 
complex integrated devices that may be physically realized in a variety of 
forms. Dr. Ashenden does not ignore the fundamentals, but treats them 
with suitable depth and breadth to provide a basis for the higher-level 
material. As is the norm in all of Dr. Ashenden’s writing, the text is lucid 
and a pleasure to read. The book is illustrated with copious examples and 
the companion Web site offers all that one would expect in a text of such 
high quality.”

— g r a n t  m a rt i n ,  Chief Scientist, Tensilica Inc.

“Dr. Ashenden has written a textbook that enables students to obtain a 
much broader and more valuable understanding of modern digital system 
design. Readers can be sure that the practices described in this book will 
provide a strong foundation for modern digital system design using hard-
ware description languages.”

— g a ry  s p i v e y,  George Fox University

“The convergence of miniaturized, sophisticated electronics into handheld, 
low-power embedded systems such as cell phones, PDAs, and MP3 players 
depends on efficient, digital design flows. Starting with an intuitive explo-
ration of the basic building blocks, Digital Design: An Embedded Systems 
Approach introduces digital systems design in the context of  embedded
systems to provide students with broader perspectives. Throughout the 
text, Peter Ashenden’s practical approach engages s tudents in understand-
ing the challenges and complexities involved in implementing embedded 
systems.”

— g r e g o ry  d .  p e t e rs o n ,  University of Tennessee 

“Digital Design: An Embedded Systems Approach places emphasis on 
larger systems containing processors, memory, and involving the design 



and interface of I/O functions and application-specific accelerators. The 
book’s presentation is based on a contemporary view that reflects the 
real-world digital system design practice. At a time when the university 
curriculum is generally lagging significantly behind industry development, 
this book provides much needed information to students in the areas of 
computer engineering, electrical engineering and computer science.”

— d o n a l d  h u n g ,  San Jose State University 

“Digital Design: An Embedded Systems Approach presents the design flow 
of circuits and systems in a way that is both accessible and up-to-date. 
Because the use of hardware description languages is state-of-the-art, it 
is necessary that students learn how to use these languages along with 
an appropriate methodology. This book presents a modern approach for 
designing embedded systems starting with the fundamentals and 
progressing up to a complete system—it is application driven and full of 
many examples. I will recommend this book to my students.”

— g o e r a n  h e r r m a n n ,  TU Chemnitz

“Digital Design: An Embedded Systems Approach is surprisingly easy to 
read despite the complexity of the material. It takes the reader in a journey
from the basics to a real understanding of digital design by answering the 
‘whys’ and ‘hows’—it is persuasive and instructive as it moves deeper and 
deeper into the material.”

— a n d r e y  ko p t y u g ,  Mid Sweden University

“This up-to-date text on digital design is written in a very accessible style 
using a modern design methodology and the real world of embedded 
systems as its contexts. Digital Design: An Embedded Systems Approach
provides excellent coverage of all aspects of the design of embedded sys-
tems, with chapters not just on logic design itself, but also on processors, 
memories, input/output interfacing and implementation technologies. It’s 
particularly good at emphasizing the need to consider more than just logic 
design when designing a digital system: the design has to be implemented 
in the real world of engineering, where a whole variety of constraints, 
such as circuit area, circuit interconnections, interfacing requirements, 
power and performance, must be considered. For those who think logic 
design is mundane, this book brings the subject to life.”

— ro l a n d  i b b e t t,  University of Edinburgh
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A P P R O A C H

This book provides a foundation in digital design for students in computer
engineering, electrical engineering and computer science courses. It deals 
with digital design as an activity in a larger systems design context. Instead 
of focusing on gate-level design and aspects of digital design that have 
diminishing relevance in a real-world design context, the book concen-
trates on modern and evolving knowledge and design skills.

Most modern digital design practice involves design of embedded 
systems, using small microcontrollers, larger CPUs/DSPs, or hard or soft 
processor cores. Designs involve interfacing the processor or processors 
to memory, I/O devices and communications interfaces, and developing 
accelerators for operations that are too computationally intensive for pro-
cessors. Target technologies include ASICs, FPGAs, PLDs and PCBs. This 
is a significant change from earlier design styles, which involved use of 
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits. 
In such systems, the primary design goal was to minimize gate count or 
IC package count. Since processors had lower performance and memories 
had limited capacity, a greater proportion of system functionality was 
implemented in hardware.

While design practices and the design context have evolved, many text-
books have not kept track. They continue to promote practices that are 
largely obsolete or that have been subsumed into computer-aided design 
(CAD) tools. They neglect many of the important considerations for mod-
ern designers. This book addresses the shortfall by taking an approach that 
embodies modern design practice. The book presents the view that digital 
logic is a basic abstraction over analog electronic circuits. Like any abstrac-
tion, the digital abstraction relies on assumptions being met and constraints 
being satisfied. Thus, the book includes discussion of the electrical and tim-
ing properties of circuits, leading to an understanding of how they influence 
design at higher levels of abstraction. Also, the book teaches a methodology 
based on using abstraction to manage complexity, along with principles 
and methods for making design trade-offs. These intellectual tools allow 
students to track evolving design practice after they graduate.

Perhaps the most noticeable difference between this book and its 
predecessors is the omission of material on Karnaugh maps and related 
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logic optimization techniques. Some reviewers of the manuscript argued 
that such techniques are still of value and are a necessary foundation for 
students learning digital design. Certainly, it is important for students 
to understand that a given function can be implemented by a variety of 
equivalent circuits, and that different implementations may be more or 
less optimal under different constraints. This book takes the approach of 
presenting Boolean algebra as the foundation for gate-level circuit trans-
formation, but leaves the details of algorithms for optimization to CAD 
tools. The complexity of modern systems makes it more important to 
raise the level of abstraction at which we work and to introduce embed-
ded systems early in the curriculum. CAD tools perform a much better 
job of gate-level optimization than we can do manually, using advanced 
algorithms to satisfy relevant constraints. Techniques such as Karnaugh 
maps do have a place, for example, in design of specialized hazard-free 
logic circuits. Thus, students can defer learning about Karnaugh maps 
until an advanced course in VLSI, or indeed, until they encounter the need 
in industrial practice. A web search will reveal many sources describing 
the techniques in detail, including an excellent article in Wikipedia.

The approach taken in this book makes it relevant to Computer Sci-
ence courses, as well as to Computer Engineering and Electrical Engi-
neering courses. By treating digital design as part of embedded systems 
design, the book will provide the understanding of hardware needed for 
computer science students to analyze and design systems comprising 
both hardware and software components. The principles of abstraction 
and complexity management using abstraction presented in the book are 
the same as those underlying much of computer science and software 
engineering.

Modern digital design practice relies heavily on models expressed in 
hardware description languages (HDLs), such as Verilog and VHDL. HDL 
models are used for design entry at the abstract behavioral level and for 
refinements at the register transfer level. Synthesis tools produce gate-level 
HDL models for low-level verification. Designers also express verification 
environments in HDLs. This book emphasizes HDL-based design and 
verification at all levels of abstraction. The present version uses VHDL 
for this purpose. A second version, Digital Design: An Embedded Systems 
Approach Using Verilog, substitutes Verilog for the same purpose.

OVERVIEW

For those who are musically inclined, the organization of this book can be 
likened to a two-act opera, complete with overture, intermezzo, and finale.

Chapter 1 forms the overture, introducing the themes that are to fol-
low in the rest of the work. It starts with a discussion of the basic ideas of 
the digital abstraction, and introduces the basic digital circuit elements. 
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It then shows how various non-ideal behaviors of the elements impose 
constraints on what we can design. The chapter finishes with a discussion 
of a systematic process of design, based on models expressed in a hard-
ware description language.

Act I of the opera comprises Chapters 2 through 5. In this act, we 
develop the themes of basic digital design in more detail.

Chapter 2 focuses on combinational circuits, starting with Boolean 
algebra as the theoretical underpinning and moving on to binary coding 
of information. The chapter then surveys a range of components that can 
be used as building blocks in larger combinational circuits, before return-
ing to the design methodology to discuss verification of combinational 
circuits.

Chapter 3 expands in some detail on combinational circuits used 
to process numeric information. It examines various binary codes for 
unsigned integers, signed integers, fixed-point fractions and floating-point 
real numbers. For each kind of code, the chapter describes how some 
arithmetic operations can be performed and looks at combinational cir-
cuits that implement arithmetic operations.

Chapter 4 introduces a central theme of digital design, sequential cir-
cuits. The chapter examines several sequential circuit elements for storing 
information and for counting events. It then describes the concepts of a 
datapath and a control section, followed by a description of the clocked 
synchronous timing methodology.

Chapter 5 completes Act I, describing the use of memories for storing 
information. It starts by introducing the general concepts that are com-
mon to all kinds of semiconductor memory, and then focuses on the par-
ticular features of each type, including SRAM, DRAM, ROM and flash 
memories. The chapter finishes with a discussion of techniques for dealing 
with errors in the stored data.

The intermezzo, Chapter 6, is a digression away from functional 
design into physical design and the implementation fabrics used for digi-
tal systems. The chapter describes the range of integrated circuits that are 
used for digital systems, including ASICSs, FPGAs and other PLDs. The 
chapter also discusses some of the physical and electrical characteristics of 
implementation fabrics that give rise to constraints on designs.

Act II of the opera, comprising Chapters 7 through 9, develops the 
embedded systems theme.

Chapter 7 introduces the kinds of processors that are used in embed-
ded systems and gives examples of the instructions that make up embed-
ded software programs. The chapter also describes the way instructions 
and data are encoded in binary and stored in memory and examines ways 
of connecting the processor with memory components.

Chapter 8 expands on the notion of input/output (I/O) controllers 
that connect an embedded computer system with devices that sense and 
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affect real-world physical properties. It describes a range of devices that 
are used in embedded computers and shows how they are accessed by an 
embedded processor and by embedded software.

Chapter 9 describes accelerators, that is, components that can be 
added to embedded systems to perform operations faster than is possible 
with embedded software running on a processor core. This chapter uses 
an extended example to illustrate design considerations for accelerators, 
and shows how an accelerator interacts with an embedded processor.

The finale, Chapter 10, is a coda that returns to the theme of design 
methodology introduced in Chapter 1. The chapter describes details of 
the design flow and discusses how aspects of the design can be optimized 
to better meet constraints. It also introduces the concept of design for 
test, and outlines some design for test tools and techniques. The opera 
finishes with a discussion of the larger context in which digital systems 
are designed.

After a performance of an opera, there is always a lively discussion 
in the foyer. This book contains a number of appendices that correspond 
to that aspect of the opera. Appendix A provides sample answers for the 
Knowledge Test Quiz sections in the main chapters. Appendix B provides 
a quick refresher on electronic circuits. Appendix C is a summary of the 
subset of VHDL used for synthesis of digital circuits. Finally, Appendix D 
is an instruction-set reference for the Gumnut embedded processor core 
used in examples in Chapters 7 through 9.

For those not inclined toward classical music, I apologize if the pre-
ceding is not a helpful analogy. An analogy with the courses of a feast 
came to mind, but potential confusion among readers in different parts 
of the world over the terms appetizer, entrée and main course make the 
analogy problematic. The gastronomically inclined reader should feel free 
to find the correspondence in accordance with local custom.

COURSE ORGANIZATION

This book covers the topics included in the Digital Logic knowledge area of 
the Computer Engineering Body of Knowledge described in the IEEE/ACM 
Curriculum Guidelines for Undergraduate Degree Programs in Computer 
Engineering. The book is appropriate for a course at the sophomore level, 
assuming only previous introductory courses in electronic circuits and com-
puter programming. It articulates into junior and senior courses in embed-
ded systems, computer organization, VLSI and other advanced topics.

For a full sequence in digital design, the chapters of the book can be 
covered in order. Alternatively, a shorter sequence could draw on  Chapter 1 
through Chapter 6 plus Chapter 10. Such a sequence would defer  material
in Chapters 7 through 9 to a subsequent course on embedded systems 
design.
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For either sequence, the material in this book should be supplemented 
by a reference book on the VHDL language. The course work should 
also include laboratory projects, since hands-on design is the best way to 
reinforce the principles presented in the book.

WEB SUPPLEMENTS

No textbook can be complete nowadays without supplementary material 
on a website. For this book, resources for students and instructors are 
available at the website:

textbooks.elsevier.com/9780123695284

For students, the website contains:

Source code for all of the example HDL models in the book

Tutorials on the VHDL and Verilog hardware description languages

An assembler for the Gumnut processor described in Chapter 7 and 
Appendix D

A link to the ISE WebPack FPGA EDA tool suite from Xilinx

A link to the ModelSim Xilinx Edition III VHDL and Verilog simula-
tor from Mentor Graphics Corporation

A link to an evaluation edition of the Synplify Pro PFGA synthesis 
tool from Synplicity, Inc. (see inside back cover for more details).

Tutorials on use of the EDA tools for design projects

For instructors, the website contains a protected area with additional 
resources:

An instructor’s manual

Suggested lab projects

Lecture notes

Figures from the text in JPG and PPT formats

Instructors are invited to contribute additional material for the benefit of 
their colleagues.

Despite the best efforts of all involved, some errors have no doubt 
crept through the review and editorial process. A list of detected errors 
will be available accumulated on the website mentioned above. Should 
you detect such an error, please check whether it has been previously 
recorded. If not, I would be grateful for notice by email to

peter@ashenden.com.au
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I would also be delighted to hear feedback about the book andsupplementary
material, including suggestions for improvement.
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1

1i n t ro du c t i o n  a n d 
m e t h o d o l o g y

This first chapter introduces some of the fundamental ideas underlying 
design of modern digital systems. We cover quite a lot of ground, but at 
a fairly basic level. The idea is to set the context for more detailed discus-
sion in subsequent chapters.

We start by looking at the basic circuit elements from which digital 
systems are built, and seeing some of the ways in which they can be put 
together to perform a required function. We also consider some of the 
nonideal effects that we need to keep in mind, since they impose con-
straints on what we can design. We then focus on a systematic process of 
design, based on models expressed in a hardware description language. 
Approaching the design process systematically allows us to develop com-
plex systems that meet modern application requirements.

1.1 D I G I TA L  S Y S T E M S  A N D 
E M B E D D E D  S Y S T E M S

This book is about digital design. Let’s take a moment to explore those 
two words. Digital refers to electronic circuits that represent informa-
tion in a special way, using just two voltage levels. The main rationale 
for doing this is to increase the reliability and accuracy of the circuits, 
but as we will see, there are numerous other benefits that flow from the 
digital approach. We also use the term logic to refer to digital circuits. We 
can think of the two voltage levels as representing truth values, leading 
us to use rules of logic to analyze digital circuits. This gives us a strong 
mathematical foundation on which to build. The word design refers to 
the systematic process of working out how to construct circuits that meet 
given requirements while satisfying constraints on cost, performance, 
power consumption, size, weight and other properties. In this book, 
we focus on the design aspects and build a methodology for designing 
complex digital systems.



2 C H A P T E R  O N E i n t r o d u c t i o n  a n d  m e t h o d o l o g y

Digital circuits have quite a long and interesting history. They were 
preceded by mechanical systems, electromechanical systems, and analog 
electronic systems. Most of these systems were used for numeric com-
putations in business and military applications, for example, in ledger 
calculations and in computing ballistics tables. However, they suffered 
from numerous disadvantages, including inaccuracy, low speed, and high 
maintenance.

Early digital circuits, built in the mid-twentieth century, were con-
structed with relays. The contacts of a relay are either open, blocking 
current flow, or closed, allowing current to flow. Current controlled in 
this manner by one or more relays could then be used to switch other 
relays. However, even though relay-based systems were more reliable than 
their predecessors, they still suffered from reliability and performance 
problems.

The advent of digital circuits based on vacuum tubes and, sub-
sequently, transistors led to major improvements in reliability and 
performance. However, it was the invention of the integrated circuit (IC), 
in which multiple transistors were fabricated and connected together, 
that really enabled the “digital revolution.” As manufacturing technol-
ogy has developed, the size of transistors and the interconnecting wires 
has shrunk. This, along with other factors, has led to ICs, containing 
billions of transistors and performing complex functions, becoming 
commonplace now.

At this point, you may be wondering how such complex circuits can 
be designed. In your electronic circuits course, you may have learned how 
transistors operate, and that their operation is determined by numerous 
parameters. Given the complexity of designing a small circuit containing 
a few transistors, how could it be possible to design a large system with 
billions of transistors?

The key is abstraction. By abstraction, we mean identifying aspects 
that are important to a task at hand, and hiding details of other aspects. 
Of course, the other aspects can’t be ignored arbitrarily. Rather, we make 
assumptions and follow disciplines that allow us to ignore those details 
while we focus on the aspects of interest. As an example, the digital
abstraction involves only allowing two voltage levels in a circuit, with 
transistors being either turned “on” (that is, fully conducting) or turned 
“off” (that is, not conducting). One of the assumptions we make in sup-
porting this abstraction is that transistors switch on and off virtually 
instantaneously. One of the design disciplines we follow is to regulate 
switching to occur within well-defined intervals of time, called “clock 
periods.” We will see many other assumptions and disciplines as we pro-
ceed. The benefit of the digital abstraction is that it allows us to apply 
much simpler analysis and design procedures, and thus to build much 
more complex systems.



F I G U R E 1 .1 A pressure 
waveform of a sound, continuously 
varying over time, and the discrete 
representation of the waveform in 
a digital system.

1.1 Digital Systems and Embedded Systems C H A P T E R  O N E 3

The circuits that we will deal with in this book all perform functions 
that involve manipulating information of various kinds over time. The 
information might be an audio signal, the position of part of a machine, 
or the temperature of a substance. The information may change over time, 
and the way in which it is manipulated may vary with time.

Digital systems are electronic circuits that represent information in 
discrete form. An example of the kind of information that we might rep-
resent is an audio sound. In the real world, a sound is a continuously vary-
ing pressure waveform, which we might represent mathematically using 
a continuous function of time. However, representing that function with 
any significant precision as a continuously varying electrical signal in a 
circuit is difficult and costly, due to electrical noise and variation in circuit 
parameters. A digital system, on the other hand, represents the signal as 
a stream of discrete values sampled at discrete points in time, as shown 
in Figure 1.1. Each sample represents an approximation to the pressure 
value at a given instant. The approximations are drawn from a discrete 
set of values, for example, the set {�10.0, �9.9, �9.8, . . . , �0.1, 0.0, 
0.1, . . . , 9.9, 10.0}. By limiting the set of values that can be represented, 
we can encode each value with a unique combination of digital values, 
each of which is either a low or high voltage. We shall see exactly how 
we might do that in Chapter 2. Furthermore, by sampling the signal at 
regular intervals, say, every 50�s, the rate and times at which samples 
arrive and must be processed is predictable.

Discrete representations of information and discrete sequencing in 
time are fundamental abstractions. Much of this book is about how to 
choose appropriate representations, how to process information thus rep-
resented, how to sequence the processing, and how to ensure that the 
assumptions supporting the abstractions are maintained.

The majority of digital systems designed and manufactured today are 
embedded systems, in which much of the processing work is done by one 
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or more computers that form part of the system. In fact, the vast majority 
of computers in use today are in embedded systems, rather than in PCs 
and other general purpose systems. Early computers were large systems 
in their own right, and were rarely considered as components of larger 
systems. However, as technology developed, particularly to the stage of 
IC technology, it became practical to embed small computers as compo-
nents of a circuit and to program them to implement part of the circuit’s 
functionality. Embedded computers usually do not take the same form as 
general purpose computers, such as desktop or portable PCs. Instead, an 
embedded computer consists of a processor core, together with memory 
components for storing the program and data for the program to run on 
the processor core, and other components for transferring data between 
the processor core and the rest of the system.

The programs running on processor cores form the embedded soft-
ware of a system. The way in which embedded software is written bears 
both similarities and differences with software development for general 
purpose computers. It is a large topic area in its own right and is beyond 
the scope of this book. Nonetheless, since we are dealing with embedded 
systems in this book, we need to address embedded software at least at a 
basic level. We will return to the topic as part of our discussion of interfac-
ing with embedded processor cores in Chapters 8 and 9.

Since most digital systems in use today are embedded systems, most 
digital design practice involves developing the interface circuitry around 
processor cores and the application-specific circuitry to perform tasks not 
done by the cores. That is why this book deals specifically with digital 
design in the context of embedded systems.

1.2 B I N A R Y  R E P R E S E N TAT I O N  A N D 
C I R C U I T  E L E M E N T S

The simplest discrete representation that we see in a digital system is called 
a binary representation. It is a representation of information that can have 
only two values. Examples of such information include:

whether a switch is open or closed

whether a light is on or off

whether a microphone is active or muted

We can think of these as logical conditions: each is either true or 
false. In order to represent them in a digital circuit, we can assign a 
high voltage level to represent the value true, and a low voltage level to 
represent the value false. (This is just a convention, called positive logic,
or active-high logic. We could make the reverse assignment, leading to 
negative logic, or active-low logic, which we will discuss in Chapter 2.) 
We often use the values 0 and 1 instead of false and true, respectively. 

�

�

�
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F I G U R E 1 .2  A circuit in 
which a switch controls a lamp.

The values 0 and 1 are binary (base 2) digits, or bits, hence the term 
binary representation.

The circuit shown in Figure 1.2 illustrates the idea of binary repre-
sentation. The signal labeled switch_pressed represents the state of the 
switch. When the push-button switch is pressed, the signal has a high volt-
age, representing the truth of the condition, “the switch is pressed.” When 
the switch is not pressed, the signal has a low voltage, representing the 
falsehood of the condition. Since illumination of the lamp is controlled by 
the switch, we could equally well have labeled the signal lamp_lit, with a 
high voltage representing the truth of the condition, “the lamp is lit,” and 
a low voltage representing the falsehood of the condition.

A more complex digital circuit is shown in Figure 1.3. This circuit 
includes a light sensor with a digital output, dark, that is true (high 
 voltage) when there is no ambient light, or false (low voltage) otherwise. 
The circuit also includes a switch that determines whether the digital 
 signal lamp_enabled is low or high (that is, false or true, respectively). 
The symbol in the middle of the figure represents an AND gate, a digi-
tal circuit element whose output is only true (1) if both of its inputs are 
true (1). The output is false (0) if either input is false (0). Thus, in the 
circuit, the signal lamp_lit is true if lamp_enabled is true and dark is true, 
and is false otherwise. Given this behavior, we can apply laws of logic to 
analyze the circuit. For example, we can determine that if there is ambi-
ent light, the lamp will not light, since the logical AND of two conditions 
yields falsehood when either of the conditions is false.

The AND gate shown in Figure 1.3 is just one of several basic digital 
logic components. Some others are shown in Figure 1.4. The AND gate, as 

lamp_enabled

dark

lamp_lit

sensor

+V

F I G U R E 1 .3  A digital circuit 
for a night-light that is only lit 
when the switch is on and the light 
sensor shows that it is dark.

1.2 Binary Representation and Circuit Elements C H A P T E R  O N E  5



6 C H A P T E R  O N E  i n t r o d u c t i o n  a n d  m e t h o d o l o g y

we mentioned above, produces a 1 on its output if both inputs are 1, or a 0 
on the output if either input is 0. The OR gate produces the “inclusive or” of 
its inputs. Its output is 1 if either or both of the inputs is 1, or 0 if both inputs 
are 0. The inverter produces the “negation” of its input. Its output is 1 if the 
input is 0, or 0 if the input is 1. Finally, the multiplexer selects between the 
two inputs labeled “0” and “1” based on the value of the “select” input at 
the bottom of the symbol. If the select input has the value 0, then the output 
has the same value as that on the “0” input, whereas if the select input has 
the value 1, then the output has the same value as that on the “1” input.

We can use these logic gates to build digital circuits that implement 
more complex logic functions.

example  1 .1  Suppose a factory has two vats, only one of which is used at 
a time. The liquid in the vat in use needs to be at the right temperature, between 
25˚C and 30˚C. Each vat has two temperature sensors indicating whether the 
temperature is above 25˚C and above 30˚C, respectively. The vats also have low-
level sensors. The supervisor needs to be woken up by a buzzer when the temper-
ature is too high or too low or the vat level is too low. He has a switch to select 
which vat is in use. Design a circuit of gates to activate the buzzer as required.

solut ion  For the selected vat, the condition for activating the buzzer is 
“temperature not above 25˚C or temperature above 30˚C, or level low.” This 
can be implemented with a gate circuit for each vat. The switch can be used to 
control the select input of a multiplexer to choose between the circuit outputs 
for the two vats. The output of the multiplexer then activates the buzzer. The 
complete circuit is shown in Figure 1.5.

F I G U R E 1 .4  Basic digital 
logic gates.

AND gate OR gate

inverter multiplexer

0

1

>30°C

low level
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0
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vat 0

vat 1 select vat 1

select vat 0

+V

F I G U R EV 1 .5  The vat buzzer 
circuit.



Circuits such as those considered above are called combinational. 
This means that the values of the circuit’s outputs at any given time are 
determined purely by combining the values of the inputs at that time. 
There is no notion of storage of information, that is, dependence on val-
ues at previous times. While combinational circuits are important as parts 
of larger digital systems, nearly all digital systems are sequential. This 
means that they do include some form of storage, allowing the values of 
outputs to be determined by both the current input values and previous 
input values.

One of the simplest digital circuit elements for storing  information is 
called, somewhat prosaically, a flip-flop. It can “remember” a single bit of 
information, allowing it to “flip” and “flop” between a stored 0 state 
and a stored 1 state. The symbol for a D flip-flop is shown in Figure 1.6. 
It is called a “D” flip-flop because it has a single input, D, representing 
the value of the data to be stored: “D” for “data.” It also has another 
input, clk, called the clock input, that indicates when the value of the 
D input should be stored. The behavior of the D flip-flop is illustrated 
in the timing diagram in  Figure 1.7. A timing diagram is a graph of the 
values of one or more signals as they change with time. Time extends 
along the horizontal axis, and the signals of interest are listed on the 
vertical axis. Figure 1.7 shows the D input of the flip-flop changing at 
irregular intervals and the clk input changing periodically. A transition 
of clk from 0 to 1 is called a rising edge of the signal. (Similarly, a transi-
tion from 1 to 0 is called a falling edge.) The small triangular marking 
next to the clk input specifies that the D value is stored only on a rising 
edge of the clk input. At that time, the Q output changes to reflect the 
stored value. Any subsequent changes on the D input are ignored until 
the next rising edge of clk. A circuit element that behaves in this way is 
called edge-triggered.

While the behavior of a flip-flop does not depend on the clock input 
being periodic, in nearly all digital systems, there is a single clock signal 
that synchronizes all of the storage elements in the system. The system 
is composed of combinational circuits that perform logical functions on 
the values of signals and flip-flops that store intermediate results. As we 

D Q

clk

F I G U R E 1 .6  A D fl ip-fl op.

F I G U R E 1 .7  Timing diagram 
for a D fl ip-fl op.D 0

1

clk 0

1

Q 0

1

rising edge falling edge
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shall see, use of a single periodic synchronizing clock greatly  simplifies 
design of the system. The clock operates at a fixed frequency and divides 
time into discrete intervals, called clock periods, or clock cycles.  Modern 
digital circuits operate with clock frequencies in the range of tens to 
 hundreds of megahertz (MHz, or millions of cycles per second), with 
high-performance circuits extending up to several gigahertz (GHz, or 
 billions of cycles per second). Division of time into discrete intervals allows 
us to deal with time in a more abstract form. This is another example of 
abstraction at work.

example  1 .2  Develop a sequential circuit that has a single data input sig-
nal, S, and produces an output Y. The output is 1 whenever S has the same value 
over three successive clock cycles, and 0 otherwise. Assume that the value of S 
for a given clock cycle is defi ned at the time of the rising clock edge at the end of 
the clock cycle.

solut ion  In order to compare the values of S in three successive clock 
cycles, we need to save the values of S for the previous two cycles and compare 
them with the current value of S. We can use a pair of D flip-flops, connected in 
a pipeline as shown in Figure 1.8, to store the values. When a clock edge occurs, 
the first flip-flop, ff1, stores the value of S from the preceding clock cycle. That 
value is passed onto the second flip-flop, ff2, so that at the next clock edge, ff2 
stores the value of S from two cycles prior.

The output Y is 1 if and only if three successive value of S are all 1 or are all 0. 
Gates g1 and g2 jointly determine if the three values are all 1. Inverters g3, g4 
and g5 negate the three values, and so gates g6 and g7 determine if the three 
values are all 0. Gate g8 combines the two alternatives to yield the final 
output.

D Q

clk

D Q

clk

Y

S

clk

ff1
S1

S2

Y1

Y0

ff2

g1

g2

g6

g7

g8

g3
g4

g5

F I G U R E 1 .8  A sequential 
circuit for comparing successive 
bits of an input.



Figure 1.9 shows a timing diagram of the circuit for a particular sequence of 
input values on S over several clock cycles.  The outputs of the two flip-flops 
follow the value of S, but are delayed by one and two clock cycles, respectively. 
This timing diagram shows the value of S changing at the time of a clock edge. 
The flip-flop will actually store the value that is on S immediately before the 
clock edge. The circles and arrows indicate which signals are used to determine 
the values of other signals, leading to a 1 at the output. When all of S, S1 and S2 
are 1, Y1 changes to 1, indicating that S has been 1 for three successive cycles. 
Similarly, when all of S, S1 and S2 are 0, Y0 changes to 1, indicating that 
S has been 0 for three successive cycles. When either of Y1 or Y0 is 1, the output 
Y changes to 1.

1. What are the two values used in binary representation?

2. If one input of an AND gate is 0 and the other is 1, what is the 
output value? What if both are 0, or both are 1?

3. If one input of an OR gate is 0 and the other is 1, what is the output 
value? What if both are 0, or both are 1?

4. What function is performed by a multiplexer?

5. What is the distinction between combinational and sequential 
circuits?

6. How much information is stored by a fl ip-fl op?

7. What is meant by the terms rising edge and falling edge?

1.3 R E A L- W O R L D  C I R C U I T S

In order to analyze and design circuits as we have discussed, we are  making 
a number of assumptions that underlie the digital abstraction. We have 
assumed that a circuit behaves in an ideal manner, allowing us to think in 

K N O W L E D G E 
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K N O W L E D G E 
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F I G U R E 1 .9  Timing diagram 
for the sequential comparison 
circuit.
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