

In Praise of Digital Design: An Embedded
Systems Approach Using VHDL

“Peter Ashenden is leading the way towards a new curriculum for
educating the next generation of digital logic designers. Recognizing that
digital design has moved from being gate-centric assembly of custom
logic to processor-centric design of embedded systems, Dr. Ashenden has
shifted the focus from the gate to the modern design and integration of
complex integrated devices that may be physically realized in a variety of
forms. Dr. Ashenden does not ignore the fundamentals, but treats them
with suitable depth and breadth to provide a basis for the higher-level
material. As is the norm in all of Dr. Ashenden’s writing, the text is lucid
and a pleasure to read. The book is illustrated with copious examples and
the companion Web site offers all that one would expect in a text of such
high quality.”

— g r a n t m a rt i n , Chief Scientist, Tensilica Inc.

“Dr. Ashenden has written a textbook that enables students to obtain a
much broader and more valuable understanding of modern digital system
design. Readers can be sure that the practices described in this book will
provide a strong foundation for modern digital system design using hard-
ware description languages.”

— g a ry s p i v e y, George Fox University

“The convergence of miniaturized, sophisticated electronics into handheld,
low-power embedded systems such as cell phones, PDAs, and MP3 players
depends on efficient, digital design flows. Starting with an intuitive explo-
ration of the basic building blocks, Digital Design: An Embedded Systems
Approach introduces digital systems design in the context of embedded
systems to provide students with broader perspectives. Throughout the
text, Peter Ashenden’s practical approach engages s tudents in understand-
ing the challenges and complexities involved in implementing embedded
systems.”

— g r e g o ry d . p e t e rs o n , University of Tennessee

“Digital Design: An Embedded Systems Approach places emphasis on
larger systems containing processors, memory, and involving the design

and interface of I/O functions and application-specific accelerators. The
book’s presentation is based on a contemporary view that reflects the
real-world digital system design practice. At a time when the university
curriculum is generally lagging significantly behind industry development,
this book provides much needed information to students in the areas of
computer engineering, electrical engineering and computer science.”

— d o n a l d h u n g , San Jose State University

“Digital Design: An Embedded Systems Approach presents the design flow
of circuits and systems in a way that is both accessible and up-to-date.
Because the use of hardware description languages is state-of-the-art, it
is necessary that students learn how to use these languages along with
an appropriate methodology. This book presents a modern approach for
designing embedded systems starting with the fundamentals and
progressing up to a complete system—it is application driven and full of
many examples. I will recommend this book to my students.”

— g o e r a n h e r r m a n n , TU Chemnitz

“Digital Design: An Embedded Systems Approach is surprisingly easy to
read despite the complexity of the material. It takes the reader in a journey
from the basics to a real understanding of digital design by answering the
‘whys’ and ‘hows’—it is persuasive and instructive as it moves deeper and
deeper into the material.”

— a n d r e y ko p t y u g , Mid Sweden University

“This up-to-date text on digital design is written in a very accessible style
using a modern design methodology and the real world of embedded
systems as its contexts. Digital Design: An Embedded Systems Approach
provides excellent coverage of all aspects of the design of embedded sys-
tems, with chapters not just on logic design itself, but also on processors,
memories, input/output interfacing and implementation technologies. It’s
particularly good at emphasizing the need to consider more than just logic
design when designing a digital system: the design has to be implemented
in the real world of engineering, where a whole variety of constraints,
such as circuit area, circuit interconnections, interfacing requirements,
power and performance, must be considered. For those who think logic
design is mundane, this book brings the subject to life.”

— ro l a n d i b b e t t, University of Edinburgh

Digital Design
An Embedded Systems Approach
Using VHDL

a b o u t t h e au t h o r

Peter J. Ashenden is an Adjunct Associate Professor at Adelaide University
and the founder of Ashenden Designs, a consulting business specializing in
electronics design automation (EDA).

From 1990 to 2000, Dr. Ashenden was a member of the faculty
in the Department of Computer Science at Adelaide. He developed
curriculum and taught in a number of areas for both the Computer Sci-
ence and the Electrical and Electronic Engineering departments. Topics
included computer organization, computer architecture, digital logic
design, programming and algorithms, at all levels from undergraduate to
graduate courses. He was also actively involved in academic administra-
tion at many levels within the university.

In 2000, Dr. Ashenden established Ashenden Designs. His services
include training development and delivery, advising on design methodology,
research in EDA tool technology, development of design languages, and
standards writing. His clients include industry and government organiza-
tion in the United States, Europe and SE Asia.

Since 1992, Dr. Ashenden has been involved in the IEEE VHDL
standards committees, and continues to play a major role in ongoing
development of the language. From 2003 to 2005 he was Chair of the IEEE
Design Automation Standards Committee, which oversees development
of all IEEE standards in EDA. He is currently Technical Editor for the
VHDL, VHDL-AMS, and Rosetta specification language standards.

In addition to his research publications, Dr. Ashenden is author of
The Designer’s Guide to VHDL and The Student’s Guide to VHDL,
and coauthor of The System Designer’s Guide to VHSL-AMS and
VHDL-2007: Just the New Stuff. His VHDL books are highly regarded
and are the best-selling references on the subject. From 2000 to 2004,
he was Series Coeditor of the Morgan Kaufmann Series on Systems on
Silicon, and from 2001 to 2004 he was a member of the Editorial Board
of IEEE Design and Test of Computers magazine.

Dr. Ashenden is a Senior Member of the IEEE and the IEEE Computer
Society. He is also a volunteer Senior Firefighter of 12 years standing with
the South Australian Country Fire Service.

Digital Design
An Embedded Systems Approach
Using VHDL

p e t e r j . a s h e n d e n
Adjunct Associate Professor
School of Computer Science
University of Adelaide

amsterdam • boston • heidelberg • london
new york • oxford • paris • san diego

san francisco • singapore • sydney • tokyo
Morgan Kaufmann is an imprint of Elsevier

Publishing Director Joanne Tracy
Publisher Denise E. M. Penrose
Acquisitions Editor Charles Glaser
Publishing Services Manager George Morrison
Senior Production Editor Dawnmarie Simpson
Developmental Editor Nate McFadden
Editorial Assistant Kimberlee Honjo
Production Assistant Lianne Hong
Cover Design Eric DeCicco
Cover Image Getty Images
Composition diacriTech
Technical Illustration Peter Ashenden
Copyeditor JC Publishing
Proofreader Janet Cocker
Indexer Joan Green
Interior printer Sheridan Books, Inc.
Cover printer Phoenix Color, Inc.

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

© 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support
& Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Ashenden, Peter J.

Digital design: an embedded systems approach using VHDL / Peter J. Ashenden.
p. cm.

Includes index.
ISBN 978-0-12-369528-4 (pbk. : alk. paper) 1. Embedded computer systems. 2. VHDL (Computer

hardware description language) 3. System design. I. Title.
TK7895.E42.A69 2007
621.39'16–dc22

 2007023241

ISBN: 978-0-12-369528-4

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States.
07 08 09 10 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

To my daughter, Eleanor
—pa

This page intentionally left blank

c o n t e n t s

Preface . xv

c h a p t e r 1 Introduction and Methodology 1

1.1 Digital Systems and Embedded Systems 1
1.2 Binary Representation and Circuit Elements 4
1.3 Real-World Circuits . 9

1.3.1 Integrated Circuits . 10
1.3.2 Logic Levels . 11
1.3.3 Static Load Levels . 13
1.3.4 Capacitive Load and Propagation Delay 15
1.3.5 Wire Delay . 17
1.3.6 Sequential Timing . 17
1.3.7 Power . 18
1.3.8 Area and Packaging . 19

1.4 Models . 21
1.5 Design Methodology . 27

1.5.1 Embedded Systems Design 31
1.6 Chapter Summary . 34
1.7 Further Reading . 35

Exercises . 36

c h a p t e r 2 Combinational Basics 39

2.1 Boolean Functions and Boolean Algebra 39
2.1.1 Boolean Functions . 39
2.1.2 Boolean Algebra . 48
2.1.3 VHDL Models of Boolean Equations 51

2.2 Binary Coding . 55
2.2.1 Using Vectors for Binary Codes 57
2.2.2 Bit Errors . 59

2.3 Combinational Components and Circuits 62
2.3.1 Decoders and Encoders . 62
2.3.2 Multiplexers . 69
2.3.3 Active-Low Logic . 72

2.4 Verification of Combinational Circuits 75
2.5 Chapter Summary . 82

ix

2.6 Further Reading . 83
Exercises . 84

c h a p t e r 3 Numeric Basics . 89

3.1 Unsigned Integers . 89
3.1.1 Coding Unsigned Integers . 89
3.1.2 Operations on Unsigned Integers 94
3.1.3 Gray Codes . 119

3.2 Signed Integers . 122
3.2.1 Coding Signed Integers . 122
3.2.2 Operations on Signed Integers 125

3.3 Fixed-Point Numbers . 134
3.3.1 Coding Fixed-Point Numbers 134
3.3.2 Operations on Fixed-Point Numbers 138

3.4 Floating-Point Numbers . 141
3.4.1 Coding Floating-Point Numbers 141
3.4.2 Floating-Point Representation in VHDL 144

3.5 Chapter Summary . 148
3.6 Further Reading . 149

Exercises . 150

c h a p t e r 4 Sequential Basics . 157

4.1 Storage Elements . 157
4.1.1 Flip-flops and Registers . 157
4.1.2 Shift Registers . 168
4.1.3 Latches . 170

4.2 Counters . 175
4.3 Sequential Datapaths and Control . 184

4.3.1 Finite-State Machines . 189
4.4 Clocked Synchronous Timing Methodology 196

4.4.1 Asynchronous Inputs . 201
4.4.2 Verification of Sequential Circuits 206
4.4.3 Asynchronous Timing Methodologies 210

4.5 Chapter Summary . 213
4.6 Further Reading . 214

Exercises . 215

c h a p t e r 5 Memories . 221

5.1 General Concepts . 221
5.2 Memory Types . 229

5.2.1 Asynchronous Static RAM 230
5.2.2 Synchronous Static RAM . 232

x C O N T E N T S

5.2.3 Multiport Memories . 239
5.2.4 Dynamic RAM . 244
5.2.5 Read-Only Memories . 246

5.3 Error Detection and Correction . 250
5.4 Chapter Summary . 255
5.5 Further Reading . 256

Exercises . 257

c h a p t e r 6 Implementation Fabrics 261

6.1 Integrated Circuits . 261
6.1.1 Integrated Circuit Manufacture 262
6.1.2 SSI and MSI Logic Families 264
6.1.3 Application-Specific Integrated Circuits (ASICs) . . . 267

6.2 Programmable Logic Devices . 270
6.2.1 Programmable Array Logic 270
6.2.2 Complex PLDs . 274
6.2.3 Field-Programmable Gate Arrays 275

6.3 Packaging and Circuit Boards . 281
6.4 Interconnection and Signal Integrity . 284

6.4.1 Differential Signaling . 288
6.5 Chapter Summary . 290
6.6 Further Reading . 291

Exercises . 292

c h a p t e r 7 Processor Basics . 293

7.1 Embedded Computer Organization . 293
7.1.1 Microcontrollers and Processor Cores 295

7.2 Instructions and Data . 297
7.2.1 The Gumnut Instruction Set 299
7.2.2 The Gumnut Assembler . 308
7.2.3 Instruction Encoding . 310
7.2.4 Other CPU Instruction Sets 312

7.3 Interfacing with Memory . 314
7.3.1 Cache Memory . 320

7.4 Chapter Summary . 323
7.5 Further Reading . 323

Exercises . 324

c h a p t e r 8 I/O Interfacing . 327

8.1 I/O Devices . 327
8.1.1 Input Devices . 328
8.1.2 Output Devices . 333

C O N T E N T S xi

8.2 I/O Controllers . 342
8.2.1 Simple I/O Controllers . 343
8.2.2 Autonomous I/O Controllers 348

8.3 Parallel Buses . 350
8.3.1 Multiplexed Buses . 351
8.3.2 Tristate Buses . 355
8.3.3 Open-Drain Buses . 360
8.3.4 Bus Protocols . 362

8.4 Serial Transmission . 365
8.4.1 Serial Transmission Techniques 365
8.4.2 Serial Interface Standards . 369

8.5 I/O Software . 372
8.5.1 Polling . 373
8.5.2 Interrupts . 374
8.5.3 Timers . 380

8.6 Chapter Summary . 387
8.7 Further Reading . 388

Exercises . 389

c h a p t e r 9 Accelerators . 393

9.1 General Concepts . 393
9.2 Case Study: Video Edge-Detection . 400
9.3 Verifying an Accelerator . 423
9.4 Chapter Summary . 435
9.5 Further Reading . 435

Exercises . 436

c h a p t e r 1 0 Design Methodology 439

10.1 Design Flow . 439
10.1.1 Architecture Exploration . 441
10.1.2 Functional Design . 443
10.1.3 Functional Verification . 445
10.1.4 Synthesis . 451
10.1.5 Physical Design . 454

10.2 Design Optimization . 457
10.2.1 Area Optimization . 458
10.2.2 Timing Optimization . 460
10.2.3 Power Optimization . 464

10.3 Design for Test . 467
10.3.1 Fault Models and Fault Simulation 468
10.3.2 Scan Design and Boundary Scan 470
10.3.3 Built-In Self Test (BIST) . 474

xii C O N T E N T S

10.4 Nontechnical Issues . 478
10.5 In Conclusion . 479
10.6 Chapter Summary . 481
10.7 Further Reading . 482

a p p e n d i x a Knowledge Test Quiz Answers 485

a p p e n d i x b Introduction to Electronic Circuits 517

B.1 Components . 517
B.1.1 Voltage Sources . 518
B.1.2 Resistors . 518
B.1.3 Capacitors . 519
B.1.4 Inductors . 519
B.1.5 MOSFETs . 520
B.1.6 Diodes . 522
B.1.7 Bipolar Transistors . 523

B.2 Circuits . 524
B.2.1 Kirchhoff’s Laws . 524
B.2.2 Series and Parallel R, C, and L 525
B.2.3 RC Circuits . 527
B.2.4 RLC Circuits . 528

B.3 Further Reading . 531

a p p e n d i x c VHDL for Synthesis 533

C.1 Data Types and Operations . 533
C.2 Combinational Functions . 534
C.3 Sequential Circuits . 539

C.3.1 Finite-State Machines . 543
C.4 Memories . 545

a p p e n d i x d The Gumnut Microcontroller Core 547

D.1 The Gumnut Instruction Set . 547
D.1.1 Arithmetic and Logical Instructions 547
D.1.2 Shift Instructions . 551
D.1.3 Memory and I/O Instructions 552
D.1.4 Branch Instructions . 553
D.1.5 Jump Instructions . 553
D.1.6 Miscellaneous Instructions 554

D.2 The Gumnut Bus Interface . 554

Index . 557

C O N T E N T S xiii

This page intentionally left blank

p r e fac e

A P P R O A C H

This book provides a foundation in digital design for students in computer
engineering, electrical engineering and computer science courses. It deals
with digital design as an activity in a larger systems design context. Instead
of focusing on gate-level design and aspects of digital design that have
diminishing relevance in a real-world design context, the book concen-
trates on modern and evolving knowledge and design skills.

Most modern digital design practice involves design of embedded
systems, using small microcontrollers, larger CPUs/DSPs, or hard or soft
processor cores. Designs involve interfacing the processor or processors
to memory, I/O devices and communications interfaces, and developing
accelerators for operations that are too computationally intensive for pro-
cessors. Target technologies include ASICs, FPGAs, PLDs and PCBs. This
is a significant change from earlier design styles, which involved use of
small-scale integrated (SSI) and medium-scale integrated (MSI) circuits.
In such systems, the primary design goal was to minimize gate count or
IC package count. Since processors had lower performance and memories
had limited capacity, a greater proportion of system functionality was
implemented in hardware.

While design practices and the design context have evolved, many text-
books have not kept track. They continue to promote practices that are
largely obsolete or that have been subsumed into computer-aided design
(CAD) tools. They neglect many of the important considerations for mod-
ern designers. This book addresses the shortfall by taking an approach that
embodies modern design practice. The book presents the view that digital
logic is a basic abstraction over analog electronic circuits. Like any abstrac-
tion, the digital abstraction relies on assumptions being met and constraints
being satisfied. Thus, the book includes discussion of the electrical and tim-
ing properties of circuits, leading to an understanding of how they influence
design at higher levels of abstraction. Also, the book teaches a methodology
based on using abstraction to manage complexity, along with principles
and methods for making design trade-offs. These intellectual tools allow
students to track evolving design practice after they graduate.

Perhaps the most noticeable difference between this book and its
predecessors is the omission of material on Karnaugh maps and related

xv

logic optimization techniques. Some reviewers of the manuscript argued
that such techniques are still of value and are a necessary foundation for
students learning digital design. Certainly, it is important for students
to understand that a given function can be implemented by a variety of
equivalent circuits, and that different implementations may be more or
less optimal under different constraints. This book takes the approach of
presenting Boolean algebra as the foundation for gate-level circuit trans-
formation, but leaves the details of algorithms for optimization to CAD
tools. The complexity of modern systems makes it more important to
raise the level of abstraction at which we work and to introduce embed-
ded systems early in the curriculum. CAD tools perform a much better
job of gate-level optimization than we can do manually, using advanced
algorithms to satisfy relevant constraints. Techniques such as Karnaugh
maps do have a place, for example, in design of specialized hazard-free
logic circuits. Thus, students can defer learning about Karnaugh maps
until an advanced course in VLSI, or indeed, until they encounter the need
in industrial practice. A web search will reveal many sources describing
the techniques in detail, including an excellent article in Wikipedia.

The approach taken in this book makes it relevant to Computer Sci-
ence courses, as well as to Computer Engineering and Electrical Engi-
neering courses. By treating digital design as part of embedded systems
design, the book will provide the understanding of hardware needed for
computer science students to analyze and design systems comprising
both hardware and software components. The principles of abstraction
and complexity management using abstraction presented in the book are
the same as those underlying much of computer science and software
engineering.

Modern digital design practice relies heavily on models expressed in
hardware description languages (HDLs), such as Verilog and VHDL. HDL
models are used for design entry at the abstract behavioral level and for
refinements at the register transfer level. Synthesis tools produce gate-level
HDL models for low-level verification. Designers also express verification
environments in HDLs. This book emphasizes HDL-based design and
verification at all levels of abstraction. The present version uses VHDL
for this purpose. A second version, Digital Design: An Embedded Systems
Approach Using Verilog, substitutes Verilog for the same purpose.

OVERVIEW

For those who are musically inclined, the organization of this book can be
likened to a two-act opera, complete with overture, intermezzo, and finale.

Chapter 1 forms the overture, introducing the themes that are to fol-
low in the rest of the work. It starts with a discussion of the basic ideas of
the digital abstraction, and introduces the basic digital circuit elements.

xvi P R E FA C E

It then shows how various non-ideal behaviors of the elements impose
constraints on what we can design. The chapter finishes with a discussion
of a systematic process of design, based on models expressed in a hard-
ware description language.

Act I of the opera comprises Chapters 2 through 5. In this act, we
develop the themes of basic digital design in more detail.

Chapter 2 focuses on combinational circuits, starting with Boolean
algebra as the theoretical underpinning and moving on to binary coding
of information. The chapter then surveys a range of components that can
be used as building blocks in larger combinational circuits, before return-
ing to the design methodology to discuss verification of combinational
circuits.

Chapter 3 expands in some detail on combinational circuits used
to process numeric information. It examines various binary codes for
unsigned integers, signed integers, fixed-point fractions and floating-point
real numbers. For each kind of code, the chapter describes how some
arithmetic operations can be performed and looks at combinational cir-
cuits that implement arithmetic operations.

Chapter 4 introduces a central theme of digital design, sequential cir-
cuits. The chapter examines several sequential circuit elements for storing
information and for counting events. It then describes the concepts of a
datapath and a control section, followed by a description of the clocked
synchronous timing methodology.

Chapter 5 completes Act I, describing the use of memories for storing
information. It starts by introducing the general concepts that are com-
mon to all kinds of semiconductor memory, and then focuses on the par-
ticular features of each type, including SRAM, DRAM, ROM and flash
memories. The chapter finishes with a discussion of techniques for dealing
with errors in the stored data.

The intermezzo, Chapter 6, is a digression away from functional
design into physical design and the implementation fabrics used for digi-
tal systems. The chapter describes the range of integrated circuits that are
used for digital systems, including ASICSs, FPGAs and other PLDs. The
chapter also discusses some of the physical and electrical characteristics of
implementation fabrics that give rise to constraints on designs.

Act II of the opera, comprising Chapters 7 through 9, develops the
embedded systems theme.

Chapter 7 introduces the kinds of processors that are used in embed-
ded systems and gives examples of the instructions that make up embed-
ded software programs. The chapter also describes the way instructions
and data are encoded in binary and stored in memory and examines ways
of connecting the processor with memory components.

Chapter 8 expands on the notion of input/output (I/O) controllers
that connect an embedded computer system with devices that sense and

P R E FA C E xvii

affect real-world physical properties. It describes a range of devices that
are used in embedded computers and shows how they are accessed by an
embedded processor and by embedded software.

Chapter 9 describes accelerators, that is, components that can be
added to embedded systems to perform operations faster than is possible
with embedded software running on a processor core. This chapter uses
an extended example to illustrate design considerations for accelerators,
and shows how an accelerator interacts with an embedded processor.

The finale, Chapter 10, is a coda that returns to the theme of design
methodology introduced in Chapter 1. The chapter describes details of
the design flow and discusses how aspects of the design can be optimized
to better meet constraints. It also introduces the concept of design for
test, and outlines some design for test tools and techniques. The opera
finishes with a discussion of the larger context in which digital systems
are designed.

After a performance of an opera, there is always a lively discussion
in the foyer. This book contains a number of appendices that correspond
to that aspect of the opera. Appendix A provides sample answers for the
Knowledge Test Quiz sections in the main chapters. Appendix B provides
a quick refresher on electronic circuits. Appendix C is a summary of the
subset of VHDL used for synthesis of digital circuits. Finally, Appendix D
is an instruction-set reference for the Gumnut embedded processor core
used in examples in Chapters 7 through 9.

For those not inclined toward classical music, I apologize if the pre-
ceding is not a helpful analogy. An analogy with the courses of a feast
came to mind, but potential confusion among readers in different parts
of the world over the terms appetizer, entrée and main course make the
analogy problematic. The gastronomically inclined reader should feel free
to find the correspondence in accordance with local custom.

COURSE ORGANIZATION

This book covers the topics included in the Digital Logic knowledge area of
the Computer Engineering Body of Knowledge described in the IEEE/ACM
Curriculum Guidelines for Undergraduate Degree Programs in Computer
Engineering. The book is appropriate for a course at the sophomore level,
assuming only previous introductory courses in electronic circuits and com-
puter programming. It articulates into junior and senior courses in embed-
ded systems, computer organization, VLSI and other advanced topics.

For a full sequence in digital design, the chapters of the book can be
covered in order. Alternatively, a shorter sequence could draw on Chapter 1
through Chapter 6 plus Chapter 10. Such a sequence would defer material
in Chapters 7 through 9 to a subsequent course on embedded systems
design.

xviii P R E FA C E

For either sequence, the material in this book should be supplemented
by a reference book on the VHDL language. The course work should
also include laboratory projects, since hands-on design is the best way to
reinforce the principles presented in the book.

WEB SUPPLEMENTS

No textbook can be complete nowadays without supplementary material
on a website. For this book, resources for students and instructors are
available at the website:

textbooks.elsevier.com/9780123695284

For students, the website contains:

Source code for all of the example HDL models in the book

Tutorials on the VHDL and Verilog hardware description languages

An assembler for the Gumnut processor described in Chapter 7 and
Appendix D

A link to the ISE WebPack FPGA EDA tool suite from Xilinx

A link to the ModelSim Xilinx Edition III VHDL and Verilog simula-
tor from Mentor Graphics Corporation

A link to an evaluation edition of the Synplify Pro PFGA synthesis
tool from Synplicity, Inc. (see inside back cover for more details).

Tutorials on use of the EDA tools for design projects

For instructors, the website contains a protected area with additional
resources:

An instructor’s manual

Suggested lab projects

Lecture notes

Figures from the text in JPG and PPT formats

Instructors are invited to contribute additional material for the benefit of
their colleagues.

Despite the best efforts of all involved, some errors have no doubt
crept through the review and editorial process. A list of detected errors
will be available accumulated on the website mentioned above. Should
you detect such an error, please check whether it has been previously
recorded. If not, I would be grateful for notice by email to

peter@ashenden.com.au

�

�

�

�

�

�

�

�

�

�

�

P R E FA C E xix

I would also be delighted to hear feedback about the book andsupplementary
material, including suggestions for improvement.

ACKNOWLEDGMENTS

This book arose from my long-standing desire to bring a more modern
approach to the teaching of digital design. I am deeply grateful to the
folks at Morgan Kaufmann Publishers for supporting me in realizing this
goal, and for their guidance and advice in shaping the book. Particular
thanks go to Denise Penrose, Publisher; Nate McFadden, Developmental
Editor and Kim Honjo, Editorial Assistant. Thanks also to Dawnmarie
Simpson at Elsevier for meticulous attention to detail and for making the
production process go like clockwork.

The manuscript benefited from comprehensive reviews by Dr. A. Bou-
ridane, Queen’s University Belfast; Prof. Goeran Herrmann, Chemnitz
University of Technology; Prof. Donald Hung, San Jose State Univer-
sity; Prof. Roland Ibbett, University of Edinburgh; Dr. Andrey Koptyug,
Mid Sweden University; Dr. Grant Martin, Tensilica, Inc.; Dr. Gregory
D. Peterson, University of Tennessee; Brian R. Prasky, IBM; Dr. Gary
Spivey, George Fox University; Dr. Peixin Zhong, Michigan State Univer-
sity; and an anonymous reviewer from Rensselaer Polytechnic Institute.
Also, my esteemed colleague Jim Lewis of SynthWorks Design, Inc.,
provided technical reviews of the VHDL code and related text. To all of
these, my sincere thanks for their contributions. The immense improve-
ment from my first draft to the final draft is due to their efforts.

The book and the associated teaching materials also benefited from
field testing: in alpha form by myself at the University of Adelaide and
by Dr. Monte Tull at The University of Oklahoma; and in beta form by
James Sterbenz at The University of Kansas. To them and to their stu-
dents, thanks for your forbearance with the errors and for your valuable
feedback.

xx P R E FA C E

1

1i n t ro du c t i o n a n d
m e t h o d o l o g y

This first chapter introduces some of the fundamental ideas underlying
design of modern digital systems. We cover quite a lot of ground, but at
a fairly basic level. The idea is to set the context for more detailed discus-
sion in subsequent chapters.

We start by looking at the basic circuit elements from which digital
systems are built, and seeing some of the ways in which they can be put
together to perform a required function. We also consider some of the
nonideal effects that we need to keep in mind, since they impose con-
straints on what we can design. We then focus on a systematic process of
design, based on models expressed in a hardware description language.
Approaching the design process systematically allows us to develop com-
plex systems that meet modern application requirements.

1.1 D I G I TA L S Y S T E M S A N D
E M B E D D E D S Y S T E M S

This book is about digital design. Let’s take a moment to explore those
two words. Digital refers to electronic circuits that represent informa-
tion in a special way, using just two voltage levels. The main rationale
for doing this is to increase the reliability and accuracy of the circuits,
but as we will see, there are numerous other benefits that flow from the
digital approach. We also use the term logic to refer to digital circuits. We
can think of the two voltage levels as representing truth values, leading
us to use rules of logic to analyze digital circuits. This gives us a strong
mathematical foundation on which to build. The word design refers to
the systematic process of working out how to construct circuits that meet
given requirements while satisfying constraints on cost, performance,
power consumption, size, weight and other properties. In this book,
we focus on the design aspects and build a methodology for designing
complex digital systems.

2 C H A P T E R O N E i n t r o d u c t i o n a n d m e t h o d o l o g y

Digital circuits have quite a long and interesting history. They were
preceded by mechanical systems, electromechanical systems, and analog
electronic systems. Most of these systems were used for numeric com-
putations in business and military applications, for example, in ledger
calculations and in computing ballistics tables. However, they suffered
from numerous disadvantages, including inaccuracy, low speed, and high
maintenance.

Early digital circuits, built in the mid-twentieth century, were con-
structed with relays. The contacts of a relay are either open, blocking
current flow, or closed, allowing current to flow. Current controlled in
this manner by one or more relays could then be used to switch other
relays. However, even though relay-based systems were more reliable than
their predecessors, they still suffered from reliability and performance
problems.

The advent of digital circuits based on vacuum tubes and, sub-
sequently, transistors led to major improvements in reliability and
performance. However, it was the invention of the integrated circuit (IC),
in which multiple transistors were fabricated and connected together,
that really enabled the “digital revolution.” As manufacturing technol-
ogy has developed, the size of transistors and the interconnecting wires
has shrunk. This, along with other factors, has led to ICs, containing
billions of transistors and performing complex functions, becoming
commonplace now.

At this point, you may be wondering how such complex circuits can
be designed. In your electronic circuits course, you may have learned how
transistors operate, and that their operation is determined by numerous
parameters. Given the complexity of designing a small circuit containing
a few transistors, how could it be possible to design a large system with
billions of transistors?

The key is abstraction. By abstraction, we mean identifying aspects
that are important to a task at hand, and hiding details of other aspects.
Of course, the other aspects can’t be ignored arbitrarily. Rather, we make
assumptions and follow disciplines that allow us to ignore those details
while we focus on the aspects of interest. As an example, the digital
abstraction involves only allowing two voltage levels in a circuit, with
transistors being either turned “on” (that is, fully conducting) or turned
“off” (that is, not conducting). One of the assumptions we make in sup-
porting this abstraction is that transistors switch on and off virtually
instantaneously. One of the design disciplines we follow is to regulate
switching to occur within well-defined intervals of time, called “clock
periods.” We will see many other assumptions and disciplines as we pro-
ceed. The benefit of the digital abstraction is that it allows us to apply
much simpler analysis and design procedures, and thus to build much
more complex systems.

F I G U R E 1 .1 A pressure
waveform of a sound, continuously
varying over time, and the discrete
representation of the waveform in
a digital system.

1.1 Digital Systems and Embedded Systems C H A P T E R O N E 3

The circuits that we will deal with in this book all perform functions
that involve manipulating information of various kinds over time. The
information might be an audio signal, the position of part of a machine,
or the temperature of a substance. The information may change over time,
and the way in which it is manipulated may vary with time.

Digital systems are electronic circuits that represent information in
discrete form. An example of the kind of information that we might rep-
resent is an audio sound. In the real world, a sound is a continuously vary-
ing pressure waveform, which we might represent mathematically using
a continuous function of time. However, representing that function with
any significant precision as a continuously varying electrical signal in a
circuit is difficult and costly, due to electrical noise and variation in circuit
parameters. A digital system, on the other hand, represents the signal as
a stream of discrete values sampled at discrete points in time, as shown
in Figure 1.1. Each sample represents an approximation to the pressure
value at a given instant. The approximations are drawn from a discrete
set of values, for example, the set {�10.0, �9.9, �9.8, . . . , �0.1, 0.0,
0.1, . . . , 9.9, 10.0}. By limiting the set of values that can be represented,
we can encode each value with a unique combination of digital values,
each of which is either a low or high voltage. We shall see exactly how
we might do that in Chapter 2. Furthermore, by sampling the signal at
regular intervals, say, every 50�s, the rate and times at which samples
arrive and must be processed is predictable.

Discrete representations of information and discrete sequencing in
time are fundamental abstractions. Much of this book is about how to
choose appropriate representations, how to process information thus rep-
resented, how to sequence the processing, and how to ensure that the
assumptions supporting the abstractions are maintained.

The majority of digital systems designed and manufactured today are
embedded systems, in which much of the processing work is done by one

4 C H A P T E R O N E i n t r o d u c t i o n a n d m e t h o d o l o g y

or more computers that form part of the system. In fact, the vast majority
of computers in use today are in embedded systems, rather than in PCs
and other general purpose systems. Early computers were large systems
in their own right, and were rarely considered as components of larger
systems. However, as technology developed, particularly to the stage of
IC technology, it became practical to embed small computers as compo-
nents of a circuit and to program them to implement part of the circuit’s
functionality. Embedded computers usually do not take the same form as
general purpose computers, such as desktop or portable PCs. Instead, an
embedded computer consists of a processor core, together with memory
components for storing the program and data for the program to run on
the processor core, and other components for transferring data between
the processor core and the rest of the system.

The programs running on processor cores form the embedded soft-
ware of a system. The way in which embedded software is written bears
both similarities and differences with software development for general
purpose computers. It is a large topic area in its own right and is beyond
the scope of this book. Nonetheless, since we are dealing with embedded
systems in this book, we need to address embedded software at least at a
basic level. We will return to the topic as part of our discussion of interfac-
ing with embedded processor cores in Chapters 8 and 9.

Since most digital systems in use today are embedded systems, most
digital design practice involves developing the interface circuitry around
processor cores and the application-specific circuitry to perform tasks not
done by the cores. That is why this book deals specifically with digital
design in the context of embedded systems.

1.2 B I N A R Y R E P R E S E N TAT I O N A N D
C I R C U I T E L E M E N T S

The simplest discrete representation that we see in a digital system is called
a binary representation. It is a representation of information that can have
only two values. Examples of such information include:

whether a switch is open or closed

whether a light is on or off

whether a microphone is active or muted

We can think of these as logical conditions: each is either true or
false. In order to represent them in a digital circuit, we can assign a
high voltage level to represent the value true, and a low voltage level to
represent the value false. (This is just a convention, called positive logic,
or active-high logic. We could make the reverse assignment, leading to
negative logic, or active-low logic, which we will discuss in Chapter 2.)
We often use the values 0 and 1 instead of false and true, respectively.

�

�

�

switch_pressed

+V

F I G U R E 1 .2 A circuit in
which a switch controls a lamp.

The values 0 and 1 are binary (base 2) digits, or bits, hence the term
binary representation.

The circuit shown in Figure 1.2 illustrates the idea of binary repre-
sentation. The signal labeled switch_pressed represents the state of the
switch. When the push-button switch is pressed, the signal has a high volt-
age, representing the truth of the condition, “the switch is pressed.” When
the switch is not pressed, the signal has a low voltage, representing the
falsehood of the condition. Since illumination of the lamp is controlled by
the switch, we could equally well have labeled the signal lamp_lit, with a
high voltage representing the truth of the condition, “the lamp is lit,” and
a low voltage representing the falsehood of the condition.

A more complex digital circuit is shown in Figure 1.3. This circuit
includes a light sensor with a digital output, dark, that is true (high
 voltage) when there is no ambient light, or false (low voltage) otherwise.
The circuit also includes a switch that determines whether the digital
 signal lamp_enabled is low or high (that is, false or true, respectively).
The symbol in the middle of the figure represents an AND gate, a digi-
tal circuit element whose output is only true (1) if both of its inputs are
true (1). The output is false (0) if either input is false (0). Thus, in the
circuit, the signal lamp_lit is true if lamp_enabled is true and dark is true,
and is false otherwise. Given this behavior, we can apply laws of logic to
analyze the circuit. For example, we can determine that if there is ambi-
ent light, the lamp will not light, since the logical AND of two conditions
yields falsehood when either of the conditions is false.

The AND gate shown in Figure 1.3 is just one of several basic digital
logic components. Some others are shown in Figure 1.4. The AND gate, as

lamp_enabled

dark

lamp_lit

sensor

+V

F I G U R E 1 .3 A digital circuit
for a night-light that is only lit
when the switch is on and the light
sensor shows that it is dark.

1.2 Binary Representation and Circuit Elements C H A P T E R O N E 5

6 C H A P T E R O N E i n t r o d u c t i o n a n d m e t h o d o l o g y

we mentioned above, produces a 1 on its output if both inputs are 1, or a 0
on the output if either input is 0. The OR gate produces the “inclusive or” of
its inputs. Its output is 1 if either or both of the inputs is 1, or 0 if both inputs
are 0. The inverter produces the “negation” of its input. Its output is 1 if the
input is 0, or 0 if the input is 1. Finally, the multiplexer selects between the
two inputs labeled “0” and “1” based on the value of the “select” input at
the bottom of the symbol. If the select input has the value 0, then the output
has the same value as that on the “0” input, whereas if the select input has
the value 1, then the output has the same value as that on the “1” input.

We can use these logic gates to build digital circuits that implement
more complex logic functions.

example 1 .1 Suppose a factory has two vats, only one of which is used at
a time. The liquid in the vat in use needs to be at the right temperature, between
25˚C and 30˚C. Each vat has two temperature sensors indicating whether the
temperature is above 25˚C and above 30˚C, respectively. The vats also have low-
level sensors. The supervisor needs to be woken up by a buzzer when the temper-
ature is too high or too low or the vat level is too low. He has a switch to select
which vat is in use. Design a circuit of gates to activate the buzzer as required.

solut ion For the selected vat, the condition for activating the buzzer is
“temperature not above 25˚C or temperature above 30˚C, or level low.” This
can be implemented with a gate circuit for each vat. The switch can be used to
control the select input of a multiplexer to choose between the circuit outputs
for the two vats. The output of the multiplexer then activates the buzzer. The
complete circuit is shown in Figure 1.5.

F I G U R E 1 .4 Basic digital
logic gates.

AND gate OR gate

inverter multiplexer

0

1

>30°C

low level

buzzer

>25°C

>30°C

low level

>25°C

0

1

vat 0

vat 1 select vat 1

select vat 0

+V

F I G U R EV 1 .5 The vat buzzer
circuit.

Circuits such as those considered above are called combinational.
This means that the values of the circuit’s outputs at any given time are
determined purely by combining the values of the inputs at that time.
There is no notion of storage of information, that is, dependence on val-
ues at previous times. While combinational circuits are important as parts
of larger digital systems, nearly all digital systems are sequential. This
means that they do include some form of storage, allowing the values of
outputs to be determined by both the current input values and previous
input values.

One of the simplest digital circuit elements for storing information is
called, somewhat prosaically, a flip-flop. It can “remember” a single bit of
information, allowing it to “flip” and “flop” between a stored 0 state
and a stored 1 state. The symbol for a D flip-flop is shown in Figure 1.6.
It is called a “D” flip-flop because it has a single input, D, representing
the value of the data to be stored: “D” for “data.” It also has another
input, clk, called the clock input, that indicates when the value of the
D input should be stored. The behavior of the D flip-flop is illustrated
in the timing diagram in Figure 1.7. A timing diagram is a graph of the
values of one or more signals as they change with time. Time extends
along the horizontal axis, and the signals of interest are listed on the
vertical axis. Figure 1.7 shows the D input of the flip-flop changing at
irregular intervals and the clk input changing periodically. A transition
of clk from 0 to 1 is called a rising edge of the signal. (Similarly, a transi-
tion from 1 to 0 is called a falling edge.) The small triangular marking
next to the clk input specifies that the D value is stored only on a rising
edge of the clk input. At that time, the Q output changes to reflect the
stored value. Any subsequent changes on the D input are ignored until
the next rising edge of clk. A circuit element that behaves in this way is
called edge-triggered.

While the behavior of a flip-flop does not depend on the clock input
being periodic, in nearly all digital systems, there is a single clock signal
that synchronizes all of the storage elements in the system. The system
is composed of combinational circuits that perform logical functions on
the values of signals and flip-flops that store intermediate results. As we

D Q

clk

F I G U R E 1 .6 A D fl ip-fl op.

F I G U R E 1 .7 Timing diagram
for a D fl ip-fl op.D 0

1

clk 0

1

Q 0

1

rising edge falling edge

1.2 Binary Representation and Circuit Elements C H A P T E R O N E 7

8 C H A P T E R O N E i n t r o d u c t i o n a n d m e t h o d o l o g y

shall see, use of a single periodic synchronizing clock greatly simplifies
design of the system. The clock operates at a fixed frequency and divides
time into discrete intervals, called clock periods, or clock cycles. Modern
digital circuits operate with clock frequencies in the range of tens to
 hundreds of megahertz (MHz, or millions of cycles per second), with
high-performance circuits extending up to several gigahertz (GHz, or
 billions of cycles per second). Division of time into discrete intervals allows
us to deal with time in a more abstract form. This is another example of
abstraction at work.

example 1 .2 Develop a sequential circuit that has a single data input sig-
nal, S, and produces an output Y. The output is 1 whenever S has the same value
over three successive clock cycles, and 0 otherwise. Assume that the value of S
for a given clock cycle is defi ned at the time of the rising clock edge at the end of
the clock cycle.

solut ion In order to compare the values of S in three successive clock
cycles, we need to save the values of S for the previous two cycles and compare
them with the current value of S. We can use a pair of D flip-flops, connected in
a pipeline as shown in Figure 1.8, to store the values. When a clock edge occurs,
the first flip-flop, ff1, stores the value of S from the preceding clock cycle. That
value is passed onto the second flip-flop, ff2, so that at the next clock edge, ff2
stores the value of S from two cycles prior.

The output Y is 1 if and only if three successive value of S are all 1 or are all 0.
Gates g1 and g2 jointly determine if the three values are all 1. Inverters g3, g4
and g5 negate the three values, and so gates g6 and g7 determine if the three
values are all 0. Gate g8 combines the two alternatives to yield the final
output.

D Q

clk

D Q

clk

Y

S

clk

ff1
S1

S2

Y1

Y0

ff2

g1

g2

g6

g7

g8

g3
g4

g5

F I G U R E 1 .8 A sequential
circuit for comparing successive
bits of an input.

Figure 1.9 shows a timing diagram of the circuit for a particular sequence of
input values on S over several clock cycles. The outputs of the two flip-flops
follow the value of S, but are delayed by one and two clock cycles, respectively.
This timing diagram shows the value of S changing at the time of a clock edge.
The flip-flop will actually store the value that is on S immediately before the
clock edge. The circles and arrows indicate which signals are used to determine
the values of other signals, leading to a 1 at the output. When all of S, S1 and S2
are 1, Y1 changes to 1, indicating that S has been 1 for three successive cycles.
Similarly, when all of S, S1 and S2 are 0, Y0 changes to 1, indicating that
S has been 0 for three successive cycles. When either of Y1 or Y0 is 1, the output
Y changes to 1.

1. What are the two values used in binary representation?

2. If one input of an AND gate is 0 and the other is 1, what is the
output value? What if both are 0, or both are 1?

3. If one input of an OR gate is 0 and the other is 1, what is the output
value? What if both are 0, or both are 1?

4. What function is performed by a multiplexer?

5. What is the distinction between combinational and sequential
circuits?

6. How much information is stored by a fl ip-fl op?

7. What is meant by the terms rising edge and falling edge?

1.3 R E A L- W O R L D C I R C U I T S

In order to analyze and design circuits as we have discussed, we are making
a number of assumptions that underlie the digital abstraction. We have
assumed that a circuit behaves in an ideal manner, allowing us to think in

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

S

S1

S2

clk

Y1

Y0

Y

F I G U R E 1 .9 Timing diagram
for the sequential comparison
circuit.

1.3 Real-World Circuits C H A P T E R O N E 9

